A Why-on-Earth Tutorial on Finite Model Theory

Albert Atserias Universitat Poliècnica de Catalunya Barcelona, Spain

June 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆ ⊙へ⊙

- 1. THE BASIC THEORY
- 2. RANDOM STRUCTURES
- 3. ALGORITHMIC META-THEOREMS

Part I

THE BASIC THEORY

Structures

Vocabulary:

Relation and function symbols R_1, \ldots, R_r and f_1, \ldots, f_s , each with an associated arity (unary, binary, ternary, ...).

Structure:

$$\mathbf{M} = (M, R_1^{\mathbf{M}}, \dots, R_r^{\mathbf{M}}, f_1^{\mathbf{M}}, \dots, f_s^{\mathbf{M}})$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Terminology:

- 1. *M* is the universe of **M**,
- 2. $R_i^{\mathbf{M}}$ and $f_i^{\mathbf{M}}$ are the interpretations of R_i and f_i ,

Examples

Undirected loopless graphs G = (V, E):

- 1. V is a set,
- 2. $E \subseteq V^2$ is a binary relation,
- 3. edge relation is symmetric and irreflexive.

Ordered rings and fields $\mathbb{F} = (F, \leq, +, \cdot, 0, 1)$:

- F is a set,
 ≤⊆ F² is a binary relation,
 +: F² → F and ·: F² → F are binary operations,
- 4. $0 \in F$ and $1 \in F$ are constants (0-ary operations),
- 5. axioms of ordered ring (or field) are satisfied.

Proviso

Finite relational vocabularies and structures:

- 1. vocabulary is relational if it contains no function symbols,
- 2. structure is finite if *M* is finite.

Provisos:

From now on, all our structures will be finite, over finite relational vocabularies.

Killed functions?:

Functions are represented as relations, by their graphs.

First-order variables:

 x_1, x_2, \ldots intended to range over the points of the universe. Formulas:

A D M A

- $x_{i_1} = x_{i_2}$ and $R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- $x_{i_1} \neq x_{i_2}$ and $\neg R_i(x_{i_1}, \ldots, x_{i_r})$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$,
- if φ and ψ are formulas, so is $(\varphi \lor \psi)$,
- if φ and ψ are formulas, so is $(\varphi \rightarrow \psi)$,
- if φ is a formula, so is $(\exists x_i)(\varphi)$,
- if φ is a formula, so is $(\forall x_i)(\varphi)$.

First-order logic: semantics

Truth in a structure:

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x} = (x_1, \dots, x_r)$. Let **M** be a structure, and let $\mathbf{a} = (a_1, \dots, a_r) \in M^r$.

$$\mathsf{M}\models\varphi(\mathsf{x}/\mathsf{a})$$

Example:

$$\varphi(x) := (\forall y)(\exists z)(E(x,z) \land E(y,z)).$$

Second-order variables:

 X_1, X_2, \ldots intended to range over the relations on the universe. Formulas:

- add $X_i(x_{i_1},\ldots,x_{i_r})$ to the atomic formulas,
- add $\neg X_i(x_{i_1},\ldots,x_{i_r})$ to the negated atomic formulas,
- if φ is a formula, so is $(\exists X_i)(\varphi)$,
- if φ is a formula, so is $(\forall X_i)(\varphi)$.

Truth in a structure:

Let $\varphi(\mathbf{X}, \mathbf{x})$ be a formula with free variables **X** and **x**.

 $\mathsf{M}\models\varphi(\mathsf{X}/\mathsf{A},\mathsf{x}/\mathsf{a})$

Definability and uniform definability

Definability:

Let $\phi(\mathbf{X}, \mathbf{x})$ be a first-order formula with free variables \mathbf{X} and \mathbf{x} . Let \mathbf{M} be a structure and let C be a class of structures.

