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What am I trying to do?

1 Describe the aims and goals of semantics broadly construed
2 Select some few topics to discuss
3 Give some of the main results
4 Give at least a few proofs in some detail
5 List things that I have not done
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What I am not trying to do

Cover all topics in the field

Get you to the point where you will follow all the papers in the
upcoming conference

Try to persuade you to work in this area

Convince you to attend every talk

Show you how to use category theory to settle the major problems
of complexity theory.
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What is semantics?

The search for a structural understanding of computational
phenomena

Computation = dynamics

Cliché: The only way to deal with complex systems is to
decompose them into manageable pieces and understand the
pieces.

Structure: How does one decompose a system?

Behaviour: How does one understand the dynamical aspects of
the pieces?

How does one compose the dynamical description of the pieces
into a description of the dynamics of the whole system?
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What kinds of systems?

Sequential computer programs are only one example:

concurrent systems,

distributed systems,

reactive systems,

probabilistic systems,

real-time systems,

hybrid systems,

quantum systems,

chemical reactions,

biological systems,

economic systems,

business organizations,

..................
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Why are Turing machines wonderful?

Turing machines give a compelling formalism to justify the idea
that computation involves

a limited number of types of primitive steps

and each step involves a finite piece of information.

Turing machines show that the dynamical process of computation
can be captured by a static entity: the program.

It gives a notion of “step” which has proved durable and robust,
which makes it an ideal formalism for

quantifying resource use during computation.

Fantastic for computability theory and complexity theory.
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Why can’t we just use Turing machines?

Just try writing the code for the Fast Fourier Transform as a Turing
machine!

Programming languages were invented for people not for
computers!

Well designed programming languages aim to give people the
mechanisms to organize their programs in meaninful structures.

Turing machines do not give a compositional handle on program
behaviour.

The use of encoding hides concepts like type structure.

Standard concepts – like “what can be computed” ? – have to be
revised even for simple extensions like parallel computing.
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What tools can we use instead?

LOGIC!

Induction

Algebra: structure

Colagebra: behaviour

Coinduction

Topology: limiting behaviour

Fixed-point theory

Measure theory: probabilistic behaviour

Metric spaces, analysis, topological lattices

Any damn thing we can lay our hands on!
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Syntax

Arithmetic expressions

a ::== 0|1| . . . |a1 + a2|a1 ∗ a2| . . . |X| . . .

Boolean expressions

b ::== T|F|b1 and b2| . . .

Commands

c ::== skip|X := a|c1; c2|if b then c1 else c2|while b do c.
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Operational semantics I

State: mapping of variables to values. σ : Var −→ Z.

Semantics of arithmetic expressions: state-dependent values
(a, σ) −→ n.

Semantics of boolean expressions: state-dependent values (b, σ)
−→ T|F.

Semantics of commands: state-transformers (c, σ) −→ σ′.

State update notation σ[X 7→ n].
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Operational semantics II

Rules for arithmetic expressions

(n, σ) −→ n (X, σ) −→ σ(X)
(a1, σ) −→ n1 (a2, σ) −→ n2

(a1 + a2, σ) −→ n1 + n2

Rules for boolean expressions

(T, σ) −→ T (F, σ) −→ F

(be1, σ) −→ b1 (be2, σ) −→ b2
(be1 and be2, σ) −→ b1 ∧ b2

(a1, σ) −→ n1 (a2, σ) −→ n2
(a1 = a2, σ) −→ n1 = n2
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Operational Semantics III

Assignment Statement

(a, σ) −→ n
(X := a, σ) −→ σ[X 7→ n]

Sequential Composition

(c1, σ) −→ σ′ (c2, σ
′′) −→ σ′′

(c1; c2, σ) −→ σ′′

Conditional
(b, σ) −→ T (c1, σ) −→ σ′

(if b then c1 else c2, σ) −→ σ′

(b, σ) −→ F (c2, σ) −→ σ′

(if b then c1 else c2, σ) −→ σ′

All these rules are structural.
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Operational semantics IV

While loop: false case

(b, σ) −→ F
(while b do c, σ) −→ σ

While loop: true case

(b, σ) −→ T (c, σ) −→ σ′ (while b do c, σ′) −→ σ′′

(while b do c, σ) −→ σ′′

The last rule is not structural. It cannot be used in a structural
induction proof.
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Towards a compositional semantics for while loops

Note the following equivalence:

while b do c ≡ if b then c; (while b do c) else skip.

