Infrastructure of Function Fields

Renate Scheidler
rscheidl@math.ucalgary.ca

Conference in Number Theory
Carleton University, Ottawa, June 29, 2011

Research supported in part by NSERC of Canada

Finite Cyclic Groups

$$
G=\langle g\rangle
$$

Finite Cyclic Groups

$$
G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i \text { distance of } g^{i}
$$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$ $\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

Giant Step: $\left(g^{i}, g^{j}\right) \rightarrow g^{i} * g^{j}=g^{i+j}$

$$
\delta\left(g^{i} * g^{j}\right)=i+j=\delta\left(g^{i}\right)+\delta\left(g^{j}\right)
$$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i \quad$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

Giant Step: $\left(g^{i}, g^{j}\right) \rightarrow g^{i} * g^{j}=g^{i+j}$

$$
\delta\left(g^{i} * g^{j}\right)=i+j=\delta\left(g^{i}\right)+\delta\left(g^{j}\right)
$$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i \quad$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$
$\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops
- Smarter way - $O(\sqrt{|G|})$ ops

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops
- Smarter way - $O(\sqrt{|G|})$ ops
- baby steps $1, g, g^{2}, \ldots g^{m}, m \approx \sqrt{|G|}$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

Giant Step: $\left(g^{i}, g^{j}\right) \rightarrow g^{i} * g^{j}=g^{i+j}$

$$
\delta\left(g^{i} * g^{j}\right)=i+j=\delta\left(g^{i}\right)+\delta\left(g^{j}\right)
$$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops
- Smarter way - $O(\sqrt{|G|})$ ops
- baby steps $1, g, g^{2}, \ldots g^{m}, m \approx \sqrt{|G|}$
- giant steps $g^{2 m}, g^{3 m}, \ldots, g^{k m}, k \approx \sqrt{|G|}$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

Giant Step: $\left(g^{i}, g^{j}\right) \rightarrow g^{i} * g^{j}=g^{i+j}$

$$
\delta\left(g^{i} * g^{j}\right)=i+j=\delta\left(g^{i}\right)+\delta\left(g^{j}\right)
$$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops
- Smarter way - $O(\sqrt{|G|})$ ops
- baby steps $1, g, g^{2}, \ldots g^{m}, m \approx \sqrt{|G|}$
- giant steps $g^{2 m}, g^{3 m}, \ldots, g^{k m}, k \approx \sqrt{|G|}$
- $g^{k m}=g^{i}($ a baby step $) \Longrightarrow|G|=|k m-i|$

Finite Cyclic Groups

$G=\langle g\rangle, \quad \delta\left(g^{i}\right)=i$ distance of g^{i}
Baby Step: $g^{i} \rightarrow g^{i+1}=g^{i} * g$

$$
\delta\left(g^{i+1}\right)=i+1=\delta\left(g^{i}\right)+1
$$

Giant Step: $\left(g^{i}, g^{j}\right) \rightarrow g^{i} * g^{j}=g^{i+j}$

$$
\delta\left(g^{i} * g^{j}\right)=i+j=\delta\left(g^{i}\right)+\delta\left(g^{j}\right)
$$

To find $|G|=\operatorname{ord}(g)$:

- Dumb way: baby steps $g, g^{2}, \ldots, g^{|G|}-O(|G|)$ ops
- Smarter way - $O(\sqrt{|G|})$ ops
- baby steps $1, g, g^{2}, \ldots g^{m}, \quad m \approx \sqrt{|G|}$
- giant steps $g^{2 m}, g^{3 m}, \ldots, g^{k m}, k \approx \sqrt{|G|}$
- $g^{k m}=g^{i}$ (a baby step) $\Longrightarrow|G|=|k m-i|$

Similar technique solves discrete logarithm/distance problem):
given g^{i}, find $\delta\left(g^{i}\right)=i$

Infrastructures

$$
\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}
$$

Infrastructures

$$
\begin{aligned}
& \mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}, \\
& \delta\left(\mathfrak{f}_{i}\right) \approx i \text { distance of } \mathfrak{f}_{i}
\end{aligned}
$$

Infrastructures

$$
\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\},
$$

$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R

Infrastructures

$\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}$,
$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R

Infrastructures

$\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}$,
$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R
Baby Step: $\mathfrak{f}_{i} \rightarrow \mathfrak{f}_{i+1}$
$\delta\left(\mathfrak{f}_{i+1}\right) \approx i+1 \approx \delta\left(\mathfrak{f}_{i}\right)+1$

Infrastructures

$\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}$,
$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R
Baby Step: $\mathfrak{f}_{i} \rightarrow \mathfrak{f}_{i+1}$

$$
\delta\left(\mathfrak{f}_{i+1}\right) \approx i+1 \approx \delta\left(\mathfrak{f}_{i}\right)+1
$$

Giant Step: $\left(\mathfrak{f}_{i}, \mathfrak{f}_{j}\right)=\mathfrak{f}_{i} * \mathfrak{f}_{j}$

$$
\delta\left(\mathfrak{f}_{i} * \mathfrak{f}_{j}\right) \approx i+j \approx \delta\left(\mathfrak{f}_{i}\right)+\delta\left(\mathfrak{f}_{j}\right)
$$