The relation defined by ϕ on **M** is:

$$\phi^{\mathsf{M}} = \{(\mathsf{A}, \mathsf{a}) : \mathsf{M} \models \phi(\mathsf{X}/\mathsf{A}, \mathsf{x}/\mathsf{a})\}.$$

The query defined by ϕ on $\mathcal C$ is:

$$\phi^{\mathcal{C}} = \{\phi^{\mathbf{A}} : \mathbf{A} \in \mathcal{C}\}.$$

Note:

When ϕ is a sentence: $\phi^{\mathbf{A}}$ is identified with true or false. and therefore, $\phi^{\mathcal{C}}$ is identified with a subset of \mathcal{C} .

Examples

Given a graph, what are the vertices of degree one?:

$$\phi(x) = (\exists y)(Exy \land (\forall z)(Exz \to z = y)).$$

Given a graph, is it connected?:

$$\phi = (\forall x, y)(\forall X)(Xx \land (\forall u, v)(Euv \land Xu \to Xv) \to Xy).$$

Given a graph, what are its independent sets?:

$$\phi(X) = (\forall x, y)(Xx \land Xy \to \neg Exy)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Quantifier rank:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Finitely many formulas up to equivalence

Fixed rank formulas:

 FO_k^n and SO_k^n : the set of all FO or SO-formulas with quantifier rank at most n and at most k free variables.

Key property of quantifier rank:

For every $n \in \mathbb{N}$ and $k \in \mathbb{N}$: FOⁿ_k is finite up to logical equivalence, SOⁿ_k is finite up to logical equivalence.

Induction on *n*. Bound of the type 2^{2^2}

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Types

Types:

Let **A** be a structure, and let $\mathbf{a} = (a_1, \dots, a_r) \in A^r$. Let *L* be a fragment of first-order logic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

1.
$$\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) = \{\varphi(\mathbf{x}) \in L : \mathbf{A} \models \varphi(\mathbf{x}/\mathbf{a})\}$$

2. $\operatorname{tp}_{L}(\mathbf{A}) = \{\varphi \in L : \mathbf{A} \models \varphi\}$

Notation:

1.
$$\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$$
 stands for $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) \subseteq \operatorname{tp}_{L}(\mathbf{B}, \mathbf{b})$
2. $\mathbf{A}, \mathbf{a} \equiv^{L} \mathbf{B}, \mathbf{b}$ stands for $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{L}(\mathbf{B}, \mathbf{b})$

What does $A, a \leq^{L} B, b$ mean?

• when $L = \{ all atomic formulas \}$, it means

the mapping $(a_i \mapsto b_i : i = 1, ..., r)$ is a homomorphism between the substructures induced by **a** and **b**

 when L = {all atomic and negated atomic formulas}, it means the mapping (a_i → b_i : i = 1,...,r) is an isomorphism between the substructures induced by a and b

What does $A, a \leq^{L} B, b$ mean?

- when L = {all formulas with at most one quantifier}, it means the substructures induced by a and b are isomorphic and have the same types of extensions by one point
- when *L* = {all formulas with at most two quantifiers}, it means *the substructures induced by ...*

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: $p_1, p_2, ...$ and $q_1, q_2, ...$ **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: $p_1, p_2, ...$ and $q_1, q_2, ...$ **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: $p_1, p_2, ...$ and $q_1, q_2, ...$ **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: $p_1, p_2, ...$ and $q_1, q_2, ...$ **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Two players: Spoiler and Duplicator **Two structures**: **A** and **B Unlimited pebbles**: $p_1, p_2, ...$ and $q_1, q_2, ...$ **An initial position**: $\mathbf{a} \in A^r$ and $\mathbf{b} \in B^r$ **Rounds**:

Referee: Spoiler wins if at any round the mapping $p_i \mapsto q_i$ is not a partial isomorphism. Otherwise, Duplicator wins.

