A Why-on-Earth Tutorial on Finite Model Theory

Albert Atserias
Universitat Poliècnica de Catalunya
Barcelona, Spain

June 2011

Overview of the talk

1. THE BASIC THEORY
2. RANDOM STRUCTURES
3. ALGORITHMIC META-THEOREMS

Part I

THE BASIC THEORY

Structures

Vocabulary:

Relation and function symbols R_{1}, \ldots, R_{r} and f_{1}, \ldots, f_{s}, each with an associated arity (unary, binary, ternary, ...).

Structure:

$$
\mathbf{M}=\left(M, R_{1}^{\mathbf{M}}, \ldots, R_{r}^{\mathbf{M}}, f_{1}^{\mathbf{M}}, \ldots, f_{s}^{\mathbf{M}}\right)
$$

Terminology:

1. M is the universe of \mathbf{M},
2. R_{i}^{M} and f_{i}^{M} are the interpretations of R_{i} and f_{i},

Examples

Undirected loopless graphs $G=(V, E)$:

1. V is a set,
2. $E \subseteq V^{2}$ is a binary relation,
3. edge relation is symmetric and irreflexive.

Ordered rings and fields $\mathbb{F}=(F, \leq,+, \cdot, 0,1)$:

1. F is a set,
2. $\leq \subseteq F^{2}$ is a binary relation,
3. $+: F^{2} \rightarrow F$ and $: F^{2} \rightarrow F$ are binary operations,
4. $0 \in F$ and $1 \in F$ are constants (0 -ary operations),
5. axioms of ordered ring (or field) are satisfied.

Proviso

Finite relational vocabularies and structures:

1. vocabulary is relational if it contains no function symbols,
2. structure is finite if M is finite.

Provisos:

> From now on, all our structures will be finite, over finite relational vocabularies.

Killed functions?:
Functions are represented as relations, by their graphs.

First-order logic: syntax

First-order variables:

x_{1}, x_{2}, \ldots intended to range over the points of the universe.
Formulas:

- $x_{i_{1}}=x_{i_{2}}$ and $R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- $x_{i_{1}} \neq x_{i_{2}}$ and $\neg R_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ are formulas,
- if φ and ψ are formulas, so is $(\varphi \wedge \psi)$,
- if φ and ψ are formulas, so is $(\varphi \vee \psi)$,
- if φ and ψ are formulas, so is $(\varphi \rightarrow \psi)$,
- if φ is a formula, so is $\left(\exists x_{i}\right)(\varphi)$,
- if φ is a formula, so is $\left(\forall x_{i}\right)(\varphi)$.

First-order logic: semantics

Truth in a structure:

Let $\varphi(\mathbf{x})$ be a formula with free variables $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$. Let \mathbf{M} be a structure, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in M^{r}$.

$$
\mathbf{M} \models \varphi(\mathbf{x} / \mathbf{a})
$$

Example:

$$
\varphi(x):=(\forall y)(\exists z)(E(x, z) \wedge E(y, z))
$$

$\mathbf{G} \models \varphi(x / a)$

Second-order logic: syntax

Second-order variables:

X_{1}, X_{2}, \ldots intended to range over the relations on the universe.
Formulas:

- add $X_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ to the atomic formulas,
- add $\neg X_{i}\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$ to the negated atomic formulas,
- if φ is a formula, so is $\left(\exists X_{i}\right)(\varphi)$,
- if φ is a formula, so is $\left(\forall X_{i}\right)(\varphi)$.

Second-order logic: semantics

Truth in a structure:
Let $\varphi(\mathbf{X}, \mathbf{x})$ be a formula with free variables \mathbf{X} and \mathbf{x}.

$$
\mathbf{M} \models \varphi(\mathbf{X} / \mathbf{A}, \mathbf{x} / \mathbf{a})
$$

Definability and uniform definability

Definability:

Let $\phi(\mathbf{X}, \mathbf{x})$ be a first-order formula with free variables \mathbf{X} and \mathbf{x}. Let \mathbf{M} be a structure and let \mathcal{C} be a class of structures.

The relation defined by ϕ on \mathbf{M} is:

$$
\phi^{\mathbf{M}}=\{(\mathbf{A}, \mathbf{a}): \mathbf{M} \models \phi(\mathbf{X} / \mathbf{A}, \mathbf{x} / \mathbf{a})\} .
$$

The query defined by ϕ on \mathcal{C} is:

$$
\phi^{\mathcal{C}}=\left\{\phi^{\mathbf{A}}: \mathbf{A} \in \mathcal{C}\right\} .
$$

Note:

When ϕ is a sentence: $\phi^{\mathbf{A}}$ is identified with true or false. and therefore, $\phi^{\mathcal{C}}$ is identified with a subset of \mathcal{C}.

