Optimal execution in limit order books with stochastic liquidity

Antje Fruth
Joint work with Torsten Schöneborn and Mikhail Urusov

Technische Universität Berlin
Deutsche Bank Quantitative Products Laboratory

Bachelier meeting, Toronto, June 2010
Problem: Minimize impact on execution prices (as in Predoiu, Shaikhet, Shreve)
Limit order book model with *stochastic liquidity*
Structure of optimal strategies
Examples and numerical implementation
Market buy order of x_0 shares at $t = 0$ has linear price impact.

- Ask price A_t martingale and bid $B_t < A_t$
 - Effect of A can be neglected for risk neutral investor
- Dynamic of price displacement D with resilience speed $\rho > 0$
 \[dD_t = \frac{1}{q_t} d\Theta_t - \rho D_t dt \]
- Impact cost at t: \[\left(D_t + \frac{1}{2q_t} x_t \right) x_t \]
Model with stochastic liquidity

- Dynamic order book height: \(K_t := \frac{1}{q_t} \) e.g. positive diffusion
- Risk-neutral investor wants to purchase \(x \) shares on \([t, T]\)

Singular control problem in continuous time

\[
U(t, \delta, x, \kappa) := \inf_{\Theta \in \mathcal{A}(x)} J(t, \delta, \Theta, \kappa)
\]

Admissible strategies \(\mathcal{A}(x) \)

\(\Theta : \Omega \times [t, T] \rightarrow [0, x] \) adapted, increasing, càglàd, \(\Theta_t = 0, \Theta_{T^+} = x \) a.s.

Trading costs \((\Delta \Theta_s := \Theta_{s^+} - \Theta_s) \)

\[
J(\Theta) := J(t, \delta, \Theta, \kappa) := \mathbb{E} \left[\int_{[t, T]} \left(D_s + \frac{K_s}{2} \Delta \Theta_s \right) d\Theta_s \bigg| D_t = \delta, K_t = \kappa \right]
\]
Intuition: Wait and Buy region

- Scaling property of value function reduces dimension:

\[U(t, a\delta, ax, \kappa) = a^2 U(t, \delta, x, \kappa) \text{ for } a \in \mathbb{R}_{\geq 0} \]

\[\frac{a}{\delta} = 1 \Rightarrow U(t, \delta, x, \kappa) = \delta^2 U(t, 1, \frac{x}{\delta}, \kappa) \]
Intuition: Wait and Buy region

- Scaling property of value function reduces dimension:

$$U(t, a\delta, a\kappa) = a^2 U(t, \delta, x, \kappa) \text{ for } a \in \mathbb{R}_{\geq 0}$$

$$a = \frac{1}{\delta} \Rightarrow U(t, \delta, x, \kappa) = \delta^2 U(t, 1, \frac{x}{\delta}, \kappa)$$

- How could optimal strategy look like for fixed t and κ?
- Wait if $\frac{x}{\delta}$ is small, say $\frac{x}{\delta} \leq c \in (0, \infty]$.
- Otherwise buy $\xi > 0$ shares s.t. $\frac{x-\xi}{\delta+\frac{\xi}{q}} = \frac{1}{c}$.
Binomial model and resilience = 2

Scenario A

Scenario B

\[\kappa_t \]

\[\kappa_0 = 2.1 \]

\[p = 1/2 \]

\[t_0 = 0 \quad t_1 = 0.0001 \quad T = 1 \]

Discrete Trading

Non-uniqueness

No Trading

\[0 \quad 2.1 \quad \kappa_0 \]

\[X/D \]
Theorem (F./Schöneborn/Urusov)

\[dK_s = \mu(s, K_s)ds + \sigma(s, K_s)dW_s \]

Let \(K \) be a positive, continuous diffusion satisfying

i) \(\eta_s := \frac{2}{K_s} + \frac{\mu(s, K_s)}{K_s^2} - \frac{\sigma^2(s, K_s)}{K_s^3} > 0 \quad \text{for all } s \in [t, T] \)

ii) \(\mathbb{E}\left[\sup_{s \in [t, T]} \frac{K_s^2}{\inf_{s \in [t, T]} K_s} \right] < \infty \)

iii) \(\mathbb{E}\left[\left(\int_t^T |\eta_s|ds \right) \left(\sup_{s \in [t, T]} K_s^2 \right) \right] < \infty \)