Infrastructures

$\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}$,
$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R
Baby Step: $\mathfrak{f}_{i} \rightarrow \mathfrak{f}_{i+1}$

$$
\delta\left(\mathfrak{f}_{i+1}\right) \approx i+1 \approx \delta\left(\mathfrak{f}_{i}\right)+1
$$

Giant Step: $\left(\mathfrak{f}_{i}, \mathfrak{f}_{j}\right)=\mathfrak{f}_{i} * \mathfrak{f}_{j}$

$$
\delta\left(\mathfrak{f}_{i} * \mathfrak{f}_{j}\right) \approx i+j \approx \delta\left(\mathfrak{f}_{i}\right)+\delta\left(\mathfrak{f}_{j}\right)
$$

"Errors" are known and of order $\log (R)$

Infrastructures

$\mathcal{R}=\left\{\mathfrak{f}_{0}, \mathfrak{f}_{1}, \ldots, \mathfrak{f}_{s}\right\}$,
$\delta\left(\mathfrak{f}_{i}\right) \approx i$ distance of \mathfrak{f}_{i}
circumference R
Baby Step: $\mathfrak{f}_{i} \rightarrow \mathfrak{f}_{i+1}$

$$
\delta\left(\mathfrak{f}_{i+1}\right) \approx i+1 \approx \delta\left(\mathfrak{f}_{i}\right)+1
$$

Giant Step: $\left(\mathfrak{f}_{i}, \mathfrak{f}_{j}\right)=\mathfrak{f}_{i} * \mathfrak{f}_{j}$

$$
\delta\left(\mathfrak{f}_{i} * \mathfrak{f}_{j}\right) \approx i+j \approx \delta\left(\mathfrak{f}_{i}\right)+\delta\left(\mathfrak{f}_{j}\right)
$$

"Errors" are known and of order $\log (R)$
Can use a similar baby step giant step technique to

- find circumference R of \mathcal{R}
- solve distance problem

Example 1 - Indefinite Binary Quadratic Forms

 (Shanks 1971)$$
f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y]
$$

Example 1 - Indefinite Binary Quadratic Forms

 (Shanks 1971)$$
f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0
$$

Example 1 - Indefinite Binary Quadratic Forms

 (Shanks 1971)$$
\begin{aligned}
& f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0 \\
& \text { Roots of } f(x, 1)=A x^{2}+B x+C: \quad \tau_{ \pm}=\frac{B \pm \sqrt{D}}{2 A} \in \mathbb{R}
\end{aligned}
$$

Example 1 - Indefinite Binary Quadratic Forms

 (Shanks 1971)$f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0$
Roots of $f(x, 1)=A x^{2}+B x+C: \quad \tau_{ \pm}=\frac{B \pm \sqrt{D}}{2 A} \in \mathbb{R}$
f is reduced if $0<-\tau_{-}<1<\tau_{+} \quad(0<\sqrt{D}-B<2 A<\sqrt{D}+B)$

Example 1 - Indefinite Binary Quadratic Forms

(Shanks 1971)

$f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0$
Roots of $f(x, 1)=A x^{2}+B x+C: \quad \tau_{ \pm}=\frac{B \pm \sqrt{D}}{2 A} \in \mathbb{R}$
f is reduced if $0<-\tau_{-}<1<\tau_{+} \quad(0<\sqrt{D}-B<2 A<\sqrt{D}+B)$ Infrastructure $\mathcal{R}=\left\{f \sim f_{0}\right.$ reduced $\}, \quad \delta\left(f_{i+1}\right)=\delta\left(f_{i}\right)+\log \left(\tau_{+, i}\right)$

Example 1 - Indefinite Binary Quadratic Forms

(Shanks 1971)

$$
\begin{aligned}
& f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0 \\
& \text { Roots of } f(x, 1)=A x^{2}+B x+C: \quad \tau_{ \pm}=\frac{B \pm \sqrt{D}}{2 A} \in \mathbb{R}
\end{aligned}
$$

$$
f \text { is reduced if } 0<-\tau_{-}<1<\tau_{+} \quad(0<\sqrt{D}-B<2 A<\sqrt{D}+B)
$$

$$
\text { Infrastructure } \mathcal{R}=\left\{f \sim f_{0} \text { reduced }\right\}, \quad \delta\left(f_{i+1}\right)=\delta\left(f_{i}\right)+\log \left(\tau_{+, i}\right)
$$

Baby Step: $\quad(A, B, C) \rightarrow\left(C-q B+q^{2} A, 2 q A-B, A\right), \quad q=\lfloor\tau\rfloor$
(Continued fraction algorithm applied to τ_{+})

Example 1 - Indefinite Binary Quadratic Forms

(Shanks 1971)
$f(x, y)=A x^{2}+B x y+C y^{2} \in \mathbb{Z}[x, y], \quad D=B^{2}-4 A C>0$
Roots of $f(x, 1)=A x^{2}+B x+C: \quad \tau_{ \pm}=\frac{B \pm \sqrt{D}}{2 A} \in \mathbb{R}$
f is reduced if $0<-\tau_{-}<1<\tau_{+} \quad(0<\sqrt{D}-B<2 A<\sqrt{D}+B)$ Infrastructure $\mathcal{R}=\left\{f \sim f_{0}\right.$ reduced $\}, \quad \delta\left(f_{i+1}\right)=\delta\left(f_{i}\right)+\log \left(\tau_{+, i}\right)$
Baby Step: $\quad(A, B, C) \rightarrow\left(C-q B+q^{2} A, 2 q A-B, A\right), \quad q=\lfloor\tau\rfloor$
(Continued fraction algorithm applied to τ_{+})