Examples

Given a graph, what are the vertices of degree one?:

$$
\phi(x)=(\exists y)(E x y \wedge(\forall z)(E x z \rightarrow z=y))
$$

Given a graph, is it connected?:

$$
\phi=(\forall x, y)(\forall X)(X x \wedge(\forall u, v)(E u v \wedge X u \rightarrow X v) \rightarrow X y) .
$$

Given a graph, what are its independent sets?:

$$
\phi(X)=(\forall x, y)(X x \wedge X y \rightarrow \neg E x y)
$$

Quantifier rank

Quantifier rank:

1. $\operatorname{qr}(\phi)=0$ if ϕ is atomic or negated atomic,
2. $\operatorname{qr}(\phi)=\max \{\operatorname{qr}(\psi), \operatorname{qr}(\theta)\}$ if $\phi=(\psi \vee \theta)$ or $\phi=(\psi \wedge \theta)$,
3. $\operatorname{qr}(\phi)=1+\operatorname{qr}(\psi)$ if $\phi=\left(\exists x_{i}\right)(\psi)$ or $\phi=\left(\forall x_{i}\right)(\psi)$,
4. $\operatorname{qr}(\phi)=1+\operatorname{qr}(\psi)$ if $\phi=\left(\exists X_{i}\right)(\psi)$ or $\phi=\left(\forall X_{i}\right)(\psi)$,

Finitely many formulas up to equivalence

Fixed rank formulas:
FO_{k}^{n} and SO_{k}^{n} : the set of all FO or SO-formulas with quantifier rank at most n and at most k free variables.

Key property of quantifier rank:
For every $n \in \mathbb{N}$ and $k \in \mathbb{N}$:
FO_{k}^{n} is finite up to logical equivalence, SO_{k}^{n} is finite up to logical equivalence.

Induction on n. Bound of the type $2^{2^{2}}$

Types

Types:

Let \mathbf{A} be a structure, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in A^{r}$. Let L be a fragment of first-order logic.

1. $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a})=\{\varphi(\mathbf{x}) \in L: \mathbf{A} \models \varphi(\mathbf{x} / \mathbf{a})\}$
2. $\operatorname{tp}_{L}(\mathbf{A})=\{\varphi \in L: \mathbf{A} \models \varphi\}$

Notation:

1. $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ stands for $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a}) \subseteq \operatorname{tp}_{L}(\mathbf{B}, \mathbf{b})$
2. $\mathbf{A}, \mathbf{a} \equiv{ }^{L} \mathbf{B}, \mathbf{b}$ stands for $\operatorname{tp}_{L}(\mathbf{A}, \mathbf{a})=\operatorname{tp}_{L}(\mathbf{B}, \mathbf{b})$

Meaning of Types

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

- when $L=$ \{all atomic formulas $\}$, it means the mapping $\left(a_{i} \mapsto b_{i}: i=1, \ldots, r\right)$ is a homomorphism between the substructures induced by \mathbf{a} and \mathbf{b}
- when $L=$ \{all atomic and negated atomic formulas\}, it means the mapping ($a_{i} \mapsto b_{i}: i=1, \ldots, r$) is an isomorphism between the substructures induced by \mathbf{a} and \mathbf{b}

Meaning of Types

What does $\mathbf{A}, \mathbf{a} \leq^{L} \mathbf{B}, \mathbf{b}$ mean?

- when $L=$ \{all formulas with at most one quantifier\}, it means the substructures induced by \mathbf{a} and \mathbf{b} are isomorphic and have the same types of extensions by one point
- when $L=\{$ all formulas with at most two quantifiers $\}$, it means the substructures induced by ...

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Ehrenfeucht-Fraïssé Games

Two players: Spoiler and Duplicator Two structures: A and B
Unlimited pebbles: p_{1}, p_{2}, \ldots and q_{1}, q_{2}, \ldots
An initial position: $\mathbf{a} \in A^{r}$ and $\mathbf{b} \in B^{r}$
Rounds:

Referee: Spoiler wins if at any round the mapping $p_{i} \mapsto q_{i}$ is not a partial isomorphism. Otherwise, Duplicator wins.