We won’t worry about the exact meaning of equivalence for now.

Let’s say that commands stand for state transformation functions.

Write W for the function corresponding to while b do c

and Γ for the transformer of state-transformation functions given
by

Γ(θ) = if b then c; θ else skip.

Of course, this is notationally corrupt.

Then W = Γ(W)!

Can we formalize this using fixed-point theory?
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Denotational semantics I

We will formalize the meaning of commands as partial functions
from states to states.

Arithmetic expressions will be functions from states to numbers
and

boolean expressions will be functions from states to booleans.

Notation:

[[a]] : St−→ Z; [[b]] : St−→ Bool; [[c]] : St⇀ St.
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Denotational semantics II

Arithmetic expressions

[[X]](σ) = σ(X), . . .

etc. etc.

Boolean expressions

[[a1 = a2]](σ) = ([[a1]](σ) = [[a2]](σ)), . . .
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Commands

Functional notation
◦: functional composition
(·) Z=⇒ (·); (·): definition by cases.

Commands

[[skip]](σ) = σ
[[X := a]](σ) = σ[X 7→ [[a]](σ)]
[[c1; c2]] = [[c2]] ◦ [[c1]]
[[if b then c1 else c2]](σ) = [[b]](σ) Z=⇒ [[c1]](σ); [[c2 ]](σ)
[[while b do c]] = fix(Γb,c)
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The definition of Γ

Type: Γb,c : (St⇀ St) −→ (St⇀ St).

Γ represents one unwinding of the while loop.

θ : St⇀ St; Γb,c(θ)(σ) = [[b]](σ) Z=⇒ θ([[c]](σ));σ.

How do we know Γ has a fixed point?

Maybe it has lots of fixed points.
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Kindergarten Domain Theory

The set of partial functions St⇀ Sthas a natural order structure.

If f ∈ S⇀ St, define the graph of f as gr(f ) = {(x, y)|y = f (x)} and
the domain of f as dom(f ) = {x|∃y f(x) = y}.

Then define f ≤ g by gr(f ) ⊆ gr(g).

The domain of f is contained in the domain of g and when they are
both defined they agree.

There is a least element denoted ⊥ with gr(⊥) = ∅ and given a
chain f1 ≤ f2 ≤ . . . fn ≤ . . . the function f given by gr(f ) =

⋃
i gr(fi)

is the least upper bound of the chain. Let us call such posets
domains (for now).

A function between posets that preserves the order is called
monotone.

A function that preserves the lubs of chains is called continuous.
Continuous functions are always monotone.
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The Basic Fixed-Point Theorem

Fixed point theorem
A continuous function on a domain has a least fixed point.

Start from ⊥ and keep applying f .
Since ⊥ is the least element, ⊥ ≤ f (⊥), since f is monotone
f (⊥) ≤ f (f (⊥)) so inductively we have the chain

⊥ ≤ f (⊥) ≤ f (f (⊥)) ≤ f (f (f (⊥))) ≤ . . .

Since chains have lubs we have

x =
⊔

{⊥, f (⊥), f (f (⊥)), f (f (f (⊥))), . . .}.

Now use continuity to show that x is a fixed point of f and the fact that
⊥ is the least element to show that x is the least fixed point.
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Science fiction?

It is easy to check that Γb,c is continuous, so it has a least fixed
point.

Thus, we have completed the so-called denotational semantics of
our little language.

But do we believe it?

The operational semantics was very plausible but why should the
fixed-point semantics jive with how our intuitions about repeated
executions work?
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Relating the two semantics

(a, σ) −→ n if and only if [[a]](σ) = n.

(be, σ) −→ b if and only if [[be]](σ) = b.

(c, σ) −→ σ′ if and only if [[c]](σ) = σ′.

The first two are easy to prove by structural induction. From right to left
is easy to prove for the third by structural induction. For the other
direction one has to start with a structural induction but nested inside it
is an induction on the number of computational steps.
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Motivation for λ-calculus

We have succeeded in giving a compositional semantics for a
simple (but Turing complete) programming language.

Programs denote functions and combinations of program
fragments (using ;) are modelled by function composition.

