Infrastructure of Function Fields

Renate Scheidler

rscheidl@math.ucalgary.ca

Conference in Number Theory Carleton University, Ottawa, June 29, 2011

Research supported in part by NSERC of Canada

 $G = \langle g \rangle$

 $G = \langle g \rangle$, $\delta(g^i) = i$ distance of g^i

$$G = \langle g \rangle$$
, $\delta(g^i) = i$ distance of g^i

 $G = \langle g \rangle$, $\delta(g^i) = i$ distance of g^i

Baby Step:
$$g^i \rightarrow g^{i+1} = g^i * g$$

 $\delta(g^{i+1}) = i + 1 = \delta(g^i) + 1$

 $G = \langle g \rangle$, $\delta(g^i) = i$ distance of g^i

Baby Step:
$$g^i \rightarrow g^{i+1} = g^i * g$$

 $\delta(g^{i+1}) = i + 1 = \delta(g^i) + 1$

Giant Step:
$$(g^i, g^j) \rightarrow g^i * g^j = g^{i+j}$$

 $\delta(g^i * g^j) = i + j = \delta(g^i) + \delta(g^j)$

Similar technique solves **discrete logarithm/distance problem**): given g^i , find $\delta(g^i) = i$

$$\mathcal{R} = \{\mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s\}$$

$$\mathcal{R} = \{\mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s\},\$$

$$\delta(\mathfrak{f}_i) \approx i \quad \text{distance of } \mathfrak{f}_i$$

 $\mathcal{R} = \{ \mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s \},\$ $\delta(\mathfrak{f}_i) \approx i \quad \text{distance of } \mathfrak{f}_i$ circumference R

 $\mathcal{R} = \{ \mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s \},\$ $\delta(\mathfrak{f}_i) \approx i \quad \text{distance of } \mathfrak{f}_i$ circumference R

 $\mathcal{R} = \{ \mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s \},\$ $\delta(\mathfrak{f}_i) \approx i \quad \text{distance of } \mathfrak{f}_i$ circumference R

Baby Step: $f_i \rightarrow f_{i+1}$ $\delta(f_{i+1}) \approx i + 1 \approx \delta(f_i) + 1$

 $\mathcal{R} = \{ \mathfrak{f}_0, \mathfrak{f}_1, \dots, \mathfrak{f}_s \},\$ $\delta(\mathfrak{f}_i) \approx i \quad \text{distance of } \mathfrak{f}_i$ circumference R

Baby Step: $f_i \rightarrow f_{i+1}$ $\delta(f_{i+1}) \approx i + 1 \approx \delta(f_i) + 1$

Giant Step: $(\mathfrak{f}_i, \mathfrak{f}_j) = \mathfrak{f}_i * \mathfrak{f}_j$ $\delta(\mathfrak{f}_i * \mathfrak{f}_j) \approx i + j \approx \delta(\mathfrak{f}_i) + \delta(\mathfrak{f}_j)$

Can use a similar baby step giant step technique to

- find circumference R of \mathcal{R}
- solve distance problem

 $f(x,y) = Ax^2 + Bxy + Cy^2 \in \mathbb{Z}[x,y]$

 $f(x,y)=Ax^2+Bxy+Cy^2\in\mathbb{Z}[x,y],\quad D=B^2-4AC>0$

$$f(x,y) = Ax^2 + Bxy + Cy^2 \in \mathbb{Z}[x,y], \quad D = B^2 - 4AC > 0$$

Roots of $f(x,1) = Ax^2 + Bx + C: \quad \tau_{\pm} = \frac{B \pm \sqrt{D}}{2A} \in \mathbb{R}$

$$f(x,y) = Ax^{2} + Bxy + Cy^{2} \in \mathbb{Z}[x,y], \quad D = B^{2} - 4AC > 0$$

Roots of $f(x,1) = Ax^{2} + Bx + C : \quad \tau_{\pm} = \frac{B \pm \sqrt{D}}{2A} \in \mathbb{R}$

f is **reduced** if $0 < -\tau_{-} < 1 < \tau_{+}$ $(0 < \sqrt{D} - B < 2A < \sqrt{D} + B)$

$$f(x,y) = Ax^2 + Bxy + Cy^2 \in \mathbb{Z}[x,y], \quad D = B^2 - 4AC > 0$$

Roots of $f(x,1) = Ax^2 + Bx + C: \quad \tau_{\pm} = \frac{B \pm \sqrt{D}}{2A} \in \mathbb{R}$

f is **reduced** if $0 < -\tau_{-} < 1 < \tau_{+}$ $(0 < \sqrt{D} - B < 2A < \sqrt{D} + B)$ Infrastructure $\mathcal{R} = \{f \sim f_0 \text{ reduced}\}, \qquad \delta(f_{i+1}) = \delta(f_i) + \log(\tau_{+,i})$