Back-and-Forth Systems

Formal definition of winning strategy:
An n-round winning strategy for the Duplicator on \mathbf{A}, \mathbf{a} and \mathbf{B}, \mathbf{b} is a sequence of non-empty sets of partial isomorphisms $\left(F_{i}: i<n\right)$ such that $(\mathbf{a} \mapsto \mathbf{b}) \in F_{0}$ and

1. Forth: For every $i<n-1$, every $f \in F_{i}$, and every $a \in A$, there exists $g \in F_{i+1}$ with $a \in \operatorname{Dom}(g)$ and $f \subseteq g$.
2. Back: For every $i<n-1$, every $f \in F_{i}$, and every $b \in B$, there exists $g \in F_{i+1}$ with $b \in \operatorname{Ran}(g)$ and $f \subseteq g$.
$\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{EF}}{ }^{n} \mathbf{B}, \mathbf{b}$: there is an n-round winning strategy.

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$
\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{FO}^{n}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{EF}^{n}} \mathbf{B}, \mathbf{b}
$$

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$
\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{FO}^{n}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{EF}^{n}} \mathbf{B}, \mathbf{b}
$$

\Longleftarrow : Duplicator's strategy makes the structures indistinguishable.

Indistinguishability vs Games

Ehrenfeucht-Fraïssé Theorem:

$$
\mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{FO}^{n}} \mathbf{B}, \mathbf{b} \text { if and only if } \mathbf{A}, \mathbf{a} \equiv{ }^{\mathrm{EF}^{n}} \mathbf{B}, \mathbf{b}
$$

\Longleftarrow : Duplicator's strategy makes the structures indistinguishable.
\Longrightarrow : Use the finiteness of FO_{k}^{n} to note that:
For every \mathbf{A}, a and every $n \in \mathbb{N}$, there exists an FO-formula $\phi_{\mathbf{A}, \mathbf{a}}^{n}(\mathbf{x})$ such that:

$$
\mathbf{B} \models \phi_{\mathbf{A}, \mathbf{a}}^{n}(\mathbf{x} / \mathbf{b}) \text { if and only if } \mathbf{A}, \mathbf{a} \equiv \mathrm{FO}^{n} \mathbf{B}, \mathbf{b} .
$$

Then the strategy for the Duplicator is built inductively on n :

1. use witness to $\mathbf{B} \models \phi_{\mathbf{A}, \mathbf{a}}^{n}(\mathbf{x} / \mathbf{b})$ to duplicate first move in \mathbf{A}.
2. use witness to $\mathbf{A} \models \phi_{\mathbf{B}, \mathbf{b}}^{n}(\mathbf{x} / \mathbf{a})$ to duplicate first move in \mathbf{B}.

Using games to prove undefinability results

Example:

Let $Q=$ "Given a graph, does it have an even number of vertices?" How would you show that it is not FO^{5}-definable?

Using games to prove undefinability results

Example:

Let $Q=$ "Given a graph, does it have an even number of vertices?" How would you show that it is not FO^{5}-definable?

Play on a 5-clique and a 6-clique.

Using games to prove undefinability results

General method:

Let Q be a Boolean query on \mathcal{C}. Let $n \in \mathbb{N}$ be a quantifier rank.
Are there \mathbf{A} and \mathbf{B} in \mathcal{C} such that:

$$
Q(\mathbf{A}) \neq Q(\mathbf{B}) \text { and } \mathbf{A} \equiv{ }^{\mathrm{FO}^{n}} \mathbf{B} \quad ?
$$

Fact:
YES $\Longrightarrow Q$ is not FO^{n}-definable on \mathcal{C}.
$\mathrm{NO} \quad \Longrightarrow \quad Q$ is FO^{n}-definable on \mathcal{C}.
If they do not exist, then $Q \equiv \bigvee_{\mathbf{A} \in Q} \phi_{\mathbf{A}}^{n}$ which is a finite disjunction (up to equivalence).

Wrap-up about types and games

Good characterization:

Games and definability are somehow dual to each other.

Generality and flexibility:

1. SO-moves: Spoiler and Duplicator choose relations.
2. existential fragments: Spoiler plays only on the left.
3. positive fragments: Referee checks for homomorphisms.

Other parameters:

1. arity: in monadic SO (MSO), all SO-moves are sets.
2. width: maximum number of free variables of the subformulas.

Locality of first-order logic

Gaifman (or primal) graph:
For a structure \mathbf{A}, let $G(\mathbf{A})$ be the undirected graph where:

- vertices: the universe of \mathbf{A},
- edges: pairs of points that appear together in some tuple of \mathbf{A}.

