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Part I

THE BASIC THEORY



Structures

Vocabulary:

Relation and function symbols R1, . . . ,Rr and f1, . . . , fs ,
each with an associated arity (unary, binary, ternary, ...).

Structure:

M = (M,RM
1 , . . . ,R

M
r , f

M
1 , . . . , f M

s )

Terminology:

1. M is the universe of M,

2. RM
i and f M

i are the interpretations of Ri and fi ,



Examples

Undirected loopless graphs G = (V ,E ):

1. V is a set,

2. E ⊆ V 2 is a binary relation,

3. edge relation is symmetric and irreflexive.

Ordered rings and fields F = (F ,≤,+, ·, 0, 1):

1. F is a set,

2. ≤⊆ F 2 is a binary relation,

3. + : F 2 → F and · : F 2 → F are binary operations,

4. 0 ∈ F and 1 ∈ F are constants (0-ary operations),

5. axioms of ordered ring (or field) are satisfied.



Proviso

Finite relational vocabularies and structures:

1. vocabulary is relational if it contains no function symbols,

2. structure is finite if M is finite.

Provisos:

From now on, all our structures will be finite,
over finite relational vocabularies.

Killed functions?:

Functions are represented as relations, by their graphs.



First-order logic: syntax

First-order variables:

x1, x2, . . . intended to range over the points of the universe.

Formulas:

• xi1 = xi2 and Ri(xi1 , . . . , xir ) are formulas,

• xi1 6= xi2 and ¬Ri(xi1 , . . . , xir ) are formulas,

• if ϕ and ψ are formulas, so is (ϕ ∧ ψ),

• if ϕ and ψ are formulas, so is (ϕ ∨ ψ),

• if ϕ and ψ are formulas, so is (ϕ → ψ),

• if ϕ is a formula, so is (∃xi)(ϕ),

• if ϕ is a formula, so is (∀xi)(ϕ).



First-order logic: semantics

Truth in a structure:

Let ϕ(x) be a formula with free variables x = (x1, . . . , xr ).
Let M be a structure, and let a = (a1, . . . , ar ) ∈ M r .

M |= ϕ(x/a)

Example:
ϕ(x) := (∀y)(∃z)(E (x , z) ∧ E (y , z)).

a

G |= ϕ(x/a)



Second-order logic: syntax

Second-order variables:

X1,X2, . . . intended to range over the relations on the universe.

Formulas:

• add Xi(xi1 , . . . , xir ) to the atomic formulas,

• add ¬Xi(xi1 , . . . , xir ) to the negated atomic formulas,

• if ϕ is a formula, so is (∃Xi)(ϕ),

• if ϕ is a formula, so is (∀Xi)(ϕ).



Second-order logic: semantics

Truth in a structure:

Let ϕ(X, x) be a formula with free variables X and x.

M |= ϕ(X/A, x/a)



Definability and uniform definability

Definability:

Let φ(X, x) be a first-order formula with free variables X and x.
Let M be a structure and let C be a class of structures.

The relation defined by φ on M is:

φM = {(A, a) : M |= φ(X/A, x/a)}.

The query defined by φ on C is:

φC = {φA : A ∈ C}.

Note:

When φ is a sentence: φA is identified with true or false.
and therefore, φC is identified with a subset of C.



Examples

Given a graph, what are the vertices of degree one?:

φ(x) = (∃y)(Exy ∧ (∀z)(Exz → z = y)).

Given a graph, is it connected?:

φ = (∀x , y)(∀X )(Xx ∧ (∀u, v)(Euv ∧ Xu → Xv) → Xy).

Given a graph, what are its independent sets?:

φ(X ) = (∀x , y)(Xx ∧ Xy → ¬Exy)



Quantifier rank

Quantifier rank:

1. qr(φ) = 0 if φ is atomic or negated atomic,

2. qr(φ) = max{qr(ψ), qr(θ)} if φ = (ψ ∨ θ) or φ = (ψ ∧ θ),

3. qr(φ) = 1 + qr(ψ) if φ = (∃xi)(ψ) or φ = (∀xi )(ψ),

4. qr(φ) = 1 + qr(ψ) if φ = (∃Xi)(ψ) or φ = (∀Xi)(ψ),



Finitely many formulas up to equivalence

Fixed rank formulas:

FOn
k and SOn

k : the set of all FO or SO-formulas with
quantifier rank at most n and at most k free variables.

