Convergence results for the indifference value based on the stability of BSDEs

Christoph Frei
CMAP, École Polytechnique, Paris
and
University of Alberta, Edmonton

www.cmap.polytechnique.fr/~frei
frei@cmap.polytechnique.fr

6th World Congress of the Bachelier Finance Society
Toronto, June 23, 2010
Overview

Indifference valuation

Brownian setting with variable correlation

Convergence problem?
Overview

Indifference valuation → BSDE

Characterization

Brownian setting with variable correlation

Convergence problem?
Overview

Indifference valuation

Brownian setting with variable correlation

Convergence problem?

BSDE

Characterization

BSDE methods

Convergence result for BSDEs

Christoph Frei

Convergence results for the indifference value
Indifference valuation

A convergence result for BSDEs

Applying the convergence result

Introduction

Overview

Indifference valuation

BSDE

Characterization

Brownian setting with variable correlation

Convergence problem?

BSDE methods

Convergence result for BSDEs

Application

Christoph Frei

Convergence results for the indifference value
Overview

Indifference valuation

Brownian setting with variable correlation

Convergence problem?

1. Part

BSDE

Characterization

BSDE methods

Application

Convergence result for BSDEs

Christoph Frei

Convergence results for the indifference value
Overview

1. Part
Indifference valuation
 Brownian setting with variable correlation
 Convergence problem?

2. Part
BSDE
 BSDE methods
 Convergence result for BSDEs

Introductions
A convergence result for BSDEs
Applying the convergence result

Christoph Frei
Convergence results for the indifference value
Overview

1. Part: Indifference valuation
 - Brownian setting with variable correlation
 - Convergence problem?

2. Part: BSDE
 - BSDE methods
 - Convergence result for BSDEs

3. Part: BSDE Characterization
 - Application

Christoph Frei

Convergence results for the indifference value
1. Indifference valuation
Financial market:

- Risk-free bank account yielding zero interest
- Risky asset with price process $S = (S_t)_{0 \leq t \leq T}$
- Financial product with payoff H at time T
- In mathematical terms, S is a semimartingale and H a random variable on some filtered probability space $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$.

Investor's utility if (s)he has capital $x \in \mathbb{R}$.

Assumption: The investor has an exponential utility function $U(x) = -\exp(-\gamma x)$, $x \in \mathbb{R}$, for a fixed $\gamma > 0$.

In mathematical terms, the investor's utility is $U(x) = \hat{U}(x) = -\exp(-\gamma x)$.

Christoph Frei
Financial market:
- Risk-free bank account yielding zero interest
- Risky asset with price process $S = (S_t)_{0 \leq t \leq T}$
- Financial product with payoff H at time T
- In mathematical terms, S is a semimartingale and H a random variable on some filtered probability space $(\Omega, \mathcal{F}, \mathcal{F} = (\mathcal{F}_t)_{0 \leq t \leq T}, P)$.

Problem formulation:
- Valuation of H based on the risk preferences of an investor
- Assumption: The investor has an exponential utility function $U(x) = -\exp(-\gamma x)$, $x \in \mathbb{R}$, for a fixed $\gamma > 0$
- $U(x) \triangleq$ Investor’s utility if (s)he has capital $x \in \mathbb{R}$.
The **indifference value** h of H is implicitly defined by

$$
\sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t \right) \right] = \sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t + H - h \right) \right],
$$

where \mathcal{A} is the set of admissible trading strategies.
Definition

The **indifference value** h of H is implicitly defined by

$$
\sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t \right) \right] = \sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t + H - h \right) \right],
$$

where \mathcal{A} is the set of admissible trading strategies.

The value h makes the investor indifferent (in terms of maximal expected utility) between buying H for the amount h and not buying H.
Definition

The **indifference value** h of H is implicitly defined by

$$
\sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t \right) \right] = \sup_{\vartheta \in \mathcal{A}} E \left[U \left(\int_0^T \vartheta_t \, dS_t + H - h \right) \right],
$$

where \mathcal{A} is the set of admissible trading strategies.