Neighborhoods:

For a structure \mathbf{A}, a point $a \in A$, and radius $r \in \mathbb{N}$, define:

$$
N_{r}^{\mathbf{A}}(a)=\left\{a^{\prime} \in A: d_{G(\mathbf{A})}\left(a, a^{\prime}\right) \leq r\right\} .
$$

Note:

$$
\text { " } x \in N_{r}(y) \text { " and " } d(x, y)>2 r \text { " are FO-definable. }
$$

Gaifman Theorem

Local formulas:

Formulas with all quantifiers of the form:

$$
\left(\exists y \in N_{r}\left(x_{i}\right)\right) \text { and }\left(\forall y \in N_{r}\left(x_{i}\right)\right)
$$

Basic local sentences:

$$
\left(\exists x_{1}\right) \cdots\left(\exists x_{k}\right)\left(\bigwedge_{i \neq j} d\left(x_{i}, x_{j}\right)>2 r \wedge \lambda^{\leq r}\left(x_{i}\right)\right) .
$$

Gaifman Locality Theorem:

Every first-order sentence is logically equivalent to a Boolean combination of basic local sentences.

Example application of Gaifman locality

Graph connectivity is not in existential MSO:
Suppose it is via $\left(\exists X_{1}, \ldots, X_{s}\right)(\psi)$.
Let r be a bound on the locality radius of FO part ψ.

Example application of Gaifman locality

Graph connectivity is not in existential MSO:
Suppose it is via $\left(\exists X_{1}, \ldots, X_{s}\right)(\psi)$.
Let r be a bound on the locality radius of FO part ψ.
STEP 1: Color a very big cicle with the existential SO-quantifiers:

Example application of Gaifman locality

Graph connectivity is not in existential MSO:
Suppose it is via $\left(\exists X_{1}, \ldots, X_{s}\right)(\psi)$.
Let r be a bound on the locality radius of FO part ψ.
STEP 1: Color a very big cicle with the existential SO-quantifiers:
STEP 2: Split two most-popular 4r-neighborhoods.

Overview of the talk

1. THE BASIC THEORY \checkmark
2. RANDOM STRUCTURES
3. ALGORITHMIC META-THEOREMS

Part II

RANDOM STRUCTURES

Erdös-Renyi random graphs

The $G(n, p)$ model:

Graph $G=(V, E)$ with $V=\{1, \ldots, n\}$ generated as follows:
Put $\{u, v\}$ in E with probability p, independently for each $u, v \in V$ with $u \neq v$.

Typical values of p :

$$
\begin{aligned}
& p=1 / 2 \text { [uniform distribution], } \\
& p=c / n \text { for } c \geq 0 \text { [appearence of giant component], } \\
& p=\ln (n) / n+c / n \text { for } c \geq 0 \text {, [connectivity] } \\
& p=n^{-p / q} \text { for } p, q \in \mathbb{N} \text { [appearance of small subgraphs]. }
\end{aligned}
$$

Some typical random graph statements

At $p=1 / 2$:
Almost all graphs are connected
Almost all graphs are Hamiltonian
Almost all graphs are k-extendible Almost all graphs are $2 \log (n)$-Ramsey

0-1 law for first-order logic

0-1 law for first-order logic
Let ϕ be a first-order sentence in the language of graphs.
If $G \sim G(n, 1 / 2)$, then as $n \rightarrow \infty$
either almost all graphs satisfy ϕ
or almost all graphs satisfy $\neg \phi$.
In other words:
either $\lim _{n \rightarrow \infty} \operatorname{Pr}[G \models \phi]=0$
or $\lim _{n \rightarrow \infty} \operatorname{Pr}[G \models \phi]=1$.

How is this done?

Three known proofs:

1. Compactness argument through the Rado graph
2. Enhrenfeucht-Fraïssé game
3. Quantifier elimination

Quantifier elimination proof

Goal:

Show that for every first-order formula $\phi\left(x_{1}, \ldots, x_{k}\right)$ and almost every graph G the following holds:

There exists $F: \operatorname{TYPES}_{k}^{0} \rightarrow\{0,1\}$ such that for every $\bar{u} \in V^{k}$ it holds that

$$
G \models \phi[\bar{u}] \Longleftrightarrow F\left(\operatorname{tp}_{k}^{0}(G, \bar{u})\right)=1
$$

Note:
If ϕ is a sentence ($k=0$), then $F \in\{0,1\}$, and either almost every G satisfies ϕ
or almost every G satisfies $\neg \phi$.