 $f(x,y) = Ax^2 + Bxy + Cy^2 \in \mathbb{Z}[x,y], \quad D = B^2 - 4AC > 0$ Roots of $f(x,1) = Ax^2 + Bx + C: \quad \tau_{\pm} = \frac{B \pm \sqrt{D}}{2A} \in \mathbb{R}$

f is **reduced** if $0 < -\tau_{-} < 1 < \tau_{+}$ $(0 < \sqrt{D} - B < 2A < \sqrt{D} + B)$

Infrastructure $\mathcal{R} = \{f \sim f_0 \text{ reduced}\}, \qquad \delta(f_{i+1}) = \delta(f_i) + \log(\tau_{+,i})$

Baby Step: $(A, B, C) \rightarrow (C - qB + q^2A, 2qA - B, A), \quad q = \lfloor \tau \rfloor$ (Continued fraction algorithm applied to τ_+)

$$f(x,y) = Ax^{2} + Bxy + Cy^{2} \in \mathbb{Z}[x,y], \quad D = B^{2} - 4AC > 0$$

Roots of $f(x,1) = Ax^{2} + Bx + C : \quad \tau_{\pm} = \frac{B \pm \sqrt{D}}{2A} \in \mathbb{R}$

f is **reduced** if $0 < -\tau_{-} < 1 < \tau_{+}$ $(0 < \sqrt{D} - B < 2A < \sqrt{D} + B)$

Infrastructure $\mathcal{R} = \{f \sim f_0 \text{ reduced}\}, \qquad \delta(f_{i+1}) = \delta(f_i) + \log(\tau_{+,i})$

- **Baby Step:** $(A, B, C) \rightarrow (C qB + q^2A, 2qA B, A), \quad q = \lfloor \tau \rfloor$ (Continued fraction algorithm applied to τ_+) **Giant Step**:
 - ▶ Composition (Gauß): (A', B', C') ∘ (A'', B'', C'') = (A, B, C) where (assuming gcd(A', A'', (B' + B'')/2) = 1):

$$A = A'A'', \qquad B \equiv \begin{cases} 2A' \pmod{B'}, \\ 2A'' \pmod{B''}, \end{cases} \qquad C = \frac{B^2 - D}{4A}$$

followed by approximately log(D)/2 baby steps

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in \mathcal{O}_D : $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in \mathcal{O}_D : $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in \mathcal{O}_D : $\mathfrak{a} = [A, B] = \mathbb{Z}A \oplus \mathbb{Z}\frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R} = \{ \mathfrak{a} \text{ reduced and principal} \}$:

• \mathcal{R} is closed under giant steps

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in
$$\mathcal{O}_D$$
: $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

- $\blacktriangleright \ \mathcal{R}$ is closed under giant steps
- giant steps are commutative

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in
$$\mathcal{O}_D$$
: $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

- $\blacktriangleright \ \mathcal{R}$ is closed under giant steps
- giant steps are commutative
- \mathcal{O}_D is the identity under giant steps

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in
$$\mathcal{O}_D$$
: $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

- $\blacktriangleright \ \mathcal{R}$ is closed under giant steps
- giant steps are commutative
- \mathcal{O}_D is the identity under giant steps
- $\overline{\mathfrak{a}} = [A, \overline{B}]$ is the inverse under giant steps of $\mathfrak{a} = [A, B]$ where $\overline{B} \equiv -B \pmod{2A}$; $\delta(\overline{\mathfrak{a}}) = R + \log(A) \delta(\mathfrak{a})$

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in
$$\mathcal{O}_D$$
: $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

- $\blacktriangleright \ \mathcal{R}$ is closed under giant steps
- giant steps are commutative
- \mathcal{O}_D is the identity under giant steps
- $\overline{\mathfrak{a}} = [A, \overline{B}]$ is the inverse under giant steps of $\mathfrak{a} = [A, B]$ where $\overline{B} \equiv -B \pmod{2A}$; $\delta(\overline{\mathfrak{a}}) = R + \log(A) \delta(\mathfrak{a})$