The value h makes the investor **indifferent** (in terms of maximal expected utility) between buying H for the amount h and not buying H.

source: www.myownproperty.co.uk
\[U(x) = -\exp(-\gamma x) \text{ for a fixed } \gamma > 0 \]

\[\Downarrow \text{ direct calculation} \]

The indifference value \(h \) is given by

\[h = \frac{1}{\gamma} \log \frac{V^0}{V^H}, \]

\[V^H := \inf_{\vartheta \in \mathcal{A}} E \left[\exp \left(-\int_0^T \gamma \vartheta_t \, dS_t - \gamma H \right) \right]. \]
$U(x) = -\exp(-\gamma x)$ for a fixed $\gamma > 0$

\downarrow direct calculation

The indifference value h is given by

$$h = \frac{1}{\gamma} \log \frac{V^0}{V^H},$$

$$V^H := \inf_{\vartheta \in \mathcal{A}} E\left[\exp\left(-\int_0^T \gamma \vartheta_t \, dS_t - \gamma H \right) \right].$$

\downarrow

The focus lies on V^H.

Christoph Frei
The underlying model:

- Two Brownian motions W and Y have constant instantaneous correlation ρ; i.e., $W = \rho Y + \sqrt{1 - \rho^2} Y^\perp$ for a Brownian motion Y^\perp independent from Y.

Example: Executive stock options
Manager receives options H.
Because of legal restrictions, (s)he can hedge H only partially by trading in a correlated stock or an index.
The underlying model:

- Two Brownian motions W and Y have constant instantaneous correlation ρ; i.e., $W = \rho Y + \sqrt{1 - \rho^2} Y_\perp$ for a Brownian motion Y_\perp independent from Y.
- The traded stock S is given by
 \[
 \frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t, \quad 0 \leq t \leq T, \quad S_0 > 0.
 \]
- Assumption: μ and σ are predictable with respect to $(Y_t)_{0 \leq t \leq T}$, the filtration generated by Y.
- The nontradable claim H is \mathcal{Y}_T-measurable.
The underlying model:

- Two Brownian motions \(W \) and \(Y \) have constant instantaneous correlation \(\rho \); i.e., \(W = \rho Y + \sqrt{1 - \rho^2} Y_{\perp} \)
 for a Brownian motion \(Y_{\perp} \) independent from \(Y \).
- The traded stock \(S \) is given by
 \[
 \frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t, \quad 0 \leq t \leq T, \quad S_0 > 0.
 \]
- Assumption: \(\mu \) and \(\sigma \) are predictable with respect to \((\mathcal{Y}_t)_{0 \leq t \leq T} \), the filtration generated by \(Y \).
- The nontradable claim \(H \) is \(\mathcal{Y}_T \)-measurable.
The underlying model:
- Two Brownian motions W and Y have constant instantaneous correlation ρ; i.e., $W = \rho Y + \sqrt{1 - \rho^2} Y_\perp$ for a Brownian motion Y_\perp independent from Y.
- The traded stock S is given by
 \[
 \frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t, \quad 0 \leq t \leq T, \quad S_0 > 0.
 \]
- Assumption: μ and σ are predictable with respect to $(Y_t)_{0 \leq t \leq T}$, the filtration generated by Y.
- The nontradable claim H is \mathcal{Y}_T-measurable.

Example: Executive stock options
- Manager receives options H.
- Because of legal restrictions, (s)he can hedge H only partially by trading in a correlated stock or an index.
Proposition (An explicit formula; Tehranchi 2004)

Under boundedness assumptions, one has

\[V^H = \left(E_{\widehat{P}} \left[\exp \left(-\gamma H - \frac{1}{2} \int_0^T \frac{\mu_t^2}{\sigma_t^2} \, dt \right)^{1-\rho^2} \right] \right)^{\frac{1}{1-\rho^2}}, \]

where the probability measure \(\widehat{P} \) is given by

\[\frac{d\widehat{P}}{dP} := \exp \left(- \int_0^T \frac{\mu_t}{\sigma_t} \, dW_t - \frac{1}{2} \int_0^T \frac{\mu_t^2}{\sigma_t^2} \, dt \right). \]
Variable correlation:

So far: \(W_t = \rho Y_t + \sqrt{1 - \rho^2} Y_t^\perp \)
\[= \int_0^t \rho \, dY_s + \int_0^t \sqrt{1 - \rho^2} \, dY_s^\perp \]
with constant \(\rho \)
Variable correlation:

- So far: $W_t = \rho Y_t + \sqrt{1 - \rho^2} Y_t^\perp$
 \hspace{1cm} $= \int_0^t \rho \, dY_s + \int_0^t \sqrt{1 - \rho^2} \, dY_s^\perp$ \hspace{0.5cm} with constant ρ

- Now: $W_t = \int_0^t \rho_s \, dY_s + \int_0^t \sqrt{1 - \rho_s^2} \, dY_s^\perp$ \hspace{0.5cm} with variable ρ
Variable correlation:

- So far: \(W_t = \rho Y_t + \sqrt{1 - \rho^2} Y_t^\perp \)
 \[= \int_0^t \rho \, dY_s + \int_0^t \sqrt{1 - \rho^2} \, dY_s^\perp \text{ with constant } \rho \]

- Now: \(W_t = \int_0^t \rho_s \, dY_s + \int_0^t \sqrt{1 - \rho_s^2} \, dY_s^\perp \text{ with variable } \rho \)

Proposition (Bounds; Frei and Schweizer 2008)

For \((\mathcal{Y}_t)_{0 \leq t \leq T} \)-predictable \(\rho \) with boundedness assumptions,

\[
\left(E_\hat{\mathbb{P}} \left[\exp \left(\hat{H}^{1/\delta} \right) \right] \right)^\delta \leq V^H \leq \left(E_\hat{\mathbb{P}} \left[\exp \left(\hat{H}^{1/\delta} \right) \right] \right)^\delta,
\]

where \(\hat{H} := -\gamma H - \frac{1}{2} \int_0^T \frac{\mu_t^2}{\sigma_t^2} \, dt \) and

\[
\bar{\delta} := \sup_{t \in [0, T]} \left\| \frac{1}{1 - \rho_t^2} \right\|_{L^\infty}, \quad \delta := \inf_{t \in [0, T]} \frac{1}{\left\| 1 - \rho_t^2 \right\|_{L^\infty}}.
\]
Ideas for an approximation of V^H:

1. If ρ is piecewise constant in time, there is an explicit formula for V^H.

\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
 xlabel={time},
 ylabel={piecewise constant process},
 xmin=-1, xmax=1,
 ymin=-1, ymax=1,
 xtick={-1,-0.5,0,0.5,1},
 ytick={-1,-0.5,0,0.5,1},
 grid=both,
]
\addplot[red, mark=*] coordinates {
 (-1,1)
 (-0.5,0.5)
 (0,0)
 (0.5,-0.5)
 (1,-1)
};
\end{axis}
\end{tikzpicture}
\end{figure}
Ideas for an approximation of V^H:

1. If ρ is piecewise constant in time, there is an explicit formula for V^H.

2. Approximate a general ρ by a sequence $(q_n)_{n \in \mathbb{N}}$ of piecewise constant processes.
Ideas for an approximation of V^H:

1. If ρ is piecewise constant in time, there is an explicit formula for V^H.

2. Approximate a general ρ by a sequence $(q_n)_{n \in \mathbb{N}}$ of piecewise constant processes.

3. Show that values corresponding to q_n converge to V^H.

Problem: It is difficult to show this directly.

→ study BSDE
2. A convergence result for BSDEs
Let B be a d-dimensional Brownian motion and consider

$$d\Gamma_t = f(t, Z_t) \, dt + Z_t \, dB_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H,$$

where

- $f : [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$
- H is a bounded random variable.
Let B be a d-dimensional Brownian motion and consider
\[d\Gamma_t = f(t, Z_t) \, dt + Z_t \, dB_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H, \]
where
\begin{itemize}
 \item $f : [0, T] \times \mathbb{R}^d \times \Omega \to \mathbb{R}$
 \item H is a bounded random variable.
\end{itemize}

The results hold not only in a Brownian setting, but more generally in a continuous filtration (i.e., a filtration where any local martingale has a continuous version).
Theorem (Convergence of BSDEs)

Fix $t \in [0, T]$ and let $(f^n, H^n)_{n=1,2,...,\infty}$ be a sequence of parameters such that

- f^n satisfy some quadratic-growth and local-Lipschitz conditions in z (uniformly in $n = 1, \ldots, \infty$);
- $\lim_{n \to \infty} H^n = H^\infty$ a.s. and for almost all $(s, \omega) \in [t, T] \times \Omega$, $\lim_{n \to \infty} f^n(s, z)(\omega) = f^\infty(s, z)(\omega)$ for all $z \in \mathbb{R}^d$.

