Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes

Sergei Levendorskiǐ Jiayao Xie

Department of Mathematics
University of Leicester

Toronto, June 24, 2010
Motivation and Main Results

Pricing of European options in Lévy Models

Integration-Along-Cut (IAC) Method

Sensitivities

Realization of IAC in KoBoL Model

More Numerical Examples
Motivation

- FFT method:
 - first applied to pricing European options by Carr and Madan [1999]
 - sizable computational error for deep OTM options

- Integration-Along-Cut (IAC) method:
 - Levendorskiǐ and Zherder [2001], Boyarchenko and Levendorskiǐ [2002]

- Later, deficiencies of FFT techniques were analyzed by
 - Lord, Fang, Bervoets and Oosterlee [2007]
 - Lord and Kahl [2007]
 - N. Boyarchenko and Levendorskiǐ [2007]
 - M. Boyarchenko and Levendorskiǐ [2008, 2009] (refined and enhanced (enh-ref) FFT)
 - Carr and Madan [2009] (saddlepoint method)
Main Results

1. Accurate and fast numerical realizations for KoBoL (a.k.a. CGMY) and VG model
2. A modification, which makes IAC method applicable to European options far from expiry in VG model
3. An efficient procedure for calculation of option prices at many strikes
4. Calculation of sensitivities using IAC method
Table: Prices of European call options in the KoBoL model: IAC vs. FFT, the approximate saddle point method saddlepoint (SP) and enh-ref iFFT (Enh-ref).

<table>
<thead>
<tr>
<th>Strike</th>
<th>Option price</th>
<th>Relative difference between IAC and</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAC</td>
<td>FFT</td>
<td>SP</td>
</tr>
<tr>
<td>130</td>
<td>3.6628</td>
<td>3.6601</td>
<td>3.6387</td>
</tr>
<tr>
<td>140</td>
<td>2.3350</td>
<td>2.3324</td>
<td>2.3225</td>
</tr>
<tr>
<td>150</td>
<td>1.4867</td>
<td>1.4840</td>
<td>1.4879</td>
</tr>
<tr>
<td>160</td>
<td>0.9509</td>
<td>0.9482</td>
<td>0.9537</td>
</tr>
<tr>
<td>170</td>
<td>0.6134</td>
<td>0.6012</td>
<td>0.6159</td>
</tr>
<tr>
<td>180</td>
<td>0.4000</td>
<td>0.3278</td>
<td>0.4018</td>
</tr>
<tr>
<td>190</td>
<td>0.2639</td>
<td>0.0129</td>
<td>0.2652</td>
</tr>
<tr>
<td>200</td>
<td>0.1764</td>
<td>-0.4588</td>
<td>0.1772</td>
</tr>
</tbody>
</table>

European call option parameters: $r = 0.03$, $T = 0.5$, $S = 100$.

KoBoL parameters: $\nu = 0.5$, $c_+ = c_- = 2$, $\lambda_+ = 5$, $\lambda_- = -10$, $\mu \approx 0.3926$.

Enh-ref iFFT algorithm parameters (CPU time: 0.06 seconds): $M = 2^{13}$, $M_2 = 2$, $M_3 = 2$, $\Delta = 0.00125$.
The second column is obtained by using Integration-Along-Cut method for a given relative error tolerance $5 \cdot 10^{-5}$.

The third and fourth column are taken from the tables in P. Carr and D.B. Madan, *Saddlepoint Methods for Option Pricing*, Journal of Computational Finance, Vol. 13, No. 1 (Fall 2009).

N.B.: For a very long and fine grid, enh-ref iFFT method produces results with relative differences less than $5 \cdot 10^{-5}$, but this requires much more CPU time than IAC.
Figure: CPU time (in millisecond) of IAC method, for the European call option in VG model: dependence on the relative error tolerance ϵ. European call option parameters: $r = 0.01, T = 0.5, S = 1000$. VG model parameters: $c_+ = c_- = 0.15, \lambda_+ = 9, \lambda_- = -8, \mu \approx 0.0058$.
Figure: CPU time (in millisecond) of IAC method, for the European call option in KoBoL model: dependence on the relative error tolerance ϵ. European call option parameters: $r = 0.03$, $T = 0.5$, $S = 100$. KoBoL parameters: $\nu = 0.5$, $c_+ = c_- = 2$, $\lambda_+ = 5$, $\lambda_- = -10$, $\mu \approx 0.3926$.