Let \mathcal{O}_D be a quadratic order of discriminant D > 0

Ideals in
$$\mathcal{O}_D$$
: $\mathfrak{a} = [A, B] = \mathbb{Z} A \oplus \mathbb{Z} \frac{B + \sqrt{D}}{2}$, $4A \mid B^2 - D$

Theorem $\mathfrak{a} = [A, B]$ is an \mathcal{O}_D -ideal $\iff f = (A, B, (B^2 - D)/4A)$ is a binary quadratic form of discriminant D

- $\blacktriangleright \ \mathcal{R}$ is closed under giant steps
- giant steps are commutative
- \mathcal{O}_D is the identity under giant steps
- $\overline{\mathfrak{a}} = [A, \overline{B}]$ is the inverse under giant steps of $\mathfrak{a} = [A, B]$ where $\overline{B} \equiv -B \pmod{2A}$; $\delta(\overline{\mathfrak{a}}) = R + \log(A) \delta(\mathfrak{a})$
- R is "almost" associative under giant steps, in the sense that

 (a * b) * c and a * (b * c) are very close to each other in R. So R is
 "almost" an abelian group under giant steps!
- R is the regulator of O_D

 $C: y^2 = D(x) \in \mathbb{F}_q[x]$ monic, square-free, of degree 2g + 2 (q odd)

 $C: y^2 = D(x) \in \mathbb{F}_q[x]$ monic, square-free, of degree 2g + 2 (q odd)

Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^g$ ($\infty, \overline{\infty}$ the poles of x)

 $C: y^{2} = D(x) \in \mathbb{F}_{q}[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^{g} \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x) \infty + \delta(D)(\overline{\infty} - \infty)$ is **reduced** if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), \quad v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

 $C: y^2 = D(x) \in \mathbb{F}_q[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^g \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x) \infty + \delta(D)(\overline{\infty} - \infty)$ is reduced if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_q[x, y]$ -ideal $\mathfrak{a} = [A, B]$

 $C: y^2 = D(x) \in \mathbb{F}_q[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^g \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x)\infty + \delta(D)(\overline{\infty} - \infty)$ is reduced if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), \quad v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_q[x, y]$ -ideal $\mathfrak{a} = [A, B]$

Properties of the infrastructure $\mathcal{R} = \{D \text{ reduced and principal}\}\$ Baby steps: $\delta(0) = 0$, $\delta(D_1) = g + 1$, $1 \le \delta(D_{i+1}) - \delta(D_i) \le g$

 $C: y^2 = D(x) \in \mathbb{F}_q[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^g \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x) \infty + \delta(D)(\overline{\infty} - \infty)$ is reduced if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), \quad v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_q[x, y]$ -ideal $\mathfrak{a} = [A, B]$

Properties of the infrastructure $\mathcal{R} = \{D \text{ reduced and principal}\}\$ Baby steps: $\delta(0) = 0$, $\delta(D_1) = g + 1$, $1 \le \delta(D_{i+1}) - \delta(D_i) \le g$ Giant steps: $\delta(D' * D'') = \delta(D') + \delta(D'') - d$, $0 \le d \le 2g$

 $C: y^{2} = D(x) \in \mathbb{F}_{q}[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^{g} \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x) \infty + \delta(D)(\overline{\infty} - \infty)$ is reduced if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_q[x, y]$ -ideal $\mathfrak{a} = [A, B]$

Properties of the infrastructure $\mathcal{R} = \{D \text{ reduced and principal}\}$

Baby steps: $\delta(0) = 0$, $\delta(D_1) = g + 1$, $1 \le \delta(D_{i+1}) - \delta(D_i) \le g$ Giant steps: $\delta(D' * D'') = \delta(D') + \delta(D'') - d$, $0 \le d \le 2g$ divisor addition, followed by at most $\lceil g/2 \rceil$ baby steps

 $C: y^{2} = D(x) \in \mathbb{F}_{q}[x] \text{ monic, square-free, of degree } 2g + 2 (q \text{ odd})$ Regulator $R = \operatorname{ord}([\overline{\infty} - \infty]) \approx q^{g} \quad (\infty, \overline{\infty} \text{ the poles of } x)$

A degree 0 divisor $D = D_x - \deg(D_x)\infty + \delta(D)(\overline{\infty} - \infty)$ is reduced if

- D is defined over \mathbb{F}_q (i.e. invariant under Frobenius)
- $\infty, \overline{\infty} \notin \operatorname{supp}(D_x), v_P(D) \ge 0 \text{ for all } P \in \operatorname{supp}(D_x)$