Then there exist unique solutions (Γ^n, Z^n) with parameters (f^n, H^n) for $n = 1, \ldots, \infty$, and

$$
\lim_{n \to \infty} \Gamma^n_t = \Gamma^\infty_t \text{ a.s., } \lim_{n \to \infty} E \left[\int_t^T |Z^n_s - Z^\infty_s|^2 \, ds \right] = 0.
$$
Corollary (Special form of f^n)

Suppose additionally that

- H^n converges to H^∞ in L^∞ as $n \to \infty$;
- there exist sequences $(d^n)_{n \in \mathbb{N}}$ and $(\bar{d}^n)_{n \in \mathbb{N}}$ of deterministic functions which converge to 1 uniformly on $[t, T]$ such that $f^n = d^n f + \bar{d}^n f$ for every $n = 1, \ldots, \infty$.

Then we have

$$\sup_{s \in [t, T]} |\Gamma^n_s - \Gamma^\infty_s| \to 0 \quad \text{in } L^\infty \quad \text{as } n \to \infty.$$
3. Applying the convergence result
A BSDE characterization of V^H

Revisiting the nontradable asset model:

- Two Brownian motions W and Y have time-dependent instantaneous correlation ρ; $dW_t = \rho_t \, dY_t + \sqrt{1 - \rho_t^2} \, dY^\perp_t$ for a Brownian motion Y^\perp independent from Y.

- The traded stock S is given by
 \[\frac{dS_t}{S_t} = \mu_t \, dt + \sigma_t \, dW_t, \quad 0 \leq t \leq T, \quad S_0 > 0. \]

- Assumptions: μ and σ are predictable with respect to $(\mathcal{Y}_t)_{0 \leq t \leq T}$, the filtration generated by Y. The nontradable claim H is \mathcal{Y}_T-measurable.

- The indifference value h is given by $h = \frac{1}{\gamma} \log \frac{V^0}{V^H}$, where
 \[V^H := \inf_{\vartheta \in A} E \left[\exp \left(- \int_0^T \gamma \vartheta_t \, dS_t - \gamma H \right) \right]. \]
A BSDE characterization of V^H:

We have $V^H = \exp(-\gamma \Gamma_0)$, where Γ solves the BSDE

$$
\text{d}\Gamma_t = \left(\frac{\gamma}{2} (1 - \rho_t^2) Z_t^2 + \rho_t \lambda_t Z_t - \frac{\lambda_t^2}{2\gamma} \right) \text{d}t + Z_t \text{d}Y_t, \quad \Gamma_T = H
$$

with $\lambda := \mu/\sigma$.
A BSDE characterization of V^H:
We have $V^H = \exp(-\gamma \Gamma_0)$, where Γ solves the BSDE

$$d\Gamma_t = \left(\frac{\gamma}{2} (1 - \rho_t^2) Z_t^2 + \rho_t \lambda_t Z_t - \frac{\lambda_t^2}{2\gamma}\right)dt + Z_t dY_t, \quad \Gamma_T = H$$

with $\lambda := \mu/\sigma$.

In the notation of the second part:

$$d\Gamma_t = f(t, Z_t) dt + Z_t dB_t, \quad \Gamma_T = H,$$

where $B := Y$ and $f(t, z) := \frac{\gamma}{2} (1 - \rho_t^2) z^2 + \rho_t \lambda_t z - \frac{\lambda_t^2}{2\gamma}$.
A BSDE characterization of V^H:
We have $V^H = \exp(-\gamma \Gamma_0)$, where Γ solves the BSDE
\[
d\Gamma_t = \left(\frac{\gamma}{2} (1 - \rho_t^2) Z_t^2 + \rho_t \lambda_t Z_t - \frac{\lambda_t^2}{2\gamma}\right) dt + Z_t dY_t, \quad \Gamma_T = H
\]
with $\lambda := \mu / \sigma$.