Formal definition of winning strategy:

An *n*-round winning strategy for the Duplicator on **A**, **a** and **B**, **b** is a sequence of non-empty sets of partial isomorphisms ($F_i : i < n$) such that ($\mathbf{a} \mapsto \mathbf{b}$) $\in F_0$ and

- 1. Forth: For every i < n 1, every $f \in F_i$, and every $a \in A$, there exists $g \in F_{i+1}$ with $a \in \text{Dom}(g)$ and $f \subseteq g$.
- 2. Back: For every i < n 1, every $f \in F_i$, and every $b \in B$, there exists $g \in F_{i+1}$ with $b \in \text{Ran}(g)$ and $f \subseteq g$.

A D M A

 $\mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}^{n}} \mathbf{B}, \mathbf{b}$: there is an *n*-round winning strategy.

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$\mathbf{A}, \mathbf{a} \equiv^{\mathrm{FO}^{n}} \mathbf{B}, \mathbf{b}$$
 if and only if $\mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}^{n}} \mathbf{B}, \mathbf{b}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$\mathbf{A}, \mathbf{a} \equiv^{\mathrm{FO}^n} \mathbf{B}, \mathbf{b}$$
 if and only if $\mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}^n} \mathbf{B}, \mathbf{b}$

 \Leftarrow : Duplicator's strategy makes the structures indistinguishable.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$\mathbf{A}, \mathbf{a} \equiv^{\mathrm{FO}^n} \mathbf{B}, \mathbf{b}$$
 if and only if $\mathbf{A}, \mathbf{a} \equiv^{\mathrm{EF}^n} \mathbf{B}, \mathbf{b}$

E Duplicator's strategy makes the structures indistinguishable.

 \implies : Use the finiteness of FOⁿ_k to note that:

For every **A**, **a** and every $n \in \mathbb{N}$, there exists an FO-formula $\phi_{\mathbf{A},\mathbf{a}}^{n}(\mathbf{x})$ such that: $\mathbf{B} \models \phi_{\mathbf{A},\mathbf{a}}^{n}(\mathbf{x}/\mathbf{b})$ if and only if $\mathbf{A}, \mathbf{a} \equiv^{\text{FO}^{n}} \mathbf{B}, \mathbf{b}$.

Then the strategy for the Duplicator is built inductively on *n*:

use witness to B ⊨ φⁿ_{A,a}(x/b) to duplicate first move in A.
 use witness to A ⊨ φⁿ_{B,b}(x/a) to duplicate first move in B.

Example:

Let Q = "Given a graph, does it have an even number of vertices?" How would you show that it is not FO⁵-definable?

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Example:

Let Q = "Given a graph, does it have an even number of vertices?" How would you show that it is not FO⁵-definable?

Play on a 5-clique and a 6-clique.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

General method:

Let Q be a Boolean query on C. Let $n \in \mathbb{N}$ be a quantifier rank. Are there **A** and **B** in C such that:

 $Q(\mathbf{A}) \neq Q(\mathbf{B})$ and $\mathbf{A} \equiv^{\mathrm{FO}^n} \mathbf{B}$?

Fact:

- YES \implies Q is not FOⁿ-definable on C.
- NO \implies Q is FOⁿ-definable on C.

If they do not exist, then $Q \equiv \bigvee_{\mathbf{A} \in Q} \phi_{\mathbf{A}}^{n}$ which is a finite disjunction (up to equivalence).

Good characterization:

Games and definability are somehow dual to each other.

Generality and flexibility:

- 1. SO-moves: Spoiler and Duplicator choose relations.
- 2. existential fragments: Spoiler plays only on the left.
- 3. positive fragments: Referee checks for homomorphisms.

Other parameters:

- 1. arity: in monadic SO (MSO), all SO-moves are sets.
- 2. width: maximum number of free variables of the subformulas.

Locality of first-order logic

Gaifman (or primal) graph:

For a structure **A**, let $G(\mathbf{A})$ be the undirected graph where:

- vertices: the universe of A,
- edges: pairs of points that appear together in some tuple of A.