Then \(J(\Theta) \) is strictly convex and there exists a unique optimal strategy \(\Theta^* \).
Theorem (F./Schöneborn/Urusov)

\[dK_s = \mu(s, K_s)ds + \sigma(s, K_s)dW_s \]

Let \(K \) be a positive, continuous diffusion satisfying

i) \(\eta_s := \frac{2\rho}{K_s} + \frac{\mu(s, K_s)}{K_s^2} - \frac{\sigma^2(s, K_s)}{K_s^3} > 0 \quad \text{for all } s \in [t, T] \)

ii) \(\mathbb{E} \left[\sup_{s \in [t, T]} K_s^2 \frac{\inf_{s \in [t, T]} K_s}{K_s} \right] < \infty \)

iii) \(\mathbb{E} \left[(\int_t^T |\eta_s| ds) \left(\sup_{s \in [t, T]} K_s^2 \right) \right] < \infty \)

Then \(J(\Theta) \) is strictly convex and there exists a unique optimal strategy \(\Theta^* \).

Idea:

- Strict convexity: rewrite \(J \) in terms of \(D \) via \(dD_s = K_s d\Theta_s - \rho D_s ds \)
 \(J(\Theta) \approx \mathbb{E} \left[\int_{[t, T]} \eta_s D_s^2 ds \right] \sim \text{Assumption i)} \)
- Existence: Komlos argument
Uniqueness ensures WR-BR structure

Theorem (F./Schöneborn/Urusov)

Under the above assumptions there exists a unique barrier function $c : [0, T] \times (0, \infty) \rightarrow (0, \infty]$ with $c(T, \kappa) \equiv 0$ such that

$$\Delta \Theta^*_t(t, \delta, x, \kappa) = \max \left\{ 0, \frac{x - c(t, \kappa)\delta}{1 + \kappa c(t, \kappa)} \right\}. \quad (1)$$
Theorem (F./Schöneborn/Urusov)

Under the above assumptions there exists a unique barrier function $c : [0, T] \times (0, \infty) \to (0, \infty]$ with $c(T, \kappa) \equiv 0$ such that

$$\Delta \Theta^*_t(t, \delta, x, \kappa) = \max \left\{ 0, \frac{x - c(t, \kappa)\delta}{1 + \kappa c(t, \kappa)} \right\}. \quad (1)$$

Idea:

- Trade splitting argument
- Exclude upper WR by uniqueness
Example 1/3: K deterministic

- K càglàd, bounded ensures WR-BR structure
- Obizhaeva/Wang ($dK_t = 0$) gives $c(t, \kappa) = \frac{\rho(T-t)+1}{\kappa}$
- Explicit barrier via Euler-Lagrange formalism, e.g., $K_t = K_0 e^{\nu \rho t}$ gives

$$c(t, \kappa) = \begin{cases}
\infty & \text{if } \nu < -1 \\
\frac{1+\nu - e^{-\rho \nu (T-t)}}{\nu(1+\nu)\kappa} & \text{otherwise}
\end{cases}$$
Example 2/3: \(K \) GBM

\[
dK_t = K_t(\mu_t dt + \sigma_t dW_t)
\]

- WR-BR-WR examples exist for time-inhomogeneous GBM
- If WR-BR structure holds: \(c(t, \kappa_t) = \frac{c(t)}{\kappa_t} \) via scaling property, 'bad model' due to passive in the liquidity behavior
Example 3/3: K CIR- numerical scheme

\[dK_s = \mu(K - K_s)ds + \sigma \sqrt{K_s} dW_s \]

1. **Possible idea:**
 Implement HJB equation (QVI) by finite difference scheme
 \[
 \min \left\{ \kappa U_D - U_X + D, \ U_t - \rho D U_D + \mu (\kappa - \kappa) U_\kappa + \frac{\sigma^2}{2} \kappa U_{\kappa\kappa} \right\} = 0
 \]

2. **Here:**
 Approximate state space diffusion by a Markov chain à la Kushner
 - Code is essentially the same as in 1.
 - Convergence proof by probabilistic methods, i.e. no use of HJB eq./verification argument or convexity/smoothness/growth conditions
Example 3/3: K CIR- WR-BR-WR example (for large vola)

Non-uniqueness of optimal strategy
Example 3/3: K CIR- aggressive in the liquidity behavior (for high mean-reversion)
Market microstructure model of order book to study optimal execution problem

Stochastic liquidity \sim differential order placement

Wait/Buy Region structure does not always hold!

Numerical analysis via Markov chain implementation: Aggressive/passive in the liquidity behavior

Thank you for your attention!