Quantifier elimination proof (cntd)

Goal by induction on number of quantifiers in prenex ϕ :

1. If ϕ is quantifier-free, clear.
2. If $\phi=\left(\exists x_{k}\right)\left(\psi\left(x_{1}, \ldots, x_{k-1}, x_{k}\right)\right)$, let F_{ψ} be given by I.H.

$$
F_{\phi}(t):= \begin{cases}1 & \text { if there exists } t^{\prime} \supseteq t \text { such that } F_{\psi}\left(t^{\prime}\right)=1 \\ 0 & \text { if for every } t^{\prime} \supseteq t \text { we have } F_{\psi}\left(t^{\prime}\right)=0\end{cases}
$$

Key property of almost every graph (k-extendibility):

$$
\text { For every } \bar{u} \in V^{k} \text { and every } t^{\prime} \in \mathrm{TYPES}_{k+1}^{0} \text { : }
$$

$$
\text { If } t^{\prime} \supseteq \operatorname{tp}_{k}^{0}(G, \bar{u}) \text { and } t^{\prime} \text { is realizable, }
$$

$$
\text { then there is } v \in V \text { with } t^{\prime}=\operatorname{tp}_{k}^{0}(G, \bar{u}, v) \text {. }
$$

Ramifications and extensions

Other measures:

1. $p=n^{-\alpha}$ for $0<\alpha<1$: zero-one law holds iff α is irrational,
2. $p=c / n$ for $c \geq 0$: convergence law to $c e^{-c}, 1 / c+e^{e^{-c}}$, etc.

Other classes of structures:

1. directed graphs, relational structures, unary functions,
2. K_{k}-free graphs, etc.

Other logics:

1. Fixed-point logics, infinitary logics with finitely many variables,
2. Fragments of existential second-order logic (e.g. SNP), etc.
3. First-order logic with the parity quantifier.

FO with parity quantifier

Parity quantifier:

$(\oplus u)(\phi(u))$: the number of u for which $\phi(u)$ holds is odd.

Note:

$$
(\oplus u, v)(\phi(u, v)) \equiv(\oplus u)(\oplus v)(\phi(u, v))
$$

Example:

$$
(\oplus u, v, w)(E u v \wedge E v w \wedge E w u)
$$

Why-on-earth?

Why-on-earth?

How well can FO and $\mathrm{FO}[\oplus]$ formulas be a approximated by low-degree polynomials over GF(2)?

$$
(\oplus a, b, c)(E a b \wedge E b c \wedge E c a)
$$

VS.

$$
\sum_{a \in V} \sum_{b \in V} \sum_{c \in V} x_{a b} x_{b c} x_{c a} \quad \bmod 2
$$

Why-on-earth? (contd)

Previously known result:

Razborov-Smolensky Theorem:

For every $F=F_{n}:\{0,1\}\binom{n}{2} \rightarrow\{0,1\}$ in $\mathrm{FO}[\oplus]$ (indeed $\mathrm{AC}^{0}[\oplus]$), there exists a multivariate polynomial P over GF(2) such that:

1. $\operatorname{deg}(P)=\log (n)^{\Theta(1)}$,
2. $\operatorname{Pr}_{G \sim G(n, 1 / 2)}[F(G)=P(G)] \geq 1-2^{-\log (n)^{\Theta(1)}}$.

Why-on-earth? (cntd)

Recent result:

Kolaitis-Kopparty Theorem:
For every $F=F_{n}:\{0,1\}\left(\begin{array}{c}\binom{n}{2}\end{array} \rightarrow\{0,1\}\right.$ in $\mathrm{FO}[\oplus]$ (but not $\mathrm{AC}^{0}[\oplus]$), there exists a multivariate polynomial P over GF(2) such that:

$$
\begin{aligned}
& \text { 1. } \operatorname{deg}(P)=\Theta(1) \text {, } \\
& \text { 2. } \operatorname{Pr}_{G \sim G(n, 1 / 2)}[F(G)=P(G)] \geq 1-2^{-\Omega(n)}
\end{aligned}
$$

Moral:
Exploit the uniformity of $\mathrm{FO}[\oplus]$ and its structure as a logic to get stronger parameters.

Modular convergence law

Two ways the $\mathbf{0 - 1}$ law for $\mathrm{FO}[\oplus]$ fails on $G(n, 1 / 2)$:

1. $(\oplus u)(u=u)$ does not converge (it alternates),
2. $\left(\oplus u_{1}, \ldots, u_{k}\right)\left(H\left(u_{1}, \ldots, u_{k}\right)\right)$ converges to $1 / 2$ (if H rigid).

Indeed, (if H and H^{\prime} are rigid)
3. $(\oplus \bar{u})(H(\bar{u})) \wedge(\oplus \bar{v})\left(H^{\prime}(\bar{v})\right)$ converges to $1 / 4$.