•
$$P = (a, b) \in \operatorname{supp}(D_x) \Rightarrow \overline{P} = (a, -b) \notin \operatorname{supp}(D_x)$$

•
$$P = \overline{P} \in \operatorname{supp}(D_x) \Rightarrow v_{\overline{P}}(D) = 1$$

• deg
$$(D_x) \le g$$
 and $0 \le \delta(D) < R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_q[x, y]$ -ideal $\mathfrak{a} = [A, B]$

Properties of the infrastructure $\mathcal{R} = \{D \text{ reduced and principal}\}$

 $\begin{array}{ll} \text{Baby steps:} & \delta(0) = 0, \ \delta(D_1) = g+1, \ 1 \leq \delta(D_{i+1}) - \delta(D_i) \leq g \\ \text{Giant steps:} & \delta(D' * D'') = \delta(D') + \delta(D'') - d, \quad 0 \leq d \leq 2g \\ & \text{divisor addition, followed by at most } \lceil g/2 \rceil \text{ baby steps} \end{array}$

 \mathcal{R} is embeddable into the cyclic group $\langle [\overline{\infty} - \infty] \rangle$ of order R (Fontein 2008)

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- Giant steps: Ideal multiplication, followed by Voronoi baby steps

(Voronoi 1896, Delone & Fadeev 1964, Williams et al 1970/80s)

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- · Giant steps: Ideal multiplication, followed by Voronoi baby steps

(Voronoi 1896, Delone & Fadeev 1964, Williams et al 1970/80s)

The distinguished divisors of a cubic extension of $\mathbb{F}_q(x)$ with two poles at x form an infrastructure:

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- · Giant steps: Ideal multiplication, followed by Voronoi baby steps

(Voronoi 1896, Delone & Fadeev 1964, Williams et al 1970/80s)

The distinguished divisors of a cubic extension of $\mathbb{F}_q(x)$ with two poles at x form an infrastructure:

- Baby steps and giant steps analogous to cubic number fields
- (S. & Stein 1998/2000, S. 2001, Landquist 2009, research ongoing)

So for what global fields to (circle) infrastructures arise?

 $k = \mathbb{Q}$ or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n

 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $k = \mathbb{Q}$ or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \in K^*$ roots of unity K a finite algebraic extension of k of degree n \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

$$k = \mathbb{Q}$$
 or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n
 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

For the **unit group** \mathcal{O}^* of \mathcal{O} : $\mathcal{O}^*/\mu \cong \mathbb{Z}^r$ with r = |S| - 1

$$k = \mathbb{Q}$$
 or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n
 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

For the **unit group** \mathcal{O}^* of \mathcal{O} : $\mathcal{O}^*/\mu \cong \mathbb{Z}^r$ with r = |S| - 1

For $\alpha \in K^*$, define $\phi(\alpha) = (v_{\mathfrak{p}}(\alpha) \deg(\mathfrak{p}) | \mathfrak{p} \in S)$

$$k = \mathbb{Q}$$
 or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n
 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

For the **unit group** \mathcal{O}^* of \mathcal{O} : $\mathcal{O}^*/\mu \cong \mathbb{Z}^r$ with r = |S| - 1

For $\alpha \in K^*$, define $\phi(\alpha) = (v_{\mathfrak{p}}(\alpha) \deg(\mathfrak{p}) | \mathfrak{p} \in S)$

 ϕ maps \mathcal{O}^*/μ into the **unit lattice** \mathcal{L} in $\begin{cases} \mathbb{R}^r & \text{if } k = \mathbb{Q}, \\ \mathbb{Z}^r & \text{if } K = \mathbb{F}_q(x) \end{cases}$

$$k = \mathbb{Q}$$
 or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n
 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

For the **unit group** \mathcal{O}^* of \mathcal{O} : $\mathcal{O}^*/\mu \cong \mathbb{Z}^r$ with r = |S| - 1

For $\alpha \in K^*$, define $\phi(\alpha) = (v_{\mathfrak{p}}(\alpha) \deg(\mathfrak{p}) | \mathfrak{p} \in S)$