This language, however, does not have any of the abstraction
mechanisms that programmers need to structure larger programs.

We need to package program pieces in ways that capture some
functionality and then combine these pieces without having to look
inside: this is what λ-abstraction does.
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λ-calculus

Syntax: Countable set of variables: x, y, z,u, v, . . . and terms are
defined inductively:

x|MN|λx.M

where M,N are meta-variables standing for arbitrary λ-calculus
terms.

This just has the ability to form functions and to apply them.

Nevertheless it is already Turing complete.
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Free and Bound Variables

Let FV(M) stand for the set of free variables in M.

We define FV(M) by induction on M

FV(x) = {x},

FV(MN) = FV(M) ∪ FV(N) and

FV(λx.M) = FV(M) \ {x}.

Variables that are not free are bound; they can be renamed at will.

Bound variables are only there to indicate connections or links.
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Substitution

M[N/x]: substitute N for free occurrences of x in M.

x[N/x] = N
M1M2[N/x] = M1[N/x]M2[N/x]
(λy.M)[N/x] = λy.M[N/x]
provided x 6= y and y does not occur free in N.
If these things are the case then rename bound variables.
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β-reduction

The main computational “engine” of the λ-calculus

(λx.M)N −→ M[N/x].

Assume variables are renamed as needed to avoid name clashes.

β-reduction steps can be performed inside terms;

so a given term may have many opportunities and

there is no specified order in which these reductions should be
done.

Matches one’s operational intuition of what it means to apply a
function to an argument: substitute the argument for the
paramemter in the body of the definition.
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Rules for reduction: semi-formal

M −→ M′ where M′ is the same as M except for renaming some
bound variables.

M −−→
β

M′ implies M −→ M′.

−→ is reflexively and transitively closed.
M −→ M′

λx.M −→ λx.M′

M −→ M′

MN −→ M′N
N −→ N′

MN −→ MN′

λx.Mx −→ M provided x 6∈ FV(M).
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Equality

Equality is the least equivalence relation including reduction.

One often writes λ ⊢ M = N for provable equality.

M = N does not mean that M reduces to N or the other way
around.

Perhaps M reduces to M1 and N also reduces to M1.

In general, M = N means that there is a finite sequence of terms
M1, . . . ,Mk with M −→ M1, M2 −→ M1, M2 −→ M3, M4 −→ M3 and so
on ending with N −→ Mk.
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Church-Rosser Theorem

Say a term has a normal form if there are no places to perform
reduction; it has reached its final value.

Church-Rosser: A term can have at most one normal form.

This follows from the diamond lemma: if M
∗

−−→ M1 and M
∗

−−→ N2

then there is some M3 such that M1
∗

−−→ M3 and M2
∗

−−→ M3.

One is free to choose strategies to optimize the number of steps
needed to reach normal form.

The search for optimal reduction strategies was finally settled in
1990 (Abadi-Gonthier-Levy and Lamping) with a lot of illumination
coming from the proof theory of linear logic (Girard,
Danos-Regnier, Lafont).
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Models of the λ-calculus

The λ-calculus is meant to formalize the notion of function
formation and application.

The official definition captures the dynamical aspects of the
formalism: how terms change as reduction occurs.

What about the “static” view of functions as described in set
theory? f : A −→ B.

Functions from where to where?

Functions from some set D to itself? So D −→ D.

Any lambda term can be applied to anything including itself.

Thus D ≃ [D −→ D]!!

We can easily construct an example of this in plain old set theory.

Take D to be a one-point set.

Unfortunately (actually fortunately) this is the only example!
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Denotational semantics of the λ-calculus I

Assume we have found a set D ≃ [D −→ D].

Let η : D −→ [D −→ D] and ψ : [D −→ D] −→ D define the isomorphism.

Define an environment as a map ρ : Var −→ D.

Update: ρ[x 7→ d]: new environment like ρ except for the new binding
explicitly shown.

Meaning function: [[·]] : Terms −→ (Env −→ D).

The Semantic Equations

[[x]]ρ = ρ(x)
[[MN]]ρ = η([[M]]ρ)([[N]]ρ)
[[λx.M]] = ψ(d 7→ [[M]]ρ[x 7→ d]).

Panangaden (McGill University) Tutorial on Semantics Part I LICS Toronto June 2011 33 / 1



Denotational Semantics of λ-calculus II

Clearly [D −→ D] cannot be all set theoretic functions from D to D.