In the notation of the second part:
\[
d\Gamma_t = f(t, Z_t) dt + Z_t dB_t, \quad \Gamma_T = H,
\]
where $B := Y$ and $f(t, z) := \frac{\gamma}{2} (1 - \rho_t^2) z^2 + \rho_t \lambda_t z - \frac{\lambda_t^2}{2\gamma}$

Remark:
The application can be done for $(Y_t)_{0 \leq t \leq T}$-predictable ρ, but we consider here only a deterministic, time-dependent ρ.
If ρ is piecewise constant in time, there is an explicit formula for the solution of the BSDE.
An approximation of V^H

1. If ρ is piecewise constant in time, there is an explicit formula for the solution of the BSDE.

2. Approximate a general ρ by a sequence $(q_n)_{n \in \mathbb{N}}$ of piecewise constant processes.
An approximation of \mathcal{V}^H

1. If ρ is piecewise constant in time, there is an explicit formula for the solution of the BSDE.

2. Approximate a general ρ by a sequence $(q_n)_{n \in \mathbb{N}}$ of piecewise constant processes.

3. Apply the convergence result to show the convergence of the solutions of the corresponding BSDEs.
1. Step: Piecewise constant processes

Let \(q : [0, T] \rightarrow]-1, 1[\) be of the form

\[
q = q^1 1_{\{t_0\}} + \sum_{j=1}^{n} q^j 1_{[t_{j-1}, t_j]} \quad \text{for} \quad t = t_0 \leq t_1 \leq \cdots \leq t_n = T.
\]
1. Step: Piecewise constant processes

Let $q : [0, T] \to]-1, 1[$ be of the form

$$q = q^1 \mathbb{1}_{\{t_0\}} + \sum_{j=1}^{n} q^j \mathbb{1}_{[t_{j-1}, t_j]} \quad \text{for} \ t = t_0 \leq t_1 \leq \cdots \leq t_n = T.$$

Then the BSDE

$$d\Gamma^q_t = \left(\frac{\gamma}{2} (1 - q^2_t) |Z^q_t|^2 + \rho_t \lambda_t Z^q_t - \frac{\lambda^2_t}{2\gamma} \right) dt + Z^q_t dY_t, \quad \Gamma_T = H$$

has the explicit solution Γ^q_0 with $\exp(-\gamma \Gamma^q_0)$ equal to

$$E_{\hat{P}} \left[\cdots E_{\hat{P}} \left[E_{\hat{P}} \left[e^{\hat{H}(1-|q^n|^2)} \left| \mathcal{Y}_{t_{n-1}} \right|^{\frac{1-|q^{n-1}|^2}{1-|q^n|^2}} \left| \mathcal{Y}_{t_{n-2}} \right|^{\frac{1-|q^{n-2}|^2}{1-|q^{n-1}|^2}} \cdots \right] \right] \right]^{\frac{1}{1-|q^1|^2}}$$

where

$$\hat{H} := -\gamma H - \frac{1}{2} \int_0^T \lambda_t^2 dt, \quad \frac{d\hat{P}}{dP} := \exp \left(- \int_0^T \lambda_t dW_t - \frac{1}{2} \int_0^T \lambda_t^2 dt \right).$$
2. Step: The approximation of ρ

Question: Which functions $\rho : [0, T] \rightarrow [-1, 1]$ can be approximated pointwise by piecewise constant functions?
2. Step: The approximation of ρ

Question: Which functions $\rho : [0, T] \rightarrow [-1, 1]$ can be approximated pointwise by piecewise constant functions?
2. Step: The approximation of ρ

Question: Which functions $\rho: [0, T] \to [-1, 1]$ can be approximated pointwise by piecewise constant functions?
2. Step: The approximation of ρ

Question: Which functions $\rho : [0, T] \rightarrow [-1, 1]$ can be approximated pointwise by piecewise constant functions?