Key property of quantifier rank:

For every n ∈ N and k ∈ N:
FOn

k is finite up to logical equivalence,
SOn

k is finite up to logical equivalence.

Induction on n. Bound of the type 222·
·

·

.



Types

Types:

Let A be a structure, and let a = (a1, . . . , ar ) ∈ Ar .
Let L be a fragment of first-order logic.

1. tpL(A, a) = {ϕ(x) ∈ L : A |= ϕ(x/a)}

2. tpL(A) = {ϕ ∈ L : A |= ϕ}

Notation:

1. A, a ≤L B,b stands for tpL(A, a) ⊆ tpL(B,b)

2. A, a ≡L B,b stands for tpL(A, a) = tpL(B,b)



Meaning of Types

What does A, a ≤L B,b mean?

• when L = {all atomic formulas}, it means

the mapping (ai 7→ bi : i = 1, . . . , r) is a homomorphism

between the substructures induced by a and b

• when L = {all atomic and negated atomic formulas}, it means

the mapping (ai 7→ bi : i = 1, . . . , r) is an isomorphism

between the substructures induced by a and b



Meaning of Types

What does A, a ≤L B,b mean?

• when L = {all formulas with at most one quantifier}, it means

the substructures induced by a and b are isomorphic and

have the same types of extensions by one point

• when L = {all formulas with at most two quantifiers}, it means

the substructures induced by ...



Ehrenfeucht-Fräıssé Games

Two players: Spoiler and Duplicator
Two structures: A and B
Unlimited pebbles: p1, p2, . . . and q1, q2, . . .
An initial position: a ∈ Ar and b ∈ B r

Rounds:

ba

Referee: Spoiler wins if at any round the mapping pi 7→ qi is not
a partial isomorphism. Otherwise, Duplicator wins.
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Back-and-Forth Systems

Formal definition of winning strategy:

An n-round winning strategy for the Duplicator on A, a and B,b is
a sequence of non-empty sets of partial isomorphisms (Fi : i < n)
such that (a 7→ b) ∈ F0 and

1. Forth: For every i < n − 1, every f ∈ Fi , and every a ∈ A,
there exists g ∈ Fi+1 with a ∈ Dom(g) and f ⊆ g .

2. Back: For every i < n − 1, every f ∈ Fi , and every b ∈ B ,
there exists g ∈ Fi+1 with b ∈ Ran(g) and f ⊆ g .

A, a ≡EFn

B,b: there is an n-round winning strategy.



Indistinguishability vs Games

Ehrenfeucht-Fräıssé Theorem:

A, a ≡FOn

B,b if and only if A, a ≡EFn
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Indistinguishability vs Games

Ehrenfeucht-Fräıssé Theorem:

A, a ≡FOn

B,b if and only if A, a ≡EFn

B,b

⇐=: Duplicator’s strategy makes the structures indistinguishable.

=⇒: Use the finiteness of FOn
k to note that:

For every A, a and every n ∈ N,
there exists an FO-formula φn

A,a(x) such that:

B |= φn
A,a(x/b) if and only if A, a ≡FOn

B,b.

Then the strategy for the Duplicator is built inductively on n:

1. use witness to B |= φn
A,a(x/b) to duplicate first move in A.

2. use witness to A |= φn
B,b(x/a) to duplicate first move in B.



Using games to prove undefinability results

Example:

Let Q = “Given a graph, does it have an even number of vertices?”
How would you show that it is not FO5-definable?



Using games to prove undefinability results

Example:

Let Q = “Given a graph, does it have an even number of vertices?”
How would you show that it is not FO5-definable?

Play on a 5-clique and a 6-clique.



Using games to prove undefinability results

General method:

Let Q be a Boolean query on C. Let n ∈ N be a quantifier rank.

Are there A and B in C such that:

Q(A) 6= Q(B) and A ≡FOn

B ?