Neighborhoods:

For a structure **A**, a point $a \in A$, and radius $r \in \mathbb{N}$, define:

$$N_r^{\mathbf{A}}(a) = \{a' \in A : d_{G(\mathbf{A})}(a,a') \leq r\}.$$

Note:

"
$$x \in N_r(y)$$
" and " $d(x, y) > 2r$ " are FO-definable.

Local formulas:

Formulas with all quantifiers of the form:

 $(\exists y \in N_r(x_i))$ and $(\forall y \in N_r(x_i))$.

Basic local sentences:

$$(\exists x_1)\cdots(\exists x_k)(\bigwedge_{i\neq j}d(x_i,x_j)>2r\wedge\lambda^{\leq r}(x_i)).$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Gaifman Locality Theorem:

Every first-order sentence is logically equivalent to a Boolean combination of basic local sentences.

Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via $(\exists X_1, \ldots, X_s)(\psi)$. Let *r* be a bound on the locality radius of FO part ψ .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via $(\exists X_1, \ldots, X_s)(\psi)$. Let *r* be a bound on the locality radius of FO part ψ .

STEP 1: Color a very big cicle with the existential SO-quantifiers:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via $(\exists X_1, \ldots, X_s)(\psi)$. Let *r* be a bound on the locality radius of FO part ψ . STEP 1: Color a very big cicle with the existential SO-quantifiers: STEP 2: Split two most-popular 4*r*-neighborhoods.

- 1. THE BASIC THEORY \checkmark
- 2. RANDOM STRUCTURES
- 3. ALGORITHMIC META-THEOREMS
Part II

RANDOM STRUCTURES

Erdös-Renyi random graphs

The G(n, p) model:

Graph G = (V, E) with $V = \{1, ..., n\}$ generated as follows:

Put $\{u, v\}$ in *E* with probability *p*, independently for each $u, v \in V$ with $u \neq v$.

Typical values of *p*:

p = 1/2 [uniform distribution], p = c/n for $c \ge 0$ [appearence of giant component], $p = \ln(n)/n + c/n$ for $c \ge 0$, [connectivity] $p = n^{-p/q}$ for $p, q \in \mathbb{N}$ [appearance of small subgraphs]. **At** *p* = 1/2:

. . .

Almost all graphs are connected Almost all graphs are Hamiltonian Almost all graphs are k-extendible Almost all graphs are $2\log(n)$ -Ramsey

< D > < 同 > < E > < E > < E > < 0 < 0</p>

0-1 law for first-order logic

Let ϕ be a first-order sentence in the language of graphs. If $G \sim G(n, 1/2)$, then as $n \to \infty$

> either almost all graphs satisfy ϕ or almost all graphs satisfy $\neg \phi$.

In other words:

either
$$\lim_{n\to\infty} \Pr[G \models \phi] = 0$$

or $\lim_{n\to\infty} \Pr[G \models \phi] = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ◆○へ⊙

Three known proofs:

1. Compactness argument through the Rado graph

- 2. Enhrenfeucht-Fraïssé game
- 3. Quantifier elimination

Quantifier elimination proof

Goal:

Show that for every first-order formula $\phi(x_1, \ldots, x_k)$ and almost every graph *G* the following holds:

There exists $F : TYPES_k^0 \rightarrow \{0, 1\}$ such that for every $\overline{u} \in V^k$ it holds that

$$G \models \phi[\overline{u}] \iff F(\operatorname{tp}_k^0(G, \overline{u})) = 1.$$

Note:

If
$$\phi$$
 is a sentence $(k = 0)$, then $F \in \{0, 1\}$, and
either almost every G satisfies ϕ
or almost every G satisfies $\neg \phi$.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Quantifier elimination proof (cntd)

Goal by induction on number of quantifiers in prenex ϕ :