 ϕ maps \mathcal{O}^*/μ into the **unit lattice** \mathcal{L} in $\begin{cases} \mathbb{R}^r & \text{if } k = \mathbb{Q}, \\ \mathbb{Z}^r & \text{if } \mathcal{K} = \mathbb{F}_q(x) \end{cases}$ Regulator $R = \det(\mathcal{L})$

$$k = \mathbb{Q}$$
 or $\mathbb{F}_q(x)$, $A = \mathbb{Z}$ or $\mathbb{F}_q[x]$, $\mu \subset K^*$ roots of unity K a finite algebraic extension of k of degree n
 \mathcal{O} the integral closure of A in K (Dedekind domain)

 $S = \begin{cases} \text{set of conjugate mappings (archimedian places)} & \text{if } k = \mathbb{Q} \\ \text{set of poles of } x \text{ (infinite places)} & \text{if } k = \mathbb{F}_q(x) \end{cases}$

For the **unit group** \mathcal{O}^* of \mathcal{O} : $\mathcal{O}^*/\mu \cong \mathbb{Z}^r$ with r = |S| - 1

For $\alpha \in K^*$, define $\phi(\alpha) = (v_{\mathfrak{p}}(\alpha) \deg(\mathfrak{p}) | \mathfrak{p} \in S)$

 ϕ maps \mathcal{O}^*/μ into the **unit lattice** \mathcal{L} in $\begin{cases} \mathbb{R}^r & \text{if } k = \mathbb{Q}, \\ \mathbb{Z}^r & \text{if } K = \mathbb{F}_q(x) \end{cases}$ Regulator $R = \det(\mathcal{L})$

Infrastructure
$$\mathcal{R} := \left\{ \begin{array}{l} \mathbb{R}^r / \mathcal{L} & \text{if } \mathcal{K} = \mathbb{Q} \\ \mathbb{Z}^r / \mathcal{L} & \text{if } \mathcal{K} = \mathbb{F}_q(x) \end{array} \right\} r$$
-dimensional torus

- $$\begin{split} |S| = 1 \quad \Rightarrow \quad r = 0 \quad \Rightarrow \quad \text{no infrastructure} \\ |S| = 2 \quad \Rightarrow \quad r = 1 \quad \Rightarrow \quad \text{circle infrastructure} \end{split}$$

 $|S| = 1 \implies r = 0 \implies$ no infrastructure $|S| = 2 \implies r = 1 \implies$ circle infrastructure

Number Fields:

- r1: number of real embeddings
- r₂: number of pairs of complex embeddings

$$r = r_1 + r_2 - 1$$
, $n = r_1 + 2r_2$, $r_1 \ge 0$, $r_2 \ge 0$

 $|S| = 1 \implies r = 0 \implies$ no infrastructure $|S| = 2 \implies r = 1 \implies$ circle infrastructure

Number Fields:

- r1: number of real embeddings
- r₂: number of pairs of complex embeddings

$$r = r_1 + r_2 - 1$$
, $n = r_1 + 2r_2$, $r_1 \ge 0$, $r_2 \ge 0$

Solutions for
$$r = 0$$
:
 $r_1 = 1$, $r_2 = 0$, $n = 1 - \mathbb{Q}$
 $r_1 = 0$, $r_2 = 1$, $n = 2$ - imaginary quadratic

 $|S| = 1 \implies r = 0 \implies$ no infrastructure $|S| = 2 \implies r = 1 \implies$ circle infrastructure

Number Fields:

- r1: number of real embeddings
- r₂: number of pairs of complex embeddings

$$r = r_1 + r_2 - 1$$
, $n = r_1 + 2r_2$, $r_1 \ge 0$, $r_2 \ge 0$

Solutions for r = 0: $r_1 = 1$, $r_2 = 0$, $n = 1 - \mathbb{Q}$ $r_1 = 0$, $r_2 = 1$, n = 2 — imaginary quadratic Solutions for r = 1: $r_1 = 2$, $r_2 = 0$, n = 2 — real quadratic $r_1 = 1$, $r_2 = 1$, n = 3 — complex cubic

 $r_1 = 0$, $r_2 = 2$, n = 2 — totally complex quartic

 $|S| = 1 \implies r = 0 \implies$ no infrastructure $|S| = 2 \implies r = 1 \implies$ circle infrastructure

Number Fields:

- r1: number of real embeddings
- r₂: number of pairs of complex embeddings

$$r = r_1 + r_2 - 1$$
, $n = r_1 + 2r_2$, $r_1 \ge 0$, $r_2 \ge 0$

Solutions for r = 0: $r_1 = 1$, $r_2 = 0$, n = 1 — \mathbb{Q} $r_1 = 0$, $r_2 = 1$, n = 2 — imaginary quadratic Solutions for r = 1: $r_1 = 2$, $r_2 = 0$, n = 2 — real quadratic $r_1 = 1$, $r_2 = 1$, n = 3 — complex cubic $r_1 = 0$, $r_2 = 2$, n = 2 — totally complex quartic

Function Fields: for any $r, n \ge r$ can be anything!