Giant Step:

- Composition (Gauß): $\left(A^{\prime}, B^{\prime}, C^{\prime}\right) \circ\left(A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}\right)=(A, B, C)$ where (assuming $\left.\operatorname{gcd}\left(A^{\prime}, A^{\prime \prime},\left(B^{\prime}+B^{\prime \prime}\right) / 2\right)=1\right)$:

$$
A=A^{\prime} A^{\prime \prime}, \quad B \equiv\left\{\begin{array}{l}
2 A^{\prime}\left(\bmod B^{\prime}\right), \\
2 A^{\prime \prime}\left(\bmod B^{\prime \prime}\right),
\end{array} \quad C=\frac{B^{2}-D}{4 A}\right.
$$

- followed by approximately $\log (D) / 2$ baby steps

Example 2 - Ideals of Real Quadratic Orders

(H. Williams 1987, ...)

Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$

Example 2 - Ideals of Real Quadratic Orders

(H. Williams 1987, ...)

Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$

Example 2 - Ideals of Real Quadratic Orders

(H. Williams 1987, ...)

Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an $\mathcal{O}_{D \text {-ideal }} \Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Example 2 - Ideals of Real Quadratic Orders

 (H. Williams 1987, ...)Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps

Example 2 - Ideals of Real Quadratic Orders

 (H. Williams 1987, ...)Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps
- giant steps are commutative

Example 2 - Ideals of Real Quadratic Orders

 (H. Williams 1987, ...)Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps
- giant steps are commutative
- \mathcal{O}_{D} is the identity under giant steps

Example 2 - Ideals of Real Quadratic Orders

 (H. Williams 1987, ...)Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps
- giant steps are commutative
- \mathcal{O}_{D} is the identity under giant steps
- $\overline{\mathfrak{a}}=[A, \bar{B}]$ is the inverse under giant steps of $\mathfrak{a}=[A, B]$ where $\bar{B} \equiv-B(\bmod 2 A) ; \delta(\overline{\mathfrak{a}})=R+\log (A)-\delta(\mathfrak{a})$

Example 2 - Ideals of Real Quadratic Orders

(H. Williams 1987, ...)

Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps
- giant steps are commutative
- \mathcal{O}_{D} is the identity under giant steps
- $\overline{\mathfrak{a}}=[A, \bar{B}]$ is the inverse under giant steps of $\mathfrak{a}=[A, B]$ where $\bar{B} \equiv-B(\bmod 2 A) ; \delta(\overline{\mathfrak{a}})=R+\log (A)-\delta(\mathfrak{a})$
- \mathcal{R} is "almost" associative under giant steps, in the sense that $(\mathfrak{a} * \mathfrak{b}) * \mathfrak{c}$ and $\mathfrak{a} *(\mathfrak{b} * \mathfrak{c})$ are very close to each other in \mathcal{R}. So \mathcal{R} is "almost" an abelian group under giant steps!

Example 2 - Ideals of Real Quadratic Orders

(H. Williams 1987, ...)

Let \mathcal{O}_{D} be a quadratic order of discriminant $D>0$
Ideals in $\mathcal{O}_{D}: \quad \mathfrak{a}=[A, B]=\mathbb{Z} A \oplus \mathbb{Z} \frac{B+\sqrt{D}}{2}, \quad 4 A \mid B^{2}-D$
Theorem $\mathfrak{a}=[A, B]$ is an \mathcal{O}_{D}-ideal $\Longleftrightarrow f=\left(A, B,\left(B^{2}-D\right) / 4 A\right)$ is a binary quadratic form of discriminant D

Properties of infrastructure $\mathcal{R}=\{\mathfrak{a}$ reduced and principal $\}$:

- \mathcal{R} is closed under giant steps
- giant steps are commutative
- \mathcal{O}_{D} is the identity under giant steps
- $\overline{\mathfrak{a}}=[A, \bar{B}]$ is the inverse under giant steps of $\mathfrak{a}=[A, B]$ where $\bar{B} \equiv-B(\bmod 2 A) ; \delta(\overline{\mathfrak{a}})=R+\log (A)-\delta(\mathfrak{a})$
- \mathcal{R} is "almost" associative under giant steps, in the sense that $(\mathfrak{a} * \mathfrak{b}) * \mathfrak{c}$ and $\mathfrak{a} *(\mathfrak{b} * \mathfrak{c})$ are very close to each other in \mathcal{R}. So \mathcal{R} is "almost" an abelian group under giant steps!
- R is the regulator of O_{D}