1. If
$$\phi$$
 is quantifier-free, clear.
2. If $\phi = (\exists x_k)(\psi(x_1, \dots, x_{k-1}, x_k))$, let F_{ψ} be given by I.H.
 $F_{\phi}(t) := \begin{cases} 1 & \text{if there exists } t' \supseteq t \text{ such that } F_{\psi}(t') = 1, \\ 0 & \text{if for every } t' \supseteq t \text{ we have } F_{\psi}(t') = 0. \end{cases}$

Key property of almost every graph (k-extendibility):

For every
$$\overline{u} \in V^k$$
 and every $t' \in \text{TYPES}_{k+1}^0$:

If $t' \supseteq \operatorname{tp}_k^0(G, \overline{u})$ and t' is realizable, then there is $v \in V$ with $t' = \operatorname{tp}_k^0(G, \overline{u}, v)$. Other measures:

1. $p = n^{-\alpha}$ for $0 < \alpha < 1$: zero-one law holds iff α is irrational,

2. p = c/n for $c \ge 0$: convergence law to ce^{-c} , $1/c + e^{e^{-c}}$, etc.

Other classes of structures:

- 1. directed graphs, relational structures, unary functions,
- 2. K_k -free graphs, etc.

Other logics:

- 1. Fixed-point logics, infinitary logics with finitely many variables,
- 2. Fragments of existential second-order logic (e.g. SNP), etc.
- 3. First-order logic with the parity quantifier.

Parity quantifier:

 $(\oplus u)(\phi(u))$: the number of *u* for which $\phi(u)$ holds is odd.

Note:

$$(\oplus u, v)(\phi(u, v)) \equiv (\oplus u)(\oplus v)(\phi(u, v))$$

Example:

$$(\oplus u, v, w)(\mathit{Euv} \land \mathit{Evw} \land \mathit{Ewu})$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Why-on-earth?

How well can FO and $FO[\oplus]$ formulas be a approximated by low-degree polynomials over GF(2)?

$$(\oplus a, b, c)(Eab \land Ebc \land Eca)$$

VS.

 $\sum \sum \sum x_{ab} x_{bc} x_{ca} \mod 2$ $a \in V b \in V c \in V$

Previously known result:

Razborov-Smolensky Theorem:

For every $F = F_n : \{0,1\}^{\binom{n}{2}} \to \{0,1\}$ in FO[\oplus] (indeed AC⁰[\oplus]), there exists a multivariate polynomial P over GF(2) such that:

1.
$$\deg(P) = \log(n)^{\Theta(1)}$$
,

2. $\Pr_{G \sim G(n, 1/2)}[F(G) = P(G)] \ge 1 - 2^{-\log(n)^{\Theta(1)}}$.

Why-on-earth? (cntd)

Recent result:

Kolaitis-Kopparty Theorem:

For every $F = F_n : \{0, 1\}^{\binom{n}{2}} \to \{0, 1\}$ in FO[\oplus] (but not AC⁰[\oplus]), there exists a multivariate polynomial P over GF(2) such that:

1. deg(
$$P$$
) = $\Theta(1)$,
2. $\Pr_{G \sim G(n, 1/2)}[F(G) = P(G)] \ge 1 - 2^{-\Omega(n)}$.

Moral:

Exploit the uniformity of $FO[\oplus]$ and its structure as a logic to get stronger parameters.

Two ways the 0-1 law for $FO[\oplus]$ fails on G(n, 1/2):

- 1. $(\oplus u)(u = u)$ does not converge (it alternates),
- 2. $(\oplus u_1, \ldots, u_k)(H(u_1, \ldots, u_k))$ converges to 1/2 (if H rigid).

Indeed, (if H and H' are rigid)

3. $(\oplus \overline{u})(H(\overline{u})) \land (\oplus \overline{v})(H'(\overline{v}))$ converges to 1/4.