Modular convergence law (cntd)

Modular Convergence Law Theorem:

Let ϕ be an $\mathrm{FO}[\oplus]$ sentence in the language of graphs. If $G \sim G(2 n, 1 / 2)$ and $H \sim G(2 n+1,1 / 2)$, then there exist constants $a_{0}, a_{1} \in[0,1]$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Pr}[G \models \phi]=a_{0} \\
& \lim _{n \rightarrow \infty} \operatorname{Pr}[H \models \phi]=a_{1} .
\end{aligned}
$$

How is this done?

Quantifier elimination:

Show that for every first-order formula $\phi\left(x_{1}, \ldots, x_{k}\right)$ and almost every graph G the following holds:

There exists $F: \operatorname{TYPES}_{k}^{0} \times\{0,1\}^{\text {CONN }_{k}^{c}} \rightarrow\{0,1\}$ such that for every $\bar{u} \in V^{k}$ it holds that

$$
G \models \phi[\bar{u}] \Longleftrightarrow F\left(\operatorname{tp}_{k}^{0}(G, \bar{u}), \operatorname{freq}_{k}^{c}(G, \bar{u})\right)=1
$$

Estimation of subgraph frequencies mod 2:
Distribution of $\operatorname{freq}_{0}^{c}(G)$ is $2^{-\Omega(n)}$-close to uniform.
Proof uses tools from discrete analysis:
Gowers norms over finite fields.

More Why-on-earth?

Ambitious:

Extension to a logic that can check independent sets of log size? Related to getting polynomial-time constructible Ramsey-graphs.

Overview of the talk

1. THE BASIC THEORY \checkmark
2. RANDOM STRUCTURES \checkmark
3. ALGORITHMIC META-THEOREMS

Part III

ALGORITHMIC META-THEOREMS

Decision problems

Setup:

A class of structures \mathcal{C}.
 A class of formulas Φ.

Model Checking Problem:

$$
\text { Given } \phi \text { in } \Phi \text { and } \mathbf{A} \text { in } \mathcal{C} \text {, does } \mathbf{A} \models \phi \text { ? }
$$

Note:
For $\Phi=\mathrm{FO}$ and $\mathcal{C}=\operatorname{STR}_{\text {fin }}(E)$, the problem is solvable in time $|\mathbf{A}|^{O(|\phi|)}$.

Running examples

Dominating set of size at most k :

$$
\left(\exists v_{1}\right) \cdots\left(\exists v_{k}\right)(\forall u)\left(E u v_{1} \vee \cdots \vee E u v_{k}\right)
$$

Feedback vertex-set of size at most k :

$$
\left(\exists v_{1}\right) \cdots\left(\exists v_{k}\right)\left(\operatorname{connected}\left(v_{1}, \ldots, v_{k}\right) \wedge \operatorname{acyclic}\left(v_{1}, \ldots, v_{k}\right)\right)
$$

where:

1. connected $\left(v_{1}, \ldots, v_{k}\right)=(\forall x, y)\left(\bigwedge_{i} x \neq v_{i} \wedge \bigwedge_{i} y \neq v_{i} \rightarrow \cdots\right.$,
2. $\operatorname{acyclic}\left(v_{1}, \ldots, v_{k}\right)=\cdots$ exercise.

Treewidth graphically

Treewidth graphically

Treewidth graphically

Tree-like graphs

Tree-decompositions:

A tree-decomposition of a graph $G=(V, E)$ is a tree T such that:

1. every node of T is labeled by a subset of V (the bags),
2. every edge in E is contained in some bag,
3. for every $v \in V$, the set of nodes of T whose bags contain v induces a connected substree of T.

Definition of treewidth:

- the width of T is the size of the largest bag (-1),
- $\operatorname{tw}(G)=\min \{k: G$ has a tree-decomposition of width $k\}$.
- $\operatorname{tw}(\mathbf{A})=\operatorname{tw}(G(\mathbf{A}))$.

Courcelle Theorem

Courcelle Theorem:

If every structure in \mathcal{C} has tree-width less than k, then there exists an algorithm that:
given a structure $\mathbf{A} \in \mathcal{C}$ and a sentence $\phi \in \mathrm{MSO}$, determines whether $\mathbf{A} \models \phi$ in time

$$
f(|\phi|, k) \cdot|\mathbf{A}|
$$

where f is a computable function.

How is this done?

Given:
Let ϕ be an MSO-sentence of quantifier rank q.
Let \mathbf{A} be a structure of treewidth less than k.