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd $)$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd $)$
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd)
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \operatorname{supp}\left(D_{x}\right), v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd $)$
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \operatorname{supp}\left(D_{x}\right), v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_{q}[x, y]$-ideal $\mathfrak{a}=[A, B]$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd $)$
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \not \operatorname{supp}\left(D_{x}\right), v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_{q}[x, y]$-ideal $\mathfrak{a}=[A, B]$
Properties of the infrastructure $\mathcal{R}=\{D$ reduced and principal $\}$ Baby steps: $\delta(0)=0, \quad \delta\left(D_{1}\right)=g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd $)$
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \not \operatorname{supp}\left(D_{x}\right), \quad v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_{q}[x, y]$-ideal $\mathfrak{a}=[A, B]$
Properties of the infrastructure $\mathcal{R}=\{D$ reduced and principal $\}$ Baby steps: $\delta(0)=0, \quad \delta\left(D_{1}\right)=g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$ Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd)
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \not \operatorname{supp}\left(D_{x}\right), \quad v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_{q}[x, y]$-ideal $\mathfrak{a}=[A, B]$
Properties of the infrastructure $\mathcal{R}=\{D$ reduced and principal $\}$ Baby steps: $\delta(0)=0, \quad \delta\left(D_{1}\right)=g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$ Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$ divisor addition, followed by at most $\lceil\mathrm{g} / 2\rceil$ baby steps

Example 3 - Divisors of Real Hyperelliptic Curves

 (Stein 1992/2009; Jacobson, S. \& Stein 2007, ...)$C: y^{2}=D(x) \in \mathbb{F}_{q}[x]$ monic, square-free, of degree $2 g+2(q$ odd)
Regulator $R=\operatorname{ord}([\bar{\infty}-\infty]) \approx q^{g} \quad(\infty, \bar{\infty}$ the poles of $x)$
A degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty+\delta(D)(\bar{\infty}-\infty)$ is reduced if

- D is defined over \mathbb{F}_{q} (i.e. invariant under Frobenius)
- $\infty, \bar{\infty} \notin \operatorname{supp}\left(D_{x}\right), \quad v_{P}(D) \geq 0$ for all $P \in \operatorname{supp}\left(D_{x}\right)$
- $P=(a, b) \in \operatorname{supp}\left(D_{x}\right) \Rightarrow \bar{P}=(a,-b) \notin \operatorname{supp}\left(D_{x}\right)$
- $P=\bar{P} \in \operatorname{supp}\left(D_{x}\right) \Rightarrow v_{\bar{P}}(D)=1$
- $\operatorname{deg}\left(D_{x}\right) \leq g$ and $0 \leq \delta(D)<R$

Remark The Mumford coefficients A, B of D correspond to a reduced $\mathbb{F}_{q}[x, y]$-ideal $\mathfrak{a}=[A, B]$
Properties of the infrastructure $\mathcal{R}=\{D$ reduced and principal $\}$
Baby steps: $\delta(0)=0, \quad \delta\left(D_{1}\right)=g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$
Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$
divisor addition, followed by at most $\lceil g / 2\rceil$ baby steps
\mathcal{R} is embeddable into the cyclic group $\langle[\bar{\infty}-\infty]\rangle$ of order R (Fontein 2008)

Example 4 - Global Cubic Fields

Example 4 - Global Cubic Fields

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

Example 4 - Global Cubic Fields

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- Giant steps: Ideal multiplication, followed by Voronoi baby steps
(Voronoi 1896, Delone \& Fadeev 1964, Williams et al 1970/80s)

Example 4 - Global Cubic Fields

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- Giant steps: Ideal multiplication, followed by Voronoi baby steps
(Voronoi 1896, Delone \& Fadeev 1964, Williams et al 1970/80s)

The distinguished divisors of a cubic extension of $\mathbb{F}_{q}(x)$ with two poles at x form an infrastructure:

Example 4 - Global Cubic Fields

The distinguished fractional ideals of a complex cubic number field form an infrastructure:

- Baby steps: Voronoi's algorithm
- Giant steps: Ideal multiplication, followed by Voronoi baby steps (Voronoi 1896, Delone \& Fadeev 1964, Williams et al 1970/80s)

The distinguished divisors of a cubic extension of $\mathbb{F}_{q}(x)$ with two poles at x form an infrastructure:

- Baby steps and giant steps analogous to cubic number fields (S. \& Stein 1998/2000, S. 2001, Landquist 2009, research ongoing)

So for what global fields to (circle) infrastructures arise?

Infrastructure from the Unit Lattice

(Fontein 2011)
$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \quad \mu \subset K^{*}$ roots of unity K a finite algebraic extension of k of degree n
\mathcal{O} the integral closure of A in K (Dedekind domain)

Infrastructure from the Unit Lattice

 (Fontein 2011)$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \mu \subset K^{*}$ roots of unity K a finite algebraic extension of k of degree n \mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

Infrastructure from the Unit Lattice

 (Fontein 2011)$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \quad \mu \subset K^{*}$ roots of unity K a finite algebraic extension of k of degree n \mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

For the unit group \mathcal{O}^{*} of $\mathcal{O}: \mathcal{O}^{*} / \mu \cong \mathbb{Z}^{r}$ with $r=|S|-1$

Infrastructure from the Unit Lattice

(Fontein 2011)
$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \quad \mu \subset K^{*}$ roots of unity K a finite algebraic extension of k of degree n \mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

For the unit group \mathcal{O}^{*} of $\mathcal{O}: \mathcal{O}^{*} / \mu \cong \mathbb{Z}^{r}$ with $r=|S|-1$
For $\alpha \in K^{*}$, define $\phi(\alpha)=\left(v_{\mathfrak{p}}(\alpha) \operatorname{deg}(\mathfrak{p}) \mid \mathfrak{p} \in S\right)$

Infrastructure from the Unit Lattice

(Fontein 2011)
$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \quad \mu \subset K^{*}$ roots of unity
K a finite algebraic extension of k of degree n
\mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