Modular Convergence Law Theorem:

Let ϕ be an FO[\oplus] sentence in the language of graphs. If $G \sim G(2n, 1/2)$ and $H \sim G(2n + 1, 1/2)$, then there exist constants $a_0, a_1 \in [0, 1]$ such that

$$\lim_{n \to \infty} \Pr[G \models \phi] = a_0$$
$$\lim_{n \to \infty} \Pr[H \models \phi] = a_1.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Quantifier elimination:

Show that for every first-order formula $\phi(x_1, \ldots, x_k)$ and almost every graph *G* the following holds:

There exists $F : \mathrm{TYPES}_k^0 \times \{0, 1\}^{\mathrm{CONN}_k^c} \to \{0, 1\}$ such that for every $\overline{u} \in V^k$ it holds that

$$G \models \phi[\overline{u}] \Longleftrightarrow F(\operatorname{tp}_k^0(G,\overline{u}),\operatorname{freq}_k^c(G,\overline{u})) = 1.$$

Estimation of subgraph frequencies mod 2:

Distribution of freq₀^c(G) is $2^{-\Omega(n)}$ -close to uniform.

Proof uses tools from discrete analysis: Gowers norms over finite fields.

Ambitious:

Extension to a logic that can check independent sets of log size? Related to getting polynomial-time constructible Ramsey-graphs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

- 1. THE BASIC THEORY \checkmark
- 2. RANDOM STRUCTURES \checkmark
- 3. ALGORITHMIC META-THEOREMS

Part III

ALGORITHMIC META-THEOREMS

Decision problems

Setup:

A class of structures C. A class of formulas Φ .

Model Checking Problem:

Given ϕ in Φ and **A** in C, does **A** $\models \phi$?

Note:

For
$$\Phi = \text{FO}$$
 and $C = \text{STR}_{\text{fin}}(E)$,
the problem is solvable in time $|\mathbf{A}|^{O(|\phi|)}$.

Dominating set of size at most *k*:

$$(\exists v_1)\cdots(\exists v_k)(\forall u)(Euv_1\vee\cdots\vee Euv_k)$$

Feedback vertex-set of size at most k:

$$(\exists v_1) \cdots (\exists v_k) (\text{connected}(v_1, \ldots, v_k) \land \operatorname{acyclic}(v_1, \ldots, v_k))$$

where:

1. connected
$$(v_1,\ldots,v_k) = (\forall x,y)(\bigwedge_i x \neq v_i \land \bigwedge_i y \neq v_i \to \cdots,$$

2.
$$\operatorname{acyclic}(v_1,\ldots,v_k) = \cdots$$
 exercise.

Treewidth graphically

Treewidth graphically

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Treewidth graphically

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Tree-decompositions:

A tree-decomposition of a graph G = (V, E) is a tree T such that:

- 1. every node of T is labeled by a subset of V (the bags),
- 2. every edge in E is contained in some bag,
- for every v ∈ V, the set of nodes of T whose bags contain v induces a connected substree of T.

Definition of treewidth:

- the width of T is the size of the largest bag (-1),
- tw(G) = min{k : **G** has a tree-decomposition of width k}.
- $\operatorname{tw}(\mathbf{A}) = \operatorname{tw}(G(\mathbf{A})).$

Courcelle Theorem:

If every structure in C has tree-width less than k, then there exists an algorithm that:

given a structure $\mathbf{A} \in \mathcal{C}$ and a sentence $\phi \in MSO$, determines whether $\mathbf{A} \models \phi$ in time

 $f(|\phi|,k)\cdot |\mathbf{A}|,$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

where f is a computable function.

Given:

Let ϕ be an MSO-sentence of quantifier rank q. Let **A** be a structure of treewidth less than k.

Subgoal:

Build **B** such that
$$\mathbf{B} \equiv^q_{MSO} \mathbf{A}$$
 and $|\mathbf{B}| \leq f(|\phi|, k)$.

Slogan:

B is a miniaturized version of **A**.