Subgoal:

$$
\text { Build } \mathbf{B} \text { such that } \mathbf{B} \equiv_{\mathrm{MSO}}^{q} \mathbf{A} \text { and }|\mathbf{B}| \leq f(|\phi|, k) .
$$

Slogan:
\mathbf{B} is a miniaturized version of \mathbf{A}.

How is this done? (cntd)

Algorithm:

1. Compute a tree-decomposition of \mathbf{A} of width less than k,
2. Use it to build $\mathbf{B} \equiv_{\text {MSO }}^{q} \mathbf{A}$ with $|\mathbf{B}| \leq f(|\phi|, k)$,
3. Evaluate $\mathbf{B} \models \phi$ in time independent of $|\mathbf{A}|$.

Note:
Computing a tree-decomposition of width less than k is solvable in time $2^{\operatorname{poly}(k)} \cdot|\mathbf{A}|$.

Construction of miniaturized version

Brute force construction of all miniatures:

1. let σ be the vocabulary of ϕ;
2. put all σ-structures with universe in $\{1, \ldots, k\}$ in \mathcal{E};
3. For every \mathbf{A}, a of the form:

where $\mathbf{A}_{0}, \mathbf{A}_{1} \in \mathcal{E}$ and $\mathbf{a} \in A^{k}$ has $A_{0} \cap A_{1} \subseteq \mathbf{a}$, if $\mathbf{A}, \mathbf{a} \not \equiv_{\mathrm{MSO}}^{q} \mathbf{B}, \mathbf{b}$ for every \mathbf{B}, \mathbf{b} with $\mathbf{B} \in \mathcal{E}$ and $\mathbf{b} \in B^{k}$, add \mathbf{A} to \mathcal{E};
4. repeat until \mathcal{E} is unchanged.

Construction of miniaturized version (cntd)

Key property 1 :
Iteration stops after $\leq f(|\phi|, k)$ iterations: a new $\equiv{ }_{\mathrm{MSO}}{ }^{-} k$-type is added at each iteration.

Key property 2:
If $\operatorname{tw}(\mathbf{A})<k$, its $\equiv_{\mathrm{MSO}}{ }^{q}-k$-type is represented in \mathcal{E} :
\mathbf{A} is built from size k structures through k-bounded unions.

Example application of Courcelle Theorem

Feedback vertex-set of size at most k :
For every fixed $w \geq 1$ and $k \geq 1$, there exists a linear-time algorithm to decide $\operatorname{FVS}(G) \leq k$ on graphs G with $\operatorname{tw}(G)<w$.

But wait a second:

$$
\text { If indeed } \operatorname{FVS}(G) \leq k, \text { then } \operatorname{tw}(G)<k+1
$$

Linear time algorithm working on all graphs:

1. check if tw $G<k+1$ in time $2^{\text {poly }(k)} \cdot|G|$;
2. if not, stop and return "NO";
3. if yes, run Courcelle Theorem in time $f\left(\left|\phi_{k}\right|, k+1\right) \cdot|G|$.

Optimization problems

Setup:

> A class of structures \mathcal{C}. A class of formulas Φ with a free set-variable.

Minimization Problem:

> Given $\phi(X)$ in Φ and \mathbf{A} in \mathcal{C}, find $X \subseteq A$ of minimum size such that $\mathbf{A} \models \phi(X)$, if it exists.

Note:
For $\Phi=\mathrm{FO}$ and $\mathcal{C}=\operatorname{STR}_{\text {fin }}(E)$, the problem is solvable in $2^{|\mathbf{A}|} \cdot|\mathbf{A}|^{|\phi|}$.

Running examples

Minimum Dominating Set:

$$
\phi(X)=(\forall u)(\exists v)(E u v \wedge X v)
$$

Maximum Independent Set:

$$
\phi(X)=(\forall u, v)(X u \wedge X v \rightarrow \neg E u v)
$$

Extended Courcelle Theorem

Extended Courcelle Theorem:

If every structure in \mathcal{C} has tree-width less than k, then there exists an algorithm that:
given a structure $\mathbf{A} \in \mathcal{C}$ and a formula $\phi(X) \in \mathrm{MSO}$, finds the optimum to $\operatorname{opt}_{X} \phi(X)$ in time

$$
f(|\phi|, k) \cdot|\mathbf{A}|,
$$

where f is a computable function.

Larger classes of structures?

NP-hard for planar graphs:
Computing the maximum independent set stays NP-hard on planar graphs.

Let's be satisfied with approximations...