For the unit group \mathcal{O}^{*} of $\mathcal{O}: \mathcal{O}^{*} / \mu \cong \mathbb{Z}^{r}$ with $r=|S|-1$
For $\alpha \in K^{*}$, define $\phi(\alpha)=\left(v_{\mathfrak{p}}(\alpha) \operatorname{deg}(\mathfrak{p}) \mid \mathfrak{p} \in S\right)$
ϕ maps \mathcal{O}^{*} / μ into the unit lattice \mathcal{L} in $\begin{cases}\mathbb{R}^{r} & \text { if } k=\mathbb{Q}, \\ \mathbb{Z}^{r} & \text { if } K=\mathbb{F}_{q}(x)\end{cases}$

Infrastructure from the Unit Lattice

(Fontein 2011)
$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \mu \subset K^{*}$ roots of unity K a finite algebraic extension of k of degree n \mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

For the unit group \mathcal{O}^{*} of $\mathcal{O}: \quad \mathcal{O}^{*} / \mu \cong \mathbb{Z}^{r}$ with $r=|S|-1$
For $\alpha \in K^{*}$, define $\phi(\alpha)=\left(v_{\mathfrak{p}}(\alpha) \operatorname{deg}(\mathfrak{p}) \mid \mathfrak{p} \in S\right)$
ϕ maps \mathcal{O}^{*} / μ into the unit lattice \mathcal{L} in $\begin{cases}\mathbb{R}^{r} & \text { if } k=\mathbb{Q}, \\ \mathbb{Z}^{r} & \text { if } K=\mathbb{F}_{q}(x)\end{cases}$
Regulator $R=\operatorname{det}(\mathcal{L})$

Infrastructure from the Unit Lattice

(Fontein 2011)
$k=\mathbb{Q}$ or $\mathbb{F}_{q}(x), \quad A=\mathbb{Z}$ or $\mathbb{F}_{q}[x], \mu \subset K^{*}$ roots of unity
K a finite algebraic extension of k of degree n
\mathcal{O} the integral closure of A in K (Dedekind domain)

$$
S= \begin{cases}\text { set of conjugate mappings (archimedian places) } & \text { if } k=\mathbb{Q} \\ \text { set of poles of } x \text { (infinite places) } & \text { if } k=\mathbb{F}_{q}(x)\end{cases}
$$

For the unit group \mathcal{O}^{*} of $\mathcal{O}: \quad \mathcal{O}^{*} / \mu \cong \mathbb{Z}^{r}$ with $r=|S|-1$
For $\alpha \in K^{*}$, define $\phi(\alpha)=\left(v_{\mathfrak{p}}(\alpha) \operatorname{deg}(\mathfrak{p}) \mid \mathfrak{p} \in S\right)$
ϕ maps \mathcal{O}^{*} / μ into the unit lattice \mathcal{L} in $\begin{cases}\mathbb{R}^{r} & \text { if } k=\mathbb{Q}, \\ \mathbb{Z}^{r} & \text { if } K=\mathbb{F}_{q}(x)\end{cases}$
Regulator $R=\operatorname{det}(\mathcal{L})$
Infrastructure $\mathcal{R}:=\left\{\begin{array}{ll}\mathbb{R}^{r} / \mathcal{L} & \text { if } K=\mathbb{Q} \\ \mathbb{Z}^{r} / \mathcal{L} & \text { if } K=\mathbb{F}_{q}(x)\end{array}\right\} r$-dimensional torus

Circle Infrastructures

$|S|=1 \quad \Rightarrow \quad r=0 \quad \Rightarrow \quad$ no infrastructure
$|S|=2 \quad \Rightarrow \quad r=1 \quad \Rightarrow \quad$ circle infrastructure

Circle Infrastructures

$|S|=1 \quad \Rightarrow \quad r=0 \quad \Rightarrow \quad$ no infrastructure
$|S|=2 \quad \Rightarrow \quad r=1 \quad \Rightarrow \quad$ circle infrastructure

Number Fields:

r_{1} : number of real embeddings
r_{2} : number of pairs of complex embeddings

$$
r=r_{1}+r_{2}-1, \quad n=r_{1}+2 r_{2}, \quad r_{1} \geq 0, \quad r_{2} \geq 0
$$

Circle Infrastructures

$|S|=1 \quad \Rightarrow \quad r=0 \quad \Rightarrow \quad$ no infrastructure
$|S|=2 \quad \Rightarrow \quad r=1 \quad \Rightarrow \quad$ circle infrastructure

Number Fields:

r_{1} : number of real embeddings
r_{2} : number of pairs of complex embeddings

$$
r=r_{1}+r_{2}-1, \quad n=r_{1}+2 r_{2}, \quad r_{1} \geq 0, \quad r_{2} \geq 0
$$

Solutions for $r=0$:

$$
\begin{aligned}
& r_{1}=1, r_{2}=0, n=1-\mathbb{Q} \\
& r_{1}=0, r_{2}=1, n=2-\text { imaginary quadratic }
\end{aligned}
$$

Circle Infrastructures

$|S|=1 \quad \Rightarrow \quad r=0 \quad \Rightarrow \quad$ no infrastructure
$|S|=2 \quad \Rightarrow \quad r=1 \quad \Rightarrow \quad$ circle infrastructure