So how do we know that the functions d 7→ ([[M]]ρ[x 7→ d]) are
included in [D −→ D]?

Albert Meyer rightly complained that he was never given a
definition of a model of the λ-calculus, just examples.

In a beautiful paper called “What is a model of the λ-calculus?” he
gave an algebraic definition of what exactly is a model of the
λ-calculus.

I will not give this here, but will note that any of the examples are
indeed lambda models.
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Fixed-point combinators

Consider Y = (λf .λx.f (xx))(λf .λx.f (xx)).

λ ⊢ YM = M(YM).

Thus Y finds fixed points of any term.

Thus whatever D we have; it better support some pretty powerful
fixed-point theory.
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What can one express in the λ-calculus?

One can express booleans and conditionals: indeed the booleans
are the conditionals.

One can express arithmetic using several different numeral
systems.

One can express recursion with the Y combinator.

In short, the λ-calculus, without any added structures for
arithmetic, is already Turing complete.
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Bad behaviour

The term ∆∆ where ∆ = λx.xx has no formal form: it reduces to
itself.

The term (λx.λy.y)(∆∆)(λu.u) has a normal form, but if you
choose the wrong order to do reductions it might go into a loop.

Note this is not prevented by the Church-Rosser theorem.

Of course, one expects non-termination with a Turing-complete
language.

If a term has a normal form we say that it is normalizing.

If every reduction sequence terminates we say that it is strongly
normalizing.

Wouldn’t it be nice if we could “tame” the λ-calculus and
guarantee that every term has a normal form?
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Yes we can! Simply typed lambda calculus

We have a ground type; call it 0.

If τ1 and τ2 are types so is τ1 −→ τ2.

Variables come labelled with types: xτ or x : τ .

Typing judgements have the form Γ ⊢ M : τ ; where Γ is a list of
variable typing assumptions.

Γ, x : τ ⊢ x : τ

Γ, x : τ ⊢ x : τ ⊢ M : τ ′

Γ ⊢ λx.M : τ−→ τ ′

Γ ⊢ M : τ −→ τ ′ Γ ⊢ N : τ
Γ ⊢ MN : τ ′

In this calculus; one cannot write terms like ∆. One can prove that
every term is strongly normalizing.

One can also show that the expressiveness is severely limited!!
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PCF

The simply-typed λ-calculus is well-behaved but very weak.

Perhaps we should put recursion back in a controlled way: PCF
defined by Plotkin in 1977.

Essentially simply-typed λ-calculus with two ground types:
integers and booleans and some basic logical and arithmetic
operations plus

recursion at every type.

Of course not every term will have a normal form.
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Syntax of PCF

Types
τ ::== Nat|Bool|τ1 × τ2|τ1 −→ τ2.

Ground Constants

tt, ff : Bool, 0, 1, 2 . . . n, . . . : Nat

Higher-type constants

plus : Nat× Nat−→ Nat, equal: Nat× Nat−→ Bool,

ifτ : Bool× τ × τ −→ τ, fixτ : (τ −→ τ) −→ τ.

Products Γ ⊢ M : σ Γ ⊢ N : τ
Γ ⊢ (M, N) : σ × τ

Γ ⊢ M : τ1 × τ2
Γ ⊢ π1(2)(M) : τ1(2)

Fixed points Γ, x : τ ⊢ M : τ
Γ ⊢ fix x.M : τ

Other terms are as in the simply-typed λ-calculus.
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Operational semantics of PCF

Constants evaluate to themselves 1729 −→ 1729
Algebraic expressions follow the obvious rules, e.g.

M1 −→ n1 M2 −→ n2
plus(M1,M2) −→ (n1 + n2)

Rules for fixed points

fix x.M −→ M[fix x.M/x]
Other rules are what you expect.
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Towards a denotational semantics for PCF

We can model the base types easily, except that we have to have
a special value to denote expressions that may not terminate.

How do we model recursion? With fixed-point theory of course!

We have a simple example of a poset where fixed points for
continuous functions exist

but what about those function types?

We need a theory of “domains” that guarantees us the appropriate
function spaces have fixed points.

We need ways of arguing that the denotational semantics and the
operational semantics “match up well” (whatever that means!).
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