Idea: This approximation is reminiscent of the construction of the Riemann integral.
Recall that a bounded function $g : [0, T] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is Lebesgue-almost everywhere continuous on $[0, T]$.
Recall that a bounded function $g : [0, T] \to \mathbb{R}$ is Riemann integrable if and only if it is Lebesgue-almost everywhere continuous on $[0, T]$.

Assume that $\rho : [0, T] \to [-1, 1]$ is Riemann integrable. Let

$$0 = t_0^n \leq t_1^n \leq \cdots \leq t_{\ell_n}^n = T, \quad s_j^n \in [t_{j-1}^n, t_j^n]$$

be partitions with $\lim_{n \to \infty} (\max_{1 \leq j \leq \ell_n} (t_j^n - t_{j-1}^n)) = 0$ and set $q^n := \sum_{j=1}^{\ell_n} \rho(s_j^n)1_{[t_{j-1}^n, t_j^n]}$. Then

$$\lim_{n \to \infty} q^n(x) = \rho(x) \quad \text{for almost all } x \in [0, T].$$
3. Step: The application of the convergence result

Theorem (Approximating V^H)

Assume that ρ is Riemann integrable and $]-1, 1[$-valued. Let

$$0 = t_0^n \leq t_1^n \leq \cdots \leq t_{\ell_n}^n = T, \quad s_j^n \in [t_{j-1}^n, t_j^n]$$

be partitions with $\lim_{n \to \infty} (\max_{1 \leq j \leq \ell_n} (t_j^n - t_{j-1}^n)) = 0$. Then

$$V^H = \lim_{n \to \infty} E_{\hat{\rho}} \left[\cdots E_{\hat{\rho}} \left[e^{\hat{H}(1 - |\rho(s_{\ell_n}^n)|^2)} \left| \mathcal{Y}_{t_{\ell_n-1}^n} \right|^{1 - |\rho(s_{n-1}^n)|^2} \right]^{1 - |\rho(s_1^n)|^2} \right]^{1 - |\rho(s_{\ell_n}^n)|^2}$$

with $\hat{H} := -\gamma H - \frac{1}{2} \int_0^T \lambda_t^2 \, dt$.
Overview

Indifference valuation

BSDE

Characterization

BSDE methods

Approximation of the indifference value

Application

Convergence result for BSDEs

Christoph Frei

Convergence results for the indifference value
Thank you very much for your attention!
Admissible strategies

\mathcal{A} consists of all predictable $\vartheta = (\vartheta_t)_{0 \leq t \leq T}$ such that

$$\int_0^T \vartheta_t^2 \, dt < \infty \text{ a.s. and}$$

$$\left(\exp(-\gamma \int_0^t \vartheta_s \, dS_s) \right)_{0 \leq t \leq T}$$

is of class (D).

The latter means that the set

$$\left\{ \exp(-\gamma \int_0^\tau \vartheta_s \, dS_s) \mid \tau \text{ is a stopping time} \right\}$$

is uniformly integrable.
Alternative measurability conditions

Assumptions:

- \(\mu, \sigma \) are predictable w.r.t. the filtration generated by \(W \).
- \(H \) is \(\hat{Y}_T \)-measurable, where \(\hat{Y}_T \) is the sigma-field generated by \(\hat{Y}_t := Y_t + \int_0^t \rho_s \mu_s \sigma_s \, ds, 0 \leq t \leq T \).

Proposition (Bounds; Frei and Schweizer 2008)

For general \(\rho \) with boundedness assumptions, one has

\[
\left(E_{\hat{P}} \left[\exp \left(\frac{\hat{H}}{\delta} \right) \right] \right)^{\bar{\delta}} \leq V^H \leq \left(E_{\hat{P}} \left[\exp \left(\frac{\hat{H}}{\delta} \right) \right] \right)^{\delta},
\]

where \(\hat{H} := -\gamma H - \frac{1}{2} E_{\hat{P}} \left[\int_0^T \frac{\mu_t^2}{\sigma_t^2} \, dt \right] \) and

\[
\bar{\delta} := \sup_{t \in [0, T]} \frac{1}{1 - \rho_t^2} \| L^\infty, \quad \delta := \inf_{t \in [0, T]} \frac{1}{1 - \rho_t^2} \| L^\infty. \]
A general BSDE characterization of V^H