Algorithm:

- 1. Compute a tree-decomposition of **A** of width less than k,
- 2. Use it to build $\mathbf{B} \equiv^{q}_{MSO} \mathbf{A}$ with $|\mathbf{B}| \leq f(|\phi|, k)$,
- 3. Evaluate $\mathbf{B} \models \phi$ in time independent of $|\mathbf{A}|$.

Note:

Computing a tree-decomposition of width less than k is solvable in time $2^{\text{poly}(k)} \cdot |\mathbf{A}|$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Construction of miniaturized version

Brute force construction of all miniatures:

- 1. let σ be the vocabulary of ϕ ;
- 2. put all σ -structures with universe in $\{1, \ldots, k\}$ in \mathcal{E} ;
- 3. For every **A**, **a** of the form:

where $\mathbf{A}_0, \mathbf{A}_1 \in \mathcal{E}$ and $\mathbf{a} \in A^k$ has $A_0 \cap A_1 \subseteq \mathbf{a}$, if $\mathbf{A}, \mathbf{a} \not\equiv^q_{MSO} \mathbf{B}, \mathbf{b}$ for every \mathbf{B}, \mathbf{b} with $\mathbf{B} \in \mathcal{E}$ and $\mathbf{b} \in B^k$, add \mathbf{A} to \mathcal{E} ;

4. repeat until \mathcal{E} is unchanged.

Construction of miniaturized version (cntd)

Key property 1:

Iteration stops after $\leq f(|\phi|, k)$ iterations: a new \equiv_{MSO}^{q} -k-type is added at each iteration.

Key property 2:

If $tw(\mathbf{A}) < k$, its $\equiv_{MSO}^{q} - k$ -type is represented in \mathcal{E} : **A** is built from size k structures through k-bounded unions.

Example application of Courcelle Theorem

Feedback vertex-set of size at most k:

For every fixed $w \ge 1$ and $k \ge 1$, there exists a linear-time algorithm to decide $FVS(G) \le k$ on graphs G with tw(G) < w.

But wait a second:

If indeed $FVS(G) \le k$, then tw(G) < k + 1.

Linear time algorithm working on all graphs:

- 1. check if $\operatorname{tw} G < k + 1$ in time $2^{\operatorname{poly}(k)} \cdot |G|$;
- 2. if not, stop and return "NO";
- 3. if yes, run Courcelle Theorem in time $f(|\phi_k|, k+1) \cdot |G|$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Optimization problems

Setup:

A class of structures C. A class of formulas Φ with a free set-variable.

Minimization Problem:

Given $\phi(X)$ in Φ and **A** in C, find $X \subseteq A$ of minimum size such that $\mathbf{A} \models \phi(X)$, if it exists.

Note:

For
$$\Phi = FO$$
 and $C = STR_{fin}(E)$,
the problem is solvable in $2^{|\mathbf{A}|} \cdot |\mathbf{A}|^{|\phi|}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Minimum Dominating Set:

$$\phi(X) = (\forall u)(\exists v)(Euv \land Xv).$$

Maximum Independent Set:

$$\phi(X) = (\forall u, v)(Xu \land Xv \to \neg Euv).$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

Extended Courcelle Theorem:

If every structure in C has tree-width less than k, then there exists an algorithm that:

given a structure $\mathbf{A} \in \mathcal{C}$ and a formula $\phi(X) \in MSO$, finds the optimum to $\operatorname{opt}_X \phi(X)$ in time

 $f(|\phi|,k)\cdot |\mathbf{A}|,$

where f is a computable function.

NP-hard for planar graphs:

Computing the maximum independent set stays NP-hard on planar graphs.

Let's be satisfied with approximations...

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Dawar-Grohe-Kreutzer-Schweikardt Theorem:

If every graph in C excludes K_k as a minor, then there exists an algorithm that:

given a $\phi(X) \in FO$ that is monotone in X and a graph G in C, finds $X \subseteq V$ with cardinality within $(1 \pm \epsilon)$ -factor from $\operatorname{opt}_X \phi(X)$ in time

 $f(|\phi|, k, 1/\epsilon) \cdot |G|^{g(|\phi|)},$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

where f and g are computable functions.