Fact:

YES =⇒ Q is not FOn-definable on C.
NO =⇒ Q is FOn-definable on C.

If they do not exist, then Q ≡
∨

A∈Q φ
n
A

which is a finite disjunction (up to equivalence).



Wrap-up about types and games

Good characterization:

Games and definability are somehow dual to each other.

Generality and flexibility:

1. SO-moves: Spoiler and Duplicator choose relations.

2. existential fragments: Spoiler plays only on the left.

3. positive fragments: Referee checks for homomorphisms.

Other parameters:

1. arity: in monadic SO (MSO), all SO-moves are sets.

2. width: maximum number of free variables of the subformulas.



Locality of first-order logic

Gaifman (or primal) graph:

For a structure A, let G (A) be the undirected graph where:

• vertices: the universe of A,

• edges: pairs of points that appear together in some tuple of A.

Neighborhoods:

For a structure A, a point a ∈ A, and radius r ∈ N, define:

NA
r (a) = {a′ ∈ A : dG(A)(a, a

′) ≤ r}.

Note:

“x ∈ Nr (y)” and “d(x , y) > 2r” are FO-definable.



Gaifman Theorem

Local formulas:

Formulas with all quantifiers of the form:

(∃y ∈ Nr (xi )) and (∀y ∈ Nr (xi )).

Basic local sentences:

(∃x1) · · · (∃xk)(
∧

i 6=j

d(xi , xj ) > 2r ∧ λ≤r (xi )).

Gaifman Locality Theorem:

Every first-order sentence is logically equivalent to a Boolean
combination of basic local sentences.



Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via (∃X1, . . . ,Xs)(ψ).
Let r be a bound on the locality radius of FO part ψ.
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Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via (∃X1, . . . ,Xs)(ψ).
Let r be a bound on the locality radius of FO part ψ.

STEP 1: Color a very big cicle with the existential SO-quantifiers:

STEP 2: Split two most-popular 4r -neighborhoods.
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Part II

RANDOM STRUCTURES



Erdös-Renyi random graphs

The G (n, p) model:

Graph G = (V ,E ) with V = {1, . . . , n} generated as follows:

Put {u, v} in E with probability p,
independently for each u, v ∈ V with u 6= v .

Typical values of p:

p = 1/2 [uniform distribution],

p = c/n for c ≥ 0 [appearence of giant component],

p = ln(n)/n + c/n for c ≥ 0, [connectivity]

p = n−p/q for p, q ∈ N [appearance of small subgraphs].



Some typical random graph statements

At p = 1/2:

Almost all graphs are connected

Almost all graphs are Hamiltonian

Almost all graphs are k-extendible

Almost all graphs are 2 log(n)-Ramsey

...



0-1 law for first-order logic

0-1 law for first-order logic

Let φ be a first-order sentence in the language of graphs.
If G ∼ G (n, 1/2), then as n → ∞

either almost all graphs satisfy φ
or almost all graphs satisfy ¬φ.

In other words:

either limn→∞ Pr[G |= φ] = 0
or limn→∞ Pr[G |= φ] = 1.



How is this done?

Three known proofs:

1. Compactness argument through the Rado graph

2. Enhrenfeucht-Fräıssé game

3. Quantifier elimination



Quantifier elimination proof

Goal:

Show that for every first-order formula φ(x1, . . . , xk)
and almost every graph G the following holds:

There exists F : TYPES0
k → {0, 1} such that

for every u ∈ V k it holds that

G |= φ[u] ⇐⇒ F (tp0
k(G , u)) = 1.

Note:

If φ is a sentence (k = 0), then F ∈ {0, 1}, and
either almost every G satisfies φ
or almost every G satisfies ¬φ.



Quantifier elimination proof (cntd)

Goal by induction on number of quantifiers in prenex φ:

1. If φ is quantifier-free, clear.

2. If φ = (∃xk)(ψ(x1, . . . , xk−1, xk)), let Fψ be given by I.H.

Fφ(t) :=

{

1 if there exists t ′ ⊇ t such that Fψ(t ′) = 1,
0 if for every t ′ ⊇ t we have Fψ(t ′) = 0.