Without measurability assumptions on ρ, μ, σ and H:
From Hu, Imkeller and Müller (2005), we have

$$V^H = \exp(-\gamma \Gamma_0),$$

where Γ solves the $(\mathcal{F}_t)_{0 \leq t \leq T}$-BSDE

$$d\Gamma_t = \left(\frac{\gamma}{2} \hat{Z}_t^2 - \lambda_t \hat{Z}_t - \frac{\lambda^2_t}{2\gamma}\right) dt + \hat{Z}_t dW_t + \hat{Z}_t dW^\perp_t, \quad \Gamma_T = H$$

for a Brownian motion W^\perp independent of W, and $\lambda := \mu/\sigma$.

Problem: This BSDE cannot be approximated by a BSDE with an explicit solution.
Approximation under stochastic correlation

Theorem (Approximating V^H)

Assume that ρ is $(\mathcal{Y}_t)_{0 \leq t \leq T}$-predictable, left-continuous and $]-1, 1]$-valued. Let $(0 = \tau_0^n \leq \cdots \leq \tau_{\ell_n}^n = T)_{n \in \mathbb{N}}$ be $(\mathcal{Y}_t)_{0 \leq t \leq T}$-stopping times with $\lim_{n \to \infty} \left(\max_{1 \leq j \leq \ell_n} (\tau_j^n - \tau_{j-1}^n) \right) = 0$ a.s. Then we have

$$V^H = \lim_{n \to \infty} E_{\hat{P}} \left[\cdots E_{\hat{P}} \left[e^{\hat{H}(1 - |\rho_{\tau_{\ell_n-2}}|^2)} \left| \mathcal{Y}_{\tau_{\ell_n-1}}^n \right|^{1 - |\rho_{\tau_{\ell_n-2}}|^2} \left| \mathcal{Y}_{\tau_{\ell_n-1}}^n \right|^{1 - |\rho_{\tau_{\ell_n-2}}|^2} \right] \right]^{1 - |\rho_{\tau_0^n}|^2}$$

with $\hat{H} := -\gamma H - \frac{1}{2} \int_0^T \lambda_t^2 \, dt$.

Christoph Frei

Convergence results for the indifference value
Convergence of BSDEs in a continuous filtration

Setting:

- Assume that \mathbb{F} is a general continuous filtration, i.e., all local martingales are continuous.
- Fix an \mathbb{R}^d-valued local martingale $M = (M_t)_{0 \leq t \leq T}$.
- Take a nondecreasing and bounded process D such that $\langle M^i \rangle \ll D$ for all $j = 1, \ldots, n$, e.g., $D = \arctan(\sum_{j=1}^n \langle M^i \rangle)$.
Convergence of BSDEs in a continuous filtration

Setting:

- Assume that \mathbb{F} is a general continuous filtration, i.e., all local martingales are continuous.
- Fix an \mathbb{R}^d-valued local martingale $M = (M_t)_{0 \leq t \leq T}$.
- Take a nondecreasing and bounded process D such that $\langle M_j \rangle \ll D$ for all $j = 1, \ldots, n$, e.g., $D = \arctan(\sum_{j=1}^{n} \langle M_j \rangle)$.

We consider the BSDE

$$d\Gamma_t = f(t, Z_t) dD_t + \frac{\beta}{2} d\langle N \rangle_t + Z_t dM_t + dN_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H,$$

where

- $f : \Omega \times [0, T] \times \mathbb{R}^d \to \mathbb{R}$;
- $\beta \in \mathbb{R}$;
- H is a bounded random variable.
A solution is a triple \((\Gamma, Z, N)\), where

- \(\Gamma\) is a bounded continuous semimartingale;
- \(Z\) is a predictable process with \(E\left[\int_0^T Z_t' d\langle M\rangle_t Z_t\right] < \infty\);
- \(N\) is a square-integrable martingale null at 0 and strongly orthogonal to \(M\).
A solution is a triple (Γ, Z, N), where