Number Fields:

r_{1} : number of real embeddings
r_{2} : number of pairs of complex embeddings

$$
r=r_{1}+r_{2}-1, \quad n=r_{1}+2 r_{2}, \quad r_{1} \geq 0, \quad r_{2} \geq 0
$$

Solutions for $r=0$:

$$
\begin{aligned}
& r_{1}=1, r_{2}=0, n=1-\mathbb{Q} \\
& r_{1}=0, r_{2}=1, n=2-\text { imaginary quadratic }
\end{aligned}
$$

Solutions for $r=1$:

$$
\begin{aligned}
& r_{1}=2, r_{2}=0, n=2-\text { real quadratic } \\
& r_{1}=1, r_{2}=1, n=3-\text { complex cubic } \\
& r_{1}=0, r_{2}=2, n=2-\text { totally complex quartic }
\end{aligned}
$$

Circle Infrastructures

$|S|=1 \quad \Rightarrow \quad r=0 \quad \Rightarrow \quad$ no infrastructure
$|S|=2 \quad \Rightarrow \quad r=1 \quad \Rightarrow \quad$ circle infrastructure

Number Fields:

r_{1} : number of real embeddings
r_{2} : number of pairs of complex embeddings

$$
r=r_{1}+r_{2}-1, \quad n=r_{1}+2 r_{2}, \quad r_{1} \geq 0, \quad r_{2} \geq 0
$$

Solutions for $r=0$:

$$
\begin{aligned}
& r_{1}=1, r_{2}=0, n=1-\mathbb{Q} \\
& r_{1}=0, r_{2}=1, n=2-\text { imaginary quadratic }
\end{aligned}
$$

Solutions for $r=1$:

$$
\begin{aligned}
& r_{1}=2, r_{2}=0, n=2-\text { real quadratic } \\
& r_{1}=1, r_{2}=1, n=3-\text { complex cubic } \\
& r_{1}=0, r_{2}=2, n=2-\text { totally complex quartic }
\end{aligned}
$$

Function Fields: for any $r, n \geq r$ can be anything!

Boxes

Write $S=\left\{\infty_{1}, \ldots, \infty_{r+1}\right\}$, with respective ramification indices e_{i}

Boxes

Write $S=\left\{\infty_{1}, \ldots, \infty_{r+1}\right\}$, with respective ramification indices e_{i}
For $\alpha \in K$, write $|\alpha|_{i}=q^{-v_{\infty_{i}}(\alpha)}$.

Boxes

Write $S=\left\{\infty_{1}, \ldots, \infty_{r+1}\right\}$, with respective ramification indices e_{i}
For $\alpha \in K$, write $|\alpha|_{i}=q^{-v_{\infty_{i}}(\alpha)}$. Then the values $|\alpha|_{i}^{1 / e_{i}}$ form a box:

Boxes

Write $S=\left\{\infty_{1}, \ldots, \infty_{r+1}\right\}$, with respective ramification indices e_{i}
For $\alpha \in K$, write $|\alpha|_{i}=q^{-v_{\infty_{i}}(\alpha)}$. Then the values $|\alpha|_{i}^{1 / e_{i}}$ form a box:

Length function on K : $B(\alpha)=\max _{1 \leq i \leq r+1}|\alpha|_{i}^{1 / e_{i}}$

Successive Minima of Fractional Ideals

(Minkowski 1910, Mahler 1986, Tang 2011)

Successive Minima of Fractional Ideals
 (Minkowski 1910, Mahler 1986, Tang 2011)

First successive minimum of $\mathfrak{f}: \quad M_{1}(\mathfrak{f})=\min \{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$

Successive Minima of Fractional Ideals
 (Minkowski 1910, Mahler 1986, Tang 2011)

First successive minimum of $\mathfrak{f}: \quad M_{1}(\mathfrak{f})=\min \{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$
i-th successive minimum of L :

Successive Minima of Fractional Ideals
 (Minkowski 1910, Mahler 1986, Tang 2011)

First successive minimum of $\mathfrak{f}: \quad M_{1}(\mathfrak{f})=\min \{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$
i-th successive minimum of L :
Let $\omega_{1}, \ldots, \omega_{i} \in \mathfrak{f}$ be $\mathbb{F}_{q}[x]$-linearly independent.

$$
\begin{aligned}
M_{i}(\mathfrak{f})=\min \{B(\alpha) \quad \mid & \alpha \in \mathfrak{f} \text { and } \omega_{1}, \ldots, \omega_{i-1}, \alpha \\
& \text { are } \left.\mathbb{F}_{q}[x] \text {-linearly independent }\right\}
\end{aligned}
$$

Successive Minima of Fractional Ideals
 (Minkowski 1910, Mahler 1986, Tang 2011)

First successive minimum of $\mathfrak{f}: \quad M_{1}(\mathfrak{f})=\min \{B(\alpha) \mid 0 \neq \alpha \in \mathfrak{f}\}$
i-th successive minimum of L :
Let $\omega_{1}, \ldots, \omega_{i} \in \mathfrak{f}$ be $\mathbb{F}_{q}[x]$-linearly independent.

$$
\begin{aligned}
M_{i}(\mathfrak{f})=\min \{B(\alpha) \quad \mid & \alpha \in \mathfrak{f} \text { and } \omega_{1}, \ldots, \omega_{i-1}, \alpha \\
& \text { are } \left.\mathbb{F}_{q}[x] \text {-linearly independent }\right\}
\end{aligned}
$$