Key property of almost every graph (k-extendibility):

For every u ∈ V k and every t ′ ∈ TYPES0
k+1:

If t ′ ⊇ tp0
k(G , u) and t ′ is realizable,

then there is v ∈ V with t ′ = tp0
k(G , u, v).



Ramifications and extensions

Other measures:

1. p = n−α for 0 < α < 1: zero-one law holds iff α is irrational,

2. p = c/n for c ≥ 0: convergence law to ce−c , 1/c + ee−c
, etc.

Other classes of structures:

1. directed graphs, relational structures, unary functions,

2. Kk -free graphs, etc.

Other logics:

1. Fixed-point logics, infinitary logics with finitely many variables,

2. Fragments of existential second-order logic (e.g. SNP), etc.

3. First-order logic with the parity quantifier.



FO with parity quantifier

Parity quantifier:

(⊕u)(φ(u)) : the number of u for which φ(u) holds is odd.

Note:

(⊕ u, v)(φ(u, v)) ≡ (⊕u)(⊕v)(φ(u, v))

Example:

(⊕ u, v ,w)(Euv ∧ Evw ∧ Ewu)



Why-on-earth?

Why-on-earth?

How well can FO and FO[⊕] formulas be a approximated
by low-degree polynomials over GF(2)?

(⊕ a, b, c)(Eab ∧ Ebc ∧ Eca)

vs.
∑

a∈V

∑

b∈V

∑

c∈V

xabxbcxca mod 2



Why-on-earth? (contd)

Previously known result:

Razborov-Smolensky Theorem:

For every F = Fn : {0, 1}(
n
2) → {0, 1} in FO[⊕] (indeed AC0[⊕]),

there exists a multivariate polynomial P over GF(2) such that:

1. deg(P) = log(n)Θ(1),

2. PrG∼G(n,1/2)[F (G ) = P(G )] ≥ 1 − 2− log(n)Θ(1)
.



Why-on-earth? (cntd)

Recent result:

Kolaitis-Kopparty Theorem:

For every F = Fn : {0, 1}(
n
2) → {0, 1} in FO[⊕] (but not AC0[⊕]),

there exists a multivariate polynomial P over GF(2) such that:

1. deg(P) = Θ(1),

2. PrG∼G(n,1/2)[F (G ) = P(G )] ≥ 1 − 2−Ω(n).

Moral:

Exploit the uniformity of FO[⊕]
and its structure as a logic
to get stronger parameters.



Modular convergence law

Two ways the 0-1 law for FO[⊕] fails on G (n, 1/2):

1. (⊕u)(u = u) does not converge (it alternates),

2. (⊕u1, . . . , uk)(H(u1, . . . , uk)) converges to 1/2 (if H rigid).

Indeed, (if H and H ′ are rigid)

3. (⊕ u)(H(u)) ∧ (⊕ v)(H ′(v)) converges to 1/4.



Modular convergence law (cntd)

Modular Convergence Law Theorem:

Let φ be an FO[⊕] sentence in the language of graphs.
If G ∼ G (2n, 1/2) and H ∼ G (2n + 1, 1/2), then there exist
constants a0, a1 ∈ [0, 1] such that

limn→∞ Pr[G |= φ] = a0

limn→∞ Pr[H |= φ] = a1.



How is this done?

Quantifier elimination:

Show that for every first-order formula φ(x1, . . . , xk)
and almost every graph G the following holds:

There exists F : TYPES0
k × {0, 1}CONNc

k → {0, 1} such that
for every u ∈ V k it holds that

G |= φ[u] ⇐⇒ F (tp0
k(G , u), freqc

k(G , u)) = 1.

Estimation of subgraph frequencies mod 2:

Distribution of freqc
0(G ) is 2−Ω(n)-close to uniform.

Proof uses tools from discrete analysis:
Gowers norms over finite fields.



More Why-on-earth?

Ambitious:

Extension to a logic that can check independent sets of log size?
Related to getting polynomial-time constructible Ramsey-graphs.
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Part III

ALGORITHMIC META-THEOREMS



Decision problems

Setup:

A class of structures C.
A class of formulas Φ.