How is this done?

Given:

Let $\phi(X)$ be a FO-formula that is positive in X. Let G be a graph in the class C; let us say a planar graph.

Fact:

On planar graphs, *r*-neighborhoods have treewidth $\leq 3r$. On planar graphs, *d*-rings have treewidth $\leq 3d$.

◆ロ▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ → 母 → の々で
Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

イロト 不得 トイヨト イヨト 二日

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

イロト 不得 トイヨト イヨト 二日

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

Hint of algorithm:

Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!). Simplifying a lot, the problem reduces to solving:

$$\psi^{\leq r}(a_1, X) \wedge \cdots \wedge \psi^{\leq r}(a_s, X)$$

for every possible a_1, \ldots, a_s (not necessarily far from each other).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More details

split G into rings of width d = Θ(^r/_ϵ + r), centered at v₀ (say),
use treewidth of rings to solve min_X ψ^{≤r}(a_t, X) on each ring,
use monotonicity of ψ^{≤r}(a_i, X) to get feasible solutions,
use k = Θ(^r/_ϵ) shifted quasi-partitions to get X₁,..., X_k,
return the smallest X_ℓ.

$$|X_\ell| \le rac{1}{k} \sum_{i=1}^k |X_i| \le rac{1}{k} \sum_{i=1}^k \sum_{j\ge 0} |X_{ij}| \le rac{1}{k} \sum_{i=1}^k \sum_{j\ge 0} |R_{ij} \cap X_{\min}|$$

and since each vertex appears in at most d rings R_{ij} :

$$\leq rac{1}{k} \cdot d \cdot |X_{\min}| \leq (1+\epsilon) |X_{\min}|.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

- 1. THE BASIC THEORY \checkmark
- 2. RANDOM STRUCTURES \checkmark
- 3. ALGORITHMIC META-THEOREMS \checkmark

APPROPRIATE CREDIT

PART I. THE BASIC THEORY

- Fraïssé invented back-and-forth systems (1950).
- Ehrenfeucht invented the games (1961).
- Gaifman locality theorem: Gaifman (1982).
- Connectivity not in existential MSO: originally Fagin (1975).

• Proof here: follows Fagin, Stockmeyer and Vardi (1995).

APPROPRIATE CREDIT (CNTD)

PART II. RANDOM STRUCTURES

- 0-1 law for FO at p = 1/2: independently Glebskii, Kogan, Liogonki and Talanov (1969) and Fagin (1976).
- 0-1 law for FO at $p = n^{-\alpha}$: Shelah and Spencer (1988).
- convergence law for FO at p = c/n: Lynch (1992).
- 0-1 law for stronger logics at p = 1/2: Blass, Gurevich, Kozen, Kolaitis, Vardi (1980's).
- Razborov-Smolensky Theorem: Razborov and Smolensky (1987).
- modular convergence law for FO[⊕]: Kolaitis and Kopparty (2010).

PART III. ALGORITHMIC META-THEOREMS

- Notion of treewidth: several groups, notably Robertson and Seymour (1980's).
- Courcelle Theorem: Courcelle (1990).
- Application to feedback vertex-set: folklore (Flum and Grohe book).
- Dawar et al. Theorem: Dawar, Grohe, Kreutzer and Schweikardt (2006), building on Baker (1994) and Grohe (2003).

- Ebbinghaus and Flum. **Finite Model Theory**. Springer, first edition 1995, second edition 2006.
- Immerman. Descriptive Complexity. Springer, 1999.
- Libkin. Elements of Finite Model Theory. Springer, 2004.
- Grädel, Kolaitis, Libkin, Spencer, Vardi, Venema, Weinstein. **Finite Model Theory and its Applications**. Springer, 2007.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

• Flum and Grohe. **Parameterized Complexity**. Springer, 2006.