Successive minima depend only on \mathfrak{f}, not on $\omega_{1}, \ldots, \omega_{n}, \alpha$

Distinguished Ideals

A fractional \mathcal{O}-ideal \mathfrak{f} is distinguished if for all $\alpha \in \mathfrak{f}$

$$
B(\alpha) \leq 1 \Longrightarrow \alpha \in \mathbb{F}_{q}
$$

Distinguished Ideals

A fractional \mathcal{O}-ideal \mathfrak{f} is distinguished if for all $\alpha \in \mathfrak{f}$

$$
B(\alpha) \leq 1 \Longrightarrow \alpha \in \mathbb{F}_{q}
$$

Distinguished Ideals

A fractional \mathcal{O}-ideal \mathfrak{f} is distinguished if for all $\alpha \in \mathfrak{f}$

$$
B(\alpha) \leq 1 \Longrightarrow \alpha \in \mathbb{F}_{q}
$$

Properties: Suppose $M_{1}(\mathfrak{f})=B(\alpha)$ with $\alpha \in \mathfrak{f}$

- $M_{1}\left(\alpha^{-1} \mathfrak{f}\right)=1$
- \mathfrak{f} distinguished $\Longleftrightarrow \alpha \in \mathbb{F}_{q}^{*}\left(\right.$ so $\left.M_{1}(\mathfrak{f})=1\right)$ and $M_{2}(\mathfrak{f})>1$

Neighbours

i-neighbour of 1 in \mathfrak{f} - next lattice point from 1 in $|\cdot|_{i}$-direction without increasing all the other dimensions of the box

Neighbours

i-neighbour of 1 in \mathfrak{f} - next lattice point from 1 in $|\cdot|_{i}$-direction without increasing all the other dimensions of the box

Neighbours

i-neighbour of 1 in \mathfrak{f} - next lattice point from 1 in $|\cdot|_{i}$-direction without increasing all the other dimensions of the box

Neighbours

i-neighbour of 1 in \mathfrak{f} - next lattice point from 1 in $|\cdot|_{i}$-direction without increasing all the other dimensions of the box

Obtained via a 0 -reduced B-ordered $\mathbb{F}_{q}[x]$-basis of \mathfrak{f}

- very technical definition (Schörnig 1996, A. Lenstra 1985)
- computationally highly useful
- takes on the n successive minima of f
- efficiently computable for $r=1, e_{1}=1, e_{2}=n-1$ (Tang 2011)

Infrastructure, Ideal-Theoretic Description

(Tang 2011)

$$
r=1, \quad e_{1}=1, \quad e_{2}=n-1
$$

Infrastructure, Ideal-Theoretic Description

 (Tang 2011)$$
r=1, \quad e_{1}=1, \quad e_{2}=n-1
$$

Infrastructure $\mathcal{R}=\left\{\mathfrak{f} \sim f_{0}\right.$ distinguished $\}$

Infrastructure, Ideal-Theoretic Description

 (Tang 2011)$$
r=1, \quad e_{1}=1, \quad e_{2}=n-1
$$

Infrastructure $\mathcal{R}=\left\{\mathfrak{f} \sim \mathfrak{f}_{0}\right.$ distinguished $\}$

Baby step $\mathfrak{f} \rightarrow \mathfrak{g}$:

1. $\mathfrak{g}=\eta^{-1} \mathfrak{f}$ with η the 2-neighbour of 1 in \mathfrak{f}

$$
\delta(\mathfrak{g})=\delta(\mathfrak{f})-v_{\infty_{2}}(\eta)
$$

Infrastructure, Ideal-Theoretic Description

 (Tang 2011)$r=1, \quad e_{1}=1, \quad e_{2}=n-1$
Infrastructure $\mathcal{R}=\left\{\mathfrak{f} \sim f_{0}\right.$ distinguished $\}$
Baby step $\mathfrak{f} \rightarrow \mathfrak{g}$:

1. $\mathfrak{g}=\eta^{-1} \mathfrak{f}$ with η the 2 -neighbour of 1 in \mathfrak{f}

$$
\delta(\mathfrak{g})=\delta(\mathfrak{f})-v_{\infty_{2}}(\eta)
$$

Giant step $\mathfrak{f}^{\prime} * \mathfrak{f}^{\prime \prime}$:

1. Compute ideal product $\mathfrak{f}^{\prime} f^{\prime \prime}$, 0 -reduce \& B-order resulting basis
2. Divide by ω where $B(\omega)=M_{1}(\mathfrak{f}), 0$-reduce \& B-order resulting basis
3. Apply one baby step

Infrastructure, Divisor-Theoretic Description

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$
Distinguished integral ideal $\mathfrak{a}=\operatorname{denom}(\mathfrak{f}) \mathfrak{f}$ of distance $\delta(\mathfrak{a})=\delta(\mathfrak{f})$ \downarrow
Distinguished degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty_{1}+\delta(D)\left(\infty_{2}-\infty_{1}\right)$ with $\delta(D)=\delta(\mathfrak{a})$

Infrastructure, Divisor-Theoretic Description

Properties:

- Baby steps: $\delta(0)=0, \delta\left(D_{1}\right) \leq g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$