Levendorski" and Xie (University of Leicester) Fast Pricing of OTM Options 7 / 26
Strong Features of Our Approach

Application

Variance Gamma (VG) model and strongly Regular Lévy Process of Exponential type (sRLPE), which includes Normal Inverse Gaussian (NIG) model, and KoBoL (a.k.a CGMY) model in the finite variation case.
Strong Features of Our Approach

Application
Variance Gamma (VG) model and strongly Regular Lévy Process of Exponential type (sRLPE), which includes Normal Inverse Gaussian (NIG) model, and KoBoL (a.k.a CGMY) model in the finite variation case

Accuracy & Efficiency
- For one strike, hundreds times faster than FFT
- For multiple options, IAC method together with the quadratic interpolation, is still faster and more accurate than FFT based approach
- For sensitivities, a relative advantage of IAC is even greater
Efficient Error Control

Real-valued integrand, and

- For VG, a simple rule for truncation; and asymptotic expansion may be used to calculate the truncated part
- For KoBoL, the calculations are reduced to summation of oscillating series; even easier
Strong Features of Our Approach (cont.)

Efficient Error Control

Real-valued integrand, and

- For VG, a simple rule for truncation; and asymptotic expansion may be used to calculate the truncated part
- For KoBoL, the calculations are reduced to summation of oscillating series; even easier

Simplicity

- Straightforward reduction to cuts
- Simpson’s and enhanced Simpson’s (a.k.a product integration) rule
Pricing of European Options in Lévy Models

Market structure

- Bond — yielding riskless rate of return r
- Stock — $S_t = e^{X_t}$, where X_t is a Lévy process under an EMM Q; the characteristic exponent $\psi(\xi)$ of X_t admits the analytic continuation into the complex plane with two cuts $i(-\infty, \lambda_-]$ and $i[\lambda_+, +\infty)$

Notation: $V(t, x) := V(G; T; t, x)$ — the price of the European option with maturity T and payoff $G(X_T)$
Lévy processes: General Definitions

ψ — characteristic exponent of $X = (X_t)$:

$$E \left[e^{i\xi X_t} \right] = e^{-t\psi(\xi)}$$

Explicit formula (Lévy-Khintchine formula, in 1D) is

$$\psi(\xi) = \frac{\sigma^2}{2} \xi^2 - i\mu \xi + \int_{\mathbb{R}\setminus 0} (1 - e^{iy\xi} + iy\xi \mathbb{1}_{|y|<1}(y)) F(dy),$$

where $F(dy)$, the Lévy density, satisfies

$$\int_{\mathbb{R}\setminus 0} \min\{|y|^2, 1\} F(dy) < \infty.$$
Examples

a) **KoBoL model** (a.k.a. CGMY model and extended Koponen’s family):

\[\psi(\xi) = -i\mu\xi + \Gamma(-\nu) \cdot [c_+((-\lambda_-)^\nu - (-\lambda_- - i\xi)^\nu) + c_-(\lambda_+^\nu - (\lambda_+ + i\xi)^\nu)], \]

where \(\nu \neq 1, c_\pm > 0, \lambda_- < 0 < \lambda_+. \)

b) **Normal Tempered Stable Lévy processes** (NTS):

\[\psi(\xi) = -i\mu\xi + \delta \cdot \left[(\alpha^2 - (\beta + i\xi)^2)^{\nu/2} - (\alpha^2 - \beta^2)^{\nu/2} \right], \]

where \(\alpha > |\beta| > 0, \delta > 0 \) and \(\mu \in \mathbb{R} \). With \(\nu = 1 \), NTS is NIG.