Write $S = \{\infty_1, \ldots, \infty_{r+1}\}$, with respective ramification indices e_i

Write $S = \{\infty_1, \ldots, \infty_{r+1}\}$, with respective ramification indices e_i

For $\alpha \in K$, write $|\alpha|_i = q^{-v_{\infty_i}(\alpha)}$.

Write $S = \{\infty_1, \ldots, \infty_{r+1}\}$, with respective ramification indices e_i

For $\alpha \in K$, write $|\alpha|_i = q^{-v_{\infty_i}(\alpha)}$. Then the values $|\alpha|_i^{1/e_i}$ form a box:

Write $S = \{\infty_1, \ldots, \infty_{r+1}\}$, with respective ramification indices e_i

For $\alpha \in K$, write $|\alpha|_i = q^{-v_{\infty_i}(\alpha)}$. Then the values $|\alpha|_i^{1/e_i}$ form a box:

Length function on \mathcal{K} : $B(\alpha) = \max_{1 \le i \le r+1} |\alpha|_i^{1/e_i}$

First successive minimum of \mathfrak{f} : $M_1(\mathfrak{f}) = \min\{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$

First successive minimum of \mathfrak{f} : $M_1(\mathfrak{f}) = \min\{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$

i-th successive minimum of L:

First successive minimum of \mathfrak{f} : $M_1(\mathfrak{f}) = \min\{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$

i-th successive minimum of L:

Let $\omega_1, \ldots, \omega_i \in \mathfrak{f}$ be $\mathbb{F}_q[x]$ -linearly independent.

 $M_i(\mathfrak{f}) = \min\{B(\alpha) \mid \alpha \in \mathfrak{f} \text{ and } \omega_1, \dots, \omega_{i-1}, \alpha$ are $\mathbb{F}_q[x]$ -linearly independent}

First successive minimum of \mathfrak{f} : $M_1(\mathfrak{f}) = \min\{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$

i-th successive minimum of L:

Let $\omega_1, \ldots, \omega_i \in \mathfrak{f}$ be $\mathbb{F}_q[x]$ -linearly independent.

 $M_i(\mathfrak{f}) = \min\{B(\alpha) \mid \alpha \in \mathfrak{f} \text{ and } \omega_1, \dots, \omega_{i-1}, \alpha$ are $\mathbb{F}_q[x]$ -linearly independent}

Successive minima depend only on f, not on $\omega_1, \ldots, \omega_n, \alpha$

Distinguished Ideals

A fractional \mathcal{O} -ideal \mathfrak{f} is **distinguished** if for all $\alpha \in \mathfrak{f}$

 $B(\alpha) \leq 1 \implies \alpha \in \mathbb{F}_q$

Distinguished Ideals

A fractional \mathcal{O} -ideal \mathfrak{f} is **distinguished** if for all $\alpha \in \mathfrak{f}$

Distinguished Ideals

A fractional \mathcal{O} -ideal \mathfrak{f} is **distinguished** if for all $\alpha \in \mathfrak{f}$

Properties: Suppose $M_1(\mathfrak{f}) = B(\alpha)$ with $\alpha \in \mathfrak{f}$

- $M_1(\alpha^{-1}\mathfrak{f}) = 1$
- \mathfrak{f} distinguished $\iff \alpha \in \mathbb{F}_q^*$ (so $M_1(\mathfrak{f}) = 1$) and $M_2(\mathfrak{f}) > 1$

i-neighbour of 1 in \mathfrak{f} — next lattice point from 1 in $|\cdot|_i$ -direction without increasing all the other dimensions of the box

i-neighbour of 1 in \mathfrak{f} — next lattice point from 1 in $|\cdot|_i$ -direction without increasing all the other dimensions of the box $|\cdot|_{2}^{1/e_{2}}$ ² 2-neighbour of 1 • (\circ) • ۰ 1 • ۰ ۰ $|\cdot|^{1/e_1}$ 0 1

i-**neighbour** of 1 in f — next lattice point from 1 in $|\cdot|_i$ -direction without increasing all the other dimensions of the box $|\cdot|_{2}^{1/e_{2}}$ Takes on $M_2(f)$ ² 2-neighbour of 1 ۰ • \bigcirc ۰ ۰ 1 ۰ ۰ ۰ $|\cdot|^{1/e_1}$ 0 1