- Γ is a bounded continuous semimartingale;
- Z is a predictable process with $E\left[\int_0^T Z_t' \, d\langle M \rangle_t Z_t\right] < \infty$;
- N is a square-integrable martingale null at 0 and strongly orthogonal to M.

\[
d\Gamma_t = f(t, Z_t) \, dD_t + \frac{\beta}{2} \, d\langle N \rangle_t + Z_t \, dM_t + dN_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H,
\]
A solution is a triple \((\Gamma, Z, N)\), where
- \(\Gamma\) is a bounded continuous semimartingale;
- \(Z\) is a predictable process with \(E\left[\int_0^T Z_t' \, d\langle M\rangle_t Z_t\right] < \infty\);
- \(N\) is a square-integrable martingale null at 0 and strongly orthogonal to \(M\).

\[
d\Gamma_t = f(t, Z_t) \, dD_t + \frac{\beta}{2} \, d\langle N\rangle_t + Z_t \, dM_t + dN_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H,
\]
A solution is a triple \((\Gamma, Z, N)\), where

- \(\Gamma\) is a bounded continuous semimartingale;
- \(Z\) is a predictable process with \(E\left[\int_0^T Z'_t \, d\langle M\rangle_t Z_t\right] < \infty\);
- \(N\) is a square-integrable martingale null at 0 and strongly orthogonal to \(M\).

\[
d\Gamma_t = f(t, Z_t) \, dD_t + \frac{\beta}{2} \, d\langle N\rangle_t + Z_t \, dM_t + dN_t, \quad 0 \leq t \leq T, \quad \Gamma_T = H,
\]
Theorem (Convergence of BSDEs)

Fix $t \in [0, T]$ and let $(f^n, \beta^n, H^n)_{n=1,2,\ldots,\infty}$ be a sequence of parameters such that

- f^n satisfy some quadratic-growth and local-Lipschitz conditions in z (uniformly in $n = 1, \ldots, \infty$);
- $\lim_{n \to \infty} \beta^n = \beta^\infty$, $\lim_{n \to \infty} H^n = H^\infty$ a.s. and for $(D \otimes P)$-almost all $(s, \omega) \in [t, T] \times \Omega$,
 $\lim_{n \to \infty} f^n(s, z)(\omega) = f^\infty(s, z)(\omega)$ for all $z \in \mathbb{R}^d$.

Then there exist unique solutions (Γ^n, Z^n, N^n) with parameters (f^n, β^n, H^n) for $n = 1, \ldots, \infty$, and

$$\lim_{n \to \infty} \Gamma^n_t = \Gamma^\infty_t \text{ a.s.}, \quad \lim_{n \to \infty} E\left[\langle N^n - N^\infty \rangle_T - \langle N^n - N^\infty \rangle_t \right] = 0,$$

$$\lim_{n \to \infty} E\left[\int_t^T (Z^n_s - Z^\infty_s)' \, d\langle M \rangle_s (Z^n_s - Z^\infty_s) \right] = 0.$$
Precise assumptions of the convergence result

- There exist a nonnegative predictable κ^1 with
 \[\| \int_0^T \kappa^1_s \, ds \|_{L^\infty} < \infty \] and a constant c^1 such that
 \[|f^n(s, z)| \leq \kappa^1_s + c^1|z|^2 \]
 for all $s \in [0, T]$, $z \in \mathbb{R}^d$ and $n = 1, \ldots, \infty$.

- There exist a nonnegative predictable κ^2 with
 \[\| \int_0^T |\kappa^2_s|^2 \, ds \|_{L^\infty} < \infty \] and a constant c^2 such that
 \[|f^n(s, z^1) - f^n(s, z^2)| \leq c^2 (\kappa^2_s + |z^1| + |z^2|) |z^1 - z^2| \]
 for all $s \in [0, T]$, $z^1, z^2 \in \mathbb{R}^d$ and $n = 1, \ldots, \infty$.
References

- Frei: Convergence results for the indifference value based on the stability of BSDEs. Available under http://www.cmap.polytechnique.fr/~frei