c) **Variance Gamma process** (VG):

\[\psi(\xi) = -i\mu\xi + c_+ [\ln(-\lambda_- - i\xi) - \ln(-\lambda_-)] + c_- [\ln(\lambda_+ + i\xi) - \ln(\lambda_+)], \]

where \(c_\pm > 0, \lambda_- < 0 < \lambda_+, \mu \in \mathbb{R} \).
Generalized Black-Scholes Formula

Assume that for $\omega \in (\lambda_-, \lambda_+)$, function $G_\omega(x) := e^{\omega x} G(x) \in L_1(\mathbb{R})$. Then

$$V(t, x) = \mathbb{E} \left[e^{-r(T-t)} G(X_T) \mid X_t = x \right]$$

$$G(x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{ix\xi} \hat{G}(\xi) d\xi,$$

$$V(t, x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{ix\xi - \tau(r + \psi(\xi))} \hat{G}(\xi) d\xi, \quad (1)$$

where $\tau = T - t > 0$.

Equivalently,

$$V(t, x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{i(x+\mu\tau)\xi - \tau(r+\psi^0(\xi))} \hat{G}(\xi) d\xi. \quad (2)$$
Generalized Black-Scholes Formula

Boyarchenko and Levendorskiĭ [1998], Carr and Madan [1998]

Assume that for $\omega \in (\lambda_-, \lambda_+)$, function $G_{\omega}(x) := e^{\omega x} G(x) \in L_1(\mathbb{R})$. Then

$$V(t, x) = \mathbb{E} \left[e^{-r(T-t)} G(X_T) \mid X_t = x \right]$$

$$G(x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{ix\xi} \hat{G}(\xi) d\xi,$$

$$V(t, x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{ix\xi - \tau(r + \psi(\xi))} \hat{G}(\xi) d\xi, \quad (1)$$

where $\tau = T - t > 0$.

Equivalently,

$$V(t, x) = (2\pi)^{-1} \int_{\text{Im } \xi = \omega} e^{i(x + \mu \tau)\xi - \tau(r + \psi^0(\xi))} \hat{G}(\xi) d\xi. \quad (2)$$
Generalized Black-Scholes Formula (cont.)

Let \(x = \ln(\frac{S_t}{K}) \).

- **European call option:** \(G(X_T) = (e^{X_T} - K)_+ \)

\[
V(t, x) = -\frac{Ke^{\tau r}}{2\pi} \int_{\text{Im} \xi = \omega} \frac{e^{i(x+\mu \tau)\xi - \tau \psi^0(\xi)}}{(\xi + i)\xi} \, d\xi. \tag{3}
\]

for any \(\omega \in (\lambda_-, -1) \).

- **European put option:** \(G(X_T) = (K - e^{X_T})_+ \), we have the same formula as above, but with \(\omega \in (0, \lambda_+) \).
Definition

Let $\lambda_- < 0 < \lambda_+$ and $\nu \in (0, 2]$. We call X a strongly regular Lévy process of exponential type (λ_-, λ_+) and order ν if the following conditions hold:

(i) the characteristic exponent ψ admits the analytic continuation into the complex plane with two cuts $i(-\infty, \lambda_-]$ and $i[\lambda_+, +\infty)$;

(ii) for $z \leq \lambda_-$ and $z \geq \lambda_+$, the limits $\psi(iz \pm 0)$ exist;

(iii) there exists $\mu \in \mathbb{R}$ such that the function $\psi^0(\xi) := \psi(\xi) + i\mu \xi$ is asymptotically positively homogeneous of order ν as $\xi \to \infty$ in the complex plane with these cuts.