Model Checking Problem:

Given φ in Φ and A in C, does A |= φ?

Note:

For Φ = FO and C = STRfin(E ),
the problem is solvable in time |A|O(|φ|).



Running examples

Dominating set of size at most k:

(∃v1) · · · (∃vk)(∀u)(Euv1 ∨ · · · ∨ Euvk)

Feedback vertex-set of size at most k:

(∃v1) · · · (∃vk)(connected(v1, . . . , vk) ∧ acyclic(v1, . . . , vk))

where:

1. connected(v1, . . . , vk) = (∀x , y)(
∧

i x 6= vi ∧
∧

i y 6= vi → · · · ,
2. acyclic(v1, . . . , vk) = · · · exercise.



Treewidth graphically
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Tree-like graphs

Tree-decompositions:

A tree-decomposition of a graph G = (V ,E ) is a tree T such that:

1. every node of T is labeled by a subset of V (the bags),

2. every edge in E is contained in some bag,

3. for every v ∈ V , the set of nodes of T whose bags contain v

induces a connected substree of T .

Definition of treewidth:

• the width of T is the size of the largest bag (−1),

• tw(G ) = min{k : G has a tree-decomposition of width k}.

• tw(A) = tw(G (A)).



Courcelle Theorem

Courcelle Theorem:

If every structure in C has tree-width less than k,
then there exists an algorithm that:

given a structure A ∈ C and a sentence φ ∈ MSO,
determines whether A |= φ in time

f (|φ|, k) · |A|,

where f is a computable function.



How is this done?

Given:

Let φ be an MSO-sentence of quantifier rank q.
Let A be a structure of treewidth less than k.

Subgoal:

Build B such that B ≡q
MSO A and |B| ≤ f (|φ|, k).

Slogan:

B is a miniaturized version of A.



How is this done? (cntd)

Algorithm:

1. Compute a tree-decomposition of A of width less than k,

2. Use it to build B ≡q
MSO A with |B| ≤ f (|φ|, k),

3. Evaluate B |= φ in time independent of |A|.

Note:

Computing a tree-decomposition of width less than k

is solvable in time 2poly(k) · |A|.



Construction of miniaturized version

Brute force construction of all miniatures:

1. let σ be the vocabulary of φ;
2. put all σ-structures with universe in {1, . . . , k} in E ;
3. For every A, a of the form:

,

A A10

aA

where A0,A1 ∈ E and a ∈ Ak has A0 ∩ A1 ⊆ a,
if A, a 6≡q

MSO B,b for every B,b with B ∈ E and b ∈ Bk ,
add A to E ;

4. repeat until E is unchanged.



Construction of miniaturized version (cntd)

Key property 1:

Iteration stops after ≤ f (|φ|, k) iterations:
a new ≡q

MSO-k-type is added at each iteration.

Key property 2:

If tw(A) < k, its ≡q
MSO-k-type is represented in E :

A is built from size k structures through k-bounded unions.

�



Example application of Courcelle Theorem

Feedback vertex-set of size at most k:

For every fixed w ≥ 1 and k ≥ 1, there exists a linear-time
algorithm to decide FVS(G ) ≤ k on graphs G with tw(G ) < w .

But wait a second:

If indeed FVS(G ) ≤ k, then tw(G ) < k + 1.

Linear time algorithm working on all graphs:

1. check if twG < k + 1 in time 2poly(k) · |G |;
2. if not, stop and return “NO”;
3. if yes, run Courcelle Theorem in time f (|φk |, k + 1) · |G |.



Optimization problems

Setup:

A class of structures C.
A class of formulas Φ with a free set-variable.

Minimization Problem:

Given φ(X ) in Φ and A in C,
find X ⊆ A of minimum size

such that A |= φ(X ), if it exists.

Note:

For Φ = FO and C = STRfin(E ),
the problem is solvable in 2|A| · |A||φ|.



Running examples

Minimum Dominating Set:

φ(X ) = (∀u)(∃v)(Euv ∧ Xv).

Maximum Independent Set:

φ(X ) = (∀u, v)(Xu ∧ Xv → ¬Euv).