Obtained via a **0-reduced** *B*-ordered $\mathbb{F}_q[x]$ -basis of f

- very technical definition (Schörnig 1996, A. Lenstra 1985)
- computationally highly useful
- takes on the n successive minima of f
- efficiently computable for r = 1, $e_1 = 1$, $e_2 = n 1$ (Tang 2011)

Infrastructure, Ideal-Theoretic Description (Tang 2011)

$$r = 1$$
, $e_1 = 1$, $e_2 = n - 1$

Infrastructure, Ideal-Theoretic Description (Tang 2011)

 $r = 1, e_1 = 1, e_2 = n - 1$

Infrastructure $\mathcal{R} = \{ \mathfrak{f} \sim \mathfrak{f}_0 \text{ distinguished} \}$

Infrastructure, Ideal-Theoretic Description (Tang 2011)

$$r = 1$$
, $e_1 = 1$, $e_2 = n - 1$

Infrastructure $\mathcal{R} = \{\mathfrak{f} \sim \mathfrak{f}_0 \text{ distinguished}\}$

Baby step $\mathfrak{f} \to \mathfrak{g}$:

1. $\mathfrak{g} = \eta^{-1}\mathfrak{f}$ with η the 2-neighbour of 1 in \mathfrak{f}

$$\delta(\mathfrak{g}) = \delta(\mathfrak{f}) - v_{\infty_2}(\eta)$$

Infrastructure, Ideal-Theoretic Description (Tang 2011)

$$r = 1$$
, $e_1 = 1$, $e_2 = n - 1$

Infrastructure $\mathcal{R} = \{ \mathfrak{f} \sim \mathfrak{f}_0 \text{ distinguished} \}$

Baby step $f \rightarrow g$:

1. $\mathfrak{g} = \eta^{-1}\mathfrak{f}$ with η the 2-neighbour of 1 in \mathfrak{f}

$$\delta(\mathfrak{g}) = \delta(\mathfrak{f}) - \mathsf{v}_{\infty_2}(\eta)$$

Giant step f' * f'':

- 1. Compute ideal product f'f'', 0-reduce & B-order resulting basis
- 2. Divide by ω where $B(\omega) = M_1(\mathfrak{f})$, 0-reduce & B-order resulting basis
- 3. Apply one baby step

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$ \uparrow Distinguished integral ideal $\mathfrak{a} = \operatorname{denom}(\mathfrak{f})\mathfrak{f}$ of distance $\delta(\mathfrak{a}) = \delta(\mathfrak{f})$ \uparrow Distinguished degree 0 divisor $D = D_x - \operatorname{deg}(D_x)\infty_1 + \delta(D)(\infty_2 - \infty_1)$ with $\delta(D) = \delta(\mathfrak{a})$

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$ \uparrow Distinguished integral ideal $\mathfrak{a} = \operatorname{denom}(\mathfrak{f})\mathfrak{f}$ of distance $\delta(\mathfrak{a}) = \delta(\mathfrak{f})$ \uparrow Distinguished degree 0 divisor $D = D_x - \operatorname{deg}(D_x)\infty_1 + \delta(D)(\infty_2 - \infty_1)$ with $\delta(D) = \delta(\mathfrak{a})$

Properties:

▶ Baby steps: $\delta(0) = 0$, $\delta(D_1) \le g + 1$, $1 \le \delta(D_{i+1}) - \delta(D_i) \le g$

Distinguished fractional ideal f of distance $\delta(\mathfrak{f})$ Distinguished integral ideal $\mathfrak{a} = \operatorname{denom}(\mathfrak{f})\mathfrak{f}$ of distance $\delta(\mathfrak{a}) = \delta(\mathfrak{f})$ Distinguished degree 0 divisor $D = D_x - \operatorname{deg}(D_x)\infty_1 + \delta(D)(\infty_2 - \infty_1)$ with $\delta(D) = \delta(\mathfrak{a})$

Properties:

- ▶ Baby steps: $\delta(0) = 0$, $\delta(D_1) \le g + 1$, $1 \le \delta(D_{i+1}) \delta(D_i) \le g$
- Giant steps: $\delta(D' * D'') = \delta(D') + \delta(D'') d, \quad 0 \le d \le 2g$