Approximation algorithms

Dawar-Grohe-Kreutzer-Schweikardt Theorem:

If every graph in \mathcal{C} excludes K_{k} as a minor, then there exists an algorithm that:
given a $\phi(X) \in \mathrm{FO}$ that is monotone in X and a graph G in \mathcal{C}, finds $X \subseteq V$ with cardinality within $(1 \pm \epsilon)$-factor from $\operatorname{opt}_{X} \phi(X)$ in time

$$
f(|\phi|, k, 1 / \epsilon) \cdot|G|^{g(|\phi|)},
$$

where f and g are computable functions.

How is this done?

Given:

Let $\phi(X)$ be a FO-formula that is positive in X. Let G be a graph in the class \mathcal{C}; let us say a planar graph.

Fact:
On planar graphs, r-neighborhoods have treewidth $\leq 3 r$. On planar graphs, d-rings have treewidth $\leq 3 d$.

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

How is this done? (cntd)

Hint of algorithm:
Write $\phi(X)$ in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

$$
\psi^{\leq r}\left(a_{1}, X\right) \wedge \cdots \wedge \psi^{\leq r}\left(a_{s}, X\right)
$$

for every possible a_{1}, \ldots, a_{s} (not necessarily far from each other).

More details

1. split G into rings of width $d=\Theta\left(\frac{r}{\epsilon}+r\right)$, centered at v_{0} (say),
2. use treewidth of rings to solve $\min _{X} \psi^{\leq r}\left(a_{t}, X\right)$ on each ring,
3. use monotonicity of $\psi^{\leq r}\left(a_{i}, X\right)$ to get feasible solutions,
4. use $k=\Theta\left(\frac{r}{\epsilon}\right)$ shifted quasi-partitions to get X_{1}, \ldots, X_{k},
5. return the smallest X_{ℓ}.

Analysis

$$
\left|X_{\ell}\right| \leq \frac{1}{k} \sum_{i=1}^{k}\left|X_{i}\right| \leq \frac{1}{k} \sum_{i=1}^{k} \sum_{j \geq 0}\left|X_{i j}\right| \leq \frac{1}{k} \sum_{i=1}^{k} \sum_{j \geq 0}\left|R_{i j} \cap X_{\min }\right|
$$

and since each vertex appears in at most d rings $R_{i j}$:

$$
\leq \frac{1}{k} \cdot d \cdot\left|X_{\min }\right| \leq(1+\epsilon)\left|X_{\min }\right|
$$

Underview of the talk

1. THE BASIC THEORY \checkmark
2. RANDOM STRUCTURES \checkmark
3. ALGORITHMIC META-THEOREMS \checkmark

APPROPRIATE CREDIT

PART I. THE BASIC THEORY

- Fraïssé invented back-and-forth systems (1950).
- Ehrenfeucht invented the games (1961).
- Gaifman locality theorem: Gaifman (1982).
- Connectivity not in existential MSO: originally Fagin (1975).
- Proof here: follows Fagin, Stockmeyer and Vardi (1995).

APPROPRIATE CREDIT (CNTD)

PART II. RANDOM STRUCTURES

- 0-1 law for FO at $p=1 / 2$: independently Glebskii, Kogan, Liogonki and Talanov (1969) and Fagin (1976).
- 0-1 law for FO at $p=n^{-\alpha}$: Shelah and Spencer (1988).
- convergence law for FO at $p=c / n$: Lynch (1992).
- 0-1 law for stronger logics at $p=1 / 2$: Blass, Gurevich, Kozen, Kolaitis, Vardi (1980's).
- Razborov-Smolensky Theorem: Razborov and Smolensky (1987).
- modular convergence law for $\mathrm{FO}[\oplus]$: Kolaitis and Kopparty (2010).

APPROPRIATE CREDIT

PART III. ALGORITHMIC META-THEOREMS

- Notion of treewidth: several groups, notably Robertson and Seymour (1980's).
- Courcelle Theorem: Courcelle (1990).
- Application to feedback vertex-set: folklore (Flum and Grohe book).
- Dawar et al. Theorem: Dawar, Grohe, Kreutzer and Schweikardt (2006), building on Baker (1994) and Grohe (2003).

BOOKS

- Ebbinghaus and Flum. Finite Model Theory. Springer, first edition 1995, second edition 2006.
- Immerman. Descriptive Complexity. Springer, 1999.
- Libkin. Elements of Finite Model Theory. Springer, 2004.
- Grädel, Kolaitis, Libkin, Spencer, Vardi, Venema, Weinstein. Finite Model Theory and its Applications. Springer, 2007.
- Flum and Grohe. Parameterized Complexity. Springer, 2006.