Infrastructure, Divisor-Theoretic Description

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$
Distinguished integral ideal $\mathfrak{a}=\stackrel{\downarrow}{\boldsymbol{d}}$ enom $(\mathfrak{f}) \mathfrak{f}$ of distance $\delta(\mathfrak{a})=\delta(\mathfrak{f})$
Distinguished degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty_{1}+\delta(D)\left(\infty_{2}-\infty_{1}\right)$

$$
\text { with } \delta(D)=\delta(\mathfrak{a})
$$

Properties:

- Baby steps: $\delta(0)=0, \delta\left(D_{1}\right) \leq g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$
- Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$

Infrastructure, Divisor-Theoretic Description

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$
Distinguished integral ideal $\mathfrak{a}=\operatorname{denom}(\mathfrak{f}) \mathfrak{f}$ of distance $\delta(\mathfrak{a})=\delta(\mathfrak{f})$ \downarrow
Distinguished degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty_{1}+\delta(D)\left(\infty_{2}-\infty_{1}\right)$

$$
\text { with } \delta(D)=\delta(\mathfrak{a})
$$

Properties:

- Baby steps: $\delta(0)=0, \delta\left(D_{1}\right) \leq g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$
- Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$
- Baby steps and giant steps are efficiently computable

Infrastructure, Divisor-Theoretic Description

Distinguished fractional ideal \mathfrak{f} of distance $\delta(\mathfrak{f})$
Distinguished integral ideal $\mathfrak{a}=\operatorname{denom}(\mathfrak{f}) \mathfrak{f}$ of distance $\delta(\mathfrak{a})=\delta(\mathfrak{f})$ \downarrow
Distinguished degree 0 divisor $D=D_{x}-\operatorname{deg}\left(D_{x}\right) \infty_{1}+\delta(D)\left(\infty_{2}-\infty_{1}\right)$

$$
\text { with } \delta(D)=\delta(\mathfrak{a})
$$

Properties:

- Baby steps: $\delta(0)=0, \delta\left(D_{1}\right) \leq g+1,1 \leq \delta\left(D_{i+1}\right)-\delta\left(D_{i}\right) \leq g$
- Giant steps: $\delta\left(D^{\prime} * D^{\prime \prime}\right)=\delta\left(D^{\prime}\right)+\delta\left(D^{\prime \prime}\right)-d, \quad 0 \leq d \leq 2 g$
- Baby steps and giant steps are efficiently computable
- Run time ratio giant steps/baby steps proportional to n^{2}

Higher-Dimensional Infrastructures

Higher-Dimensional Infrastructures

$r=2$, purely cubic extensions $K=k(\sqrt[3]{D})$

- Number fields: H. C. Williams et al (1970s and 80s), Buchmann (1980s)
- Function fields: Lee, S. \& Yarrish (2003); Fontein, Landquist \& S. (in progress)

Higher-Dimensional Infrastructures

$r=2$, purely cubic extensions $K=k(\sqrt[3]{D})$

- Number fields: H. C. Williams et al (1970s and 80s), Buchmann (1980s)
- Function fields: Lee, S. \& Yarrish (2003); Fontein, Landquist \& S. (in progress)

Arbitrary r :

- Number Fields: Buchmann (Habilitationsschrift 1987)
- Number fields in function field language (Arakelov theory): Schoof (2008)
- Global Fields: Fontein (2011, ongoing)

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products - $O\left(|D|^{1 / 5}\right)=O\left(R^{2 / 5}\right)$
- Real quadratic number fields: Lenstra 1982, Schoof 1982
- Real hyperelliptic curves: Stein \& Williams 1999, Stein \& Teske 2002/2005
- Cubic function fields: S. \& Stein 2007
- Arbitrary function fields (in principle): S. \& Stein 2010

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products $-O\left(|D|^{1 / 5}\right)=O\left(R^{2 / 5}\right)$
- Real quadratic number fields: Lenstra 1982, Schoof 1982
- Real hyperelliptic curves: Stein \& Williams 1999, Stein \& Teske 2002/2005
- Cubic function fields: S. \& Stein 2007
- Arbitrary function fields (in principle): S. \& Stein 2010
- In function fields, infrastructure arithmetic can be advantageous over divisor class group arithmetic due to the much faster baby step operation (real hyperelliptic: Stein \& Teske 2005; cubic: Landquist 2007-ongoing; used for cryptography in Jacobson, S. \& Stein 2007)

Wrap-Up

- There are better regulator/class number algorithm than straightforward baby step giant step that use truncated Euler products $-O\left(|D|^{1 / 5}\right)=O\left(R^{2 / 5}\right)$
- Real quadratic number fields: Lenstra 1982, Schoof 1982
- Real hyperelliptic curves: Stein \& Williams 1999, Stein \& Teske 2002/2005
- Cubic function fields: S. \& Stein 2007
- Arbitrary function fields (in principle): S. \& Stein 2010
- In function fields, infrastructure arithmetic can be advantageous over divisor class group arithmetic due to the much faster baby step operation (real hyperelliptic: Stein \& Teske 2005; cubic: Landquist 2007-ongoing; used for cryptography in Jacobson, S. \& Stein 2007)
- Lots left to do:
- Improvements to and implementation of Tang's algorithms
- Other signatures (splitting of infinite place of $\mathbb{F}_{q}(x)$)
- Low degree extensions with special arithmetic (cubics? quartics?)
* * * Thank You! - Questions (or Answers)? * * *