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$ \uparrow Distinguished integral ideal $\mathfrak{a} = \operatorname{denom}(\mathfrak{f})\mathfrak{f}$ of distance $\delta(\mathfrak{a}) = \delta(\mathfrak{f})$ \uparrow Distinguished degree 0 divisor $D = D_x - \operatorname{deg}(D_x)\infty_1 + \delta(D)(\infty_2 - \infty_1)$ with $\delta(D) = \delta(\mathfrak{a})$

Properties:

- ▶ Baby steps: $\delta(0) = 0$, $\delta(D_1) \le g + 1$, $1 \le \delta(D_{i+1}) \delta(D_i) \le g$
- Giant steps: $\delta(D' * D'') = \delta(D') + \delta(D'') d, \quad 0 \le d \le 2g$
- Baby steps and giant steps are efficiently computable

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$ \uparrow Distinguished integral ideal $\mathfrak{a} = \operatorname{denom}(\mathfrak{f})\mathfrak{f}$ of distance $\delta(\mathfrak{a}) = \delta(\mathfrak{f})$ \uparrow Distinguished degree 0 divisor $D = D_x - \operatorname{deg}(D_x)\infty_1 + \delta(D)(\infty_2 - \infty_1)$ with $\delta(D) = \delta(\mathfrak{a})$

Properties:

- ▶ Baby steps: $\delta(0) = 0$, $\delta(D_1) \le g + 1$, $1 \le \delta(D_{i+1}) \delta(D_i) \le g$
- Giant steps: $\delta(D' * D'') = \delta(D') + \delta(D'') d, \quad 0 \le d \le 2g$
- Baby steps and giant steps are efficiently computable
- Run time ratio giant steps/baby steps proportional to n^2

Higher-Dimensional Infrastructures

Higher-Dimensional Infrastructures

r = 2, purely cubic extensions $K = k(\sqrt[3]{D})$

- Number fields: H. C. Williams et al (1970s and 80s), Buchmann (1980s)
- Function fields: Lee, S. & Yarrish (2003); Fontein, Landquist & S. (in progress)

Higher-Dimensional Infrastructures

r = 2, purely cubic extensions $K = k(\sqrt[3]{D})$

- Number fields: H. C. Williams et al (1970s and 80s), Buchmann (1980s)
- Function fields: Lee, S. & Yarrish (2003); Fontein, Landquist & S. (in progress)

Arbitrary r:

- Number Fields: Buchmann (Habilitationsschrift 1987)
- Number fields in function field language (Arakelov theory): Schoof (2008)
- Global Fields: Fontein (2011, ongoing)

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products $O(|D|^{1/5}) = O(R^{2/5})$
 - Real quadratic number fields: Lenstra 1982, Schoof 1982
 - Real hyperelliptic curves: Stein & Williams 1999, Stein & Teske 2002/2005
 - Cubic function fields: S. & Stein 2007
 - Arbitrary function fields (in principle): S. & Stein 2010

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products $O(|D|^{1/5}) = O(R^{2/5})$
 - Real quadratic number fields: Lenstra 1982, Schoof 1982
 - Real hyperelliptic curves: Stein & Williams 1999, Stein & Teske 2002/2005
 - Cubic function fields: S. & Stein 2007
 - Arbitrary function fields (in principle): S. & Stein 2010
- In function fields, infrastructure arithmetic can be advantageous over divisor class group arithmetic due to the much faster baby step operation (real hyperelliptic: Stein & Teske 2005; cubic: Landquist 2007-ongoing; used for cryptography in Jacobson, S. & Stein 2007)

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products $O(|D|^{1/5}) = O(R^{2/5})$
 - Real quadratic number fields: Lenstra 1982, Schoof 1982
 - Real hyperelliptic curves: Stein & Williams 1999, Stein & Teske 2002/2005
 - Cubic function fields: S. & Stein 2007
 - Arbitrary function fields (in principle): S. & Stein 2010
- In function fields, infrastructure arithmetic can be advantageous over divisor class group arithmetic due to the much faster baby step operation (real hyperelliptic: Stein & Teske 2005; cubic: Landquist 2007-ongoing; used for cryptography in Jacobson, S. & Stein 2007)
- Lots left to do:
 - Improvements to and implementation of Tang's algorithms
 - Other signatures (splitting of infinite place of $\mathbb{F}_q(x)$)
 - Low degree extensions with special arithmetic (cubics? quartics?)
 - •

* * * Thank You! — Questions (or Answers)? * * *