Extended Courcelle Theorem

Extended Courcelle Theorem:

If every structure in C has tree-width less than k,
then there exists an algorithm that:

given a structure A ∈ C and a formula φ(X ) ∈ MSO,
finds the optimum to optXφ(X ) in time

f (|φ|, k) · |A|,

where f is a computable function.



Larger classes of structures?

NP-hard for planar graphs:

Computing the maximum independent set
stays NP-hard on planar graphs.

Let’s be satisfied with approximations...



Approximation algorithms

Dawar-Grohe-Kreutzer-Schweikardt Theorem:

If every graph in C excludes Kk as a minor,
then there exists an algorithm that:

given a φ(X ) ∈ FO that is monotone in X and a graph G in C,
finds X ⊆ V with cardinality within (1 ± ǫ)-factor from optXφ(X )
in time

f (|φ|, k, 1/ǫ) · |G |g(|φ|),

where f and g are computable functions.



How is this done?

Given:

Let φ(X ) be a FO-formula that is positive in X .
Let G be a graph in the class C; let us say a planar graph.

Fact:

On planar graphs, r -neighborhoods have treewidth ≤ 3r .
On planar graphs, d-rings have treewidth ≤ 3d .

v

r
d



How is this done? (cntd)

Hint of algorithm:

Write φ(X ) in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

ψ≤r (a1,X ) ∧ · · · ∧ ψ≤r (as ,X )

for every possible a1, . . . , as (not necessarily far from each other).
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More details

1. split G into rings of width d = Θ( r
ǫ + r), centered at v0 (say),

2. use treewidth of rings to solve minX ψ
≤r (at ,X ) on each ring,

3. use monotonicity of ψ≤r (ai ,X ) to get feasible solutions,

4. use k = Θ( r
ǫ ) shifted quasi-partitions to get X1, . . . ,Xk ,

5. return the smallest Xℓ.



Analysis

|Xℓ| ≤
1

k

k
∑

i=1

|Xi | ≤
1

k

k
∑

i=1

∑

j≥0

|Xij | ≤
1

k

k
∑

i=1

∑

j≥0

|Rij ∩ Xmin|

and since each vertex appears in at most d rings Rij :

≤
1

k
· d · |Xmin| ≤ (1 + ǫ)|Xmin|.



Underview of the talk

1. THE BASIC THEORY X

2. RANDOM STRUCTURES X

3. ALGORITHMIC META-THEOREMS X



APPROPRIATE CREDIT

PART I. THE BASIC THEORY

• Fräıssé invented back-and-forth systems (1950).

• Ehrenfeucht invented the games (1961).

• Gaifman locality theorem: Gaifman (1982).

• Connectivity not in existential MSO: originally Fagin (1975).

• Proof here: follows Fagin, Stockmeyer and Vardi (1995).



APPROPRIATE CREDIT (CNTD)

PART II. RANDOM STRUCTURES

• 0-1 law for FO at p = 1/2: independently Glebskii, Kogan,
Liogonki and Talanov (1969) and Fagin (1976).

• 0-1 law for FO at p = n−α: Shelah and Spencer (1988).

• convergence law for FO at p = c/n: Lynch (1992).

• 0-1 law for stronger logics at p = 1/2: Blass, Gurevich,
Kozen, Kolaitis, Vardi (1980’s).

• Razborov-Smolensky Theorem: Razborov and Smolensky
(1987).

• modular convergence law for FO[⊕]: Kolaitis and Kopparty
(2010).



APPROPRIATE CREDIT

PART III. ALGORITHMIC META-THEOREMS

• Notion of treewidth: several groups, notably Robertson and
Seymour (1980’s).

• Courcelle Theorem: Courcelle (1990).

• Application to feedback vertex-set: folklore (Flum and Grohe
book).

• Dawar et al. Theorem: Dawar, Grohe, Kreutzer and
Schweikardt (2006), building on Baker (1994) and Grohe
(2003).
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• Grädel, Kolaitis, Libkin, Spencer, Vardi, Venema, Weinstein.
Finite Model Theory and its Applications. Springer, 2007.

• Flum and Grohe. Parameterized Complexity. Springer,
2006.