In VG model, the logarithmic asymptotics at infinity: sRLPE of order $0+$.
Example: European OTM Call Option ($\lambda_- < \omega < -1, x + \mu \tau < 0$)

Assumption: X is an sRLPE of order $\nu \in (0, 1]$

Integral:

$$\int_{\text{Im } \xi = \omega} \phi(\xi) d\xi$$

$$\phi(\xi) = e^{i(x + \mu \tau)\xi - \tau \psi^0(\xi)} \frac{1}{(\xi + i)\xi}$$

Idea of IAC Method
Idea of IAC Method

Example: European OTM Call Option \((\lambda_- < \omega < -1, x + \mu \tau < 0)\)

Assumption: \(X\) is an sRLPE of order \(\nu \in (0, 1]\)

Integral:

\[
\int_{\text{Im } \xi = \omega} \phi(\xi) d\xi
\]

\[
\phi(\xi) = e^{i(x + \mu \tau)\xi - \tau \psi^0(\xi)} \frac{1}{(\xi + i)\xi}
\]
Idea of IAC Method

Example: European OTM Call Option \((\lambda_- < \omega < -1, x + \mu \tau < 0)\)

Assumption: \(X\) is an sRLPE of order \(\nu \in (0, 1]\)

Integral:

\[
\int_{\text{Im } \xi = \omega} \phi(\xi) d\xi
\]

\[
\phi(\xi) = e^{i(x + \mu \tau)\xi - \tau \psi^0(\xi)} \frac{1}{(\xi + i)\xi}
\]
Idea of IAC Method

Example: European OTM Call Option ($\lambda^- < \omega < -1, x + \mu \tau < 0$)

Assumption: X is an sRLPE of order $\nu \in (0, 1]$

Integral:

$$\int_{\text{Im } \xi = \omega} \phi(\xi) d\xi$$

$$\phi(\xi) = e^{i(x + \mu \tau)\xi - \tau \psi^0(\xi)} \frac{1}{(\xi + i)\xi}$$
Idea of IAC Method

By Cauchy theorem,

\[\oint \phi(\xi) d\xi = \int_{L_\omega} \phi(\xi) d\xi + \int_{L_R} \phi(\xi) d\xi + \int_{L_e} \phi(\xi) d\xi + \int_{L_\lambda} \phi(\xi) d\xi = 0 \]
Let $\text{Im} \, \xi \leq \omega$. As $R := |\xi| \to +\infty$,

$$\int_{\mathcal{L}_R} \phi(\xi) d\xi \to 0$$

As $\epsilon \to 0$,

$$\int_{\mathcal{L}_\epsilon} \phi(\xi) d\xi \to 0$$
Idea of IAC Method

\[\int_{\text{Im } \xi=\omega} \phi(\xi) d\xi = \int_{-i\infty}^{-0} \phi(\xi) d\xi + \int_{i\lambda_{-}+0}^{i\lambda_{-}+0} \phi(\xi) d\xi \]
IAC Formula for European OTM Call and Put Option

- **OTM Call** \((x' := -x - \mu \tau > 0)\)

\[
V_{\text{call}}(t, x) = \frac{Ke^{-r\tau}}{\pi} \int_{-\infty}^{\lambda_-} e^{zx'} \frac{\Omega(\tau, z)}{z(z + 1)} dz,
\]

(4)

- **OTM Put** \((x' := x + \mu \tau > 0)\)

\[
V_{\text{put}}(t, x) = -\frac{Ke^{-r\tau}}{\pi} \int_{\lambda_+}^{+\infty} e^{-zx'} \frac{\Omega(\tau, z)}{z(z + 1)} dz,
\]

(5)

where

\[
\Omega(\tau, z) = \left(\frac{i}{2}\right)(e^{-\tau \psi^0(iz-0)} - e^{-\tau \psi^0(iz+0)}).
\]

(6)
$\Omega(\tau, z)$ in The Case of KoBoL

- For $z < \lambda_-$:
 \[
 \Omega(\tau, z) = -e^{-\tau c \Gamma(-\nu)}(\nu - (\lambda_- - z)^\nu \cos(\nu \pi) + \lambda_+^\nu - (\lambda_+ - z)^\nu]
 \times \sin(\tau c \Gamma(-