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•  Incoherent projection 
•  Underdetermined system  
•  Sparse unknown vector 

Figure  from Dr. Dror Baron 
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Compressed Sensing Dynamic MRI  

Jung et al,  PMB 2007,  MRM 2009, 2010, 2011, IJIT, 2011 



k-t FOCUSS for dynamic CS-MRI 
(Jung et al, PMB, 20007, Jung et MRM, 2009) 



Radial k-t FOCUSS  
(Jung et MRM, 2010) 
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k-t FOCUSS for Cardiac T2 Mapping   
(Feng et al, 2011) 

6 x accel.     Conventional method 6 x accel.  k-t FOCUSS 
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1.8 x accel.     GRAPPA 6 x accel.  k-t FOCUSS 

k-t FOCUSS for Cardiac T2 Mapping   
(Feng et al, 2011) 





Real Brain	

Coil sensitivity 	

k-data	

Recon.	
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MR scan 

CS + Parallel Imaging 



Real Brain	

Coil sensitivity 	

k-data	

How to solve aliasing ?	

IFFT 

MR scan 

CS + Parallel Imaging 



r : number of snapshots 
m:  number of sensor elements 

  Compressed Sensing for Joint Sparse Signals 

Multiple measurement vector (MMV) problem 



Other MMV Applications  

•  Parallel MRI + CS •  EEG/MEG  

• Diffuse optical tomography •  Wave inverse scattering 

MMV for Medical Imaging 

IFFT 

MR 
sca
n 



A. Custo et al. NeuroImage. 2010 V. Ntziachristos et al. Breast Cancer Res. 2001 

R. Weissleder et al. Radiology. 2001 

Applications of DOT 
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Hitachi NIRS System 

A. Yodh Group 

Main applications: Molecular imaging, Neuroimaging 
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scattering 

Diffusion Equation 
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s 

a photon is absorbed after moving : 

mean path length of ‘s’ : 

The movement of photon can be described by 



detector plane 

scanning 

source plane 

various illumination patterns 

…
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unknown value 

Joint Sparse Model in DOT 
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r : number of snapshots 
m:  number of sensor elements 

Joint Sparse Recovery Model for DOT 
(Ye et al, IEEE TMI, 2011) 

denotes the # of nonzero rows 
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-  1st step : estimate the active index set      

- 2nd step : reconstruct the  

J.C. Ye et al, Proceedings of the IEEE ISBI 2008. 

Exact & Non-iterative Reconstruction 
(Lee, Ye, 2008, Ye,Bresler, Lee, 2008) 

Foldy-Lax equation 
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  l0  Uniqueness Result of MMV 

l  Many signal and imaging applications 
• Distributed compressed sensing 
•  Acoustic sensing 
•  Parallel MRI 
•  Diffuse optical tomography 
•  Inverse wave scattering 
•  Direction-of-arrival (DOA) estimation 
•  Radar/sonar 
•  etc 

With increasing number of snapshots, more non-zero el
ements can be recovered 



  Conventional MMV Algorithms 

l  Compressive sensing approaches 
•  p-thresholding 
•  S-OMP 
•  Convex relaxation with mixed norm 
•  ReMBo (Reduce Mmv and Boost) 
•  Model based CS using block sparsity 
•  M-FOCUSS 
• M-SBL 
•  etc 

l  Array signal processing approaches 
•  MUSIC  
•  ESPRIT 
•  IQML 
•  Maximum likelihod 
•  etc 

Probabilistic 
guarantee 

Deterministc 
guarantee 



Counter Example 
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  Why new MMV algorithm is necessary ? 

l  S-OMP, Convex relaxation using mixed norm 
•  Worst case analysis 

•  no improvement over SMV 

  

• Average case analysis 
•  improvement with increasing number of snapshot 
•  Simulation results show saturation effects 



  Why new MMV algorithm is necessary ? 

l  ReMBo (Reduce MMV and Boost) 
 



  Why new MMV algorithm is necessary ? 

l  MUSIC Algorithm  
•  If rank(B)=k,  the following MUSIC criterion holds 

  

•  Dichotomy: 
• Achieves l0 bound when rank(B) = k 

•  Fails when rank(B) < k  
• àcoherent source problem 

 
 
  



  Research Goal  

l  The Best of Both Worlds 

• At rank(B)=k, it should be red
uced to MUSIC 
• At rank(B)à1, it should be re
duced to CS 
• At all rank(B), it should be su
perior to all existing methods  
 



  Generalized MUSIC Criterion (Kim, Lee, Ye, 2010, Lee, Bresler, 2010) 

Kim et al, “Compressive MUSIC: Missing link between compressive sensing and array 
signal processing”, Arxiv preprint arXiv:1004.4398, 2010 
Lee et al, ‘Subspace augumented MUSIC for sparse recovery”, 
 Arxiv preprint arXiv:1004.3071, 2010 
 



  Geometry of Generalized MUSIC Criterion 



  Geometry of Generalized MUSIC Criterion 



  Compressive MUSIC Algorithm 

l  1st Step:  Compressive sensing step 

l 2nd Step:   generalized MUSIC step 

  

Probabilistic performance guarantee  

Deterministic performance guarantee  



  Compressive MUSIC (r=1) 

Array Signal Processing Compressive Sensin
g (deterministic world) (probabilistic world) 

= 
Y A X 

CS  

MUSIC 

k-r 

r 

Compressive MUSIC 



  Compressive MUSIC (r=k/2) 

Array Signal Processing Compressive Sensin
g (deterministic world) (probabilistic world) 

= 
Y A X 

CS  

MUSIC 

k-r 

r 

Compressive MUSIC 



  Compressive MUSIC (r=k) 

Array Signal Processing Compressive Sensin
g (deterministic world) (probabilistic world) 

= 
Y A X 

MUSIC r 

Compressive MUSIC 



  Number of Sensor Elements 

l  Partial Support Recovery using SS-OMP    



  Number of Sensor Elements 

l  Partial Support recovery using SS-OMP  



  MMV Coding Region 

α =
r

k
→ 1



  Simulation (Noiseless) 

n=100, m=20, r=8 

n=100, m=20, r=8 



  Simulation (Noiseless) 

n=100, m=20, r=8 

n=100, m=20, r=16 



  Phase Transition 

r=3 r=16 



detector plane 

scanning 

source plane 

various illumination patterns 

…
region of interest 
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unknown value 

Joint Sparse Model in DOT 
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- 1st step : estimate the active index set      using  

                  compressed MUSIC 

- 2nd step : reconstruct the  

J.C. Ye et al, Proceedings of the IEEE ISBI 2008. 

Exact & Non-iterative Reconstruction 
(Lee, Ye, 2008, Ye,Bresler, Lee, 2008) 

Foldy-Lax equation 
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Revisit the Counter Example 

è 

ç 
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Simulation for Molecular Imaging 

* Generalized MUSIC spectrum 

Source and Detector geometry Original Phantom 42	  

p(x) =
a(x)∗a(x)

a(x)∗(PR(Q) − PR(PR(Q)AIk−r
))a(x)

, x ∈ Ω



Tikhonov Regularization L1-penalty Regularization MUSIC Compressive MUSIC 43	  



Conclusion 

•  Diffuse optical tomography can be formulated joint sparse recovery 
problem 
•  Non-iterative and exact reconstruction algorithm exists ! 
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•  Compressive MUSIC outperforms the all existing methods in joint 
sparse recovery problems 
•  Apply compressive MUSIC for DOT 

•  Due the the simplicity and effectiveness, the proposed method 
would open a new direction in DOT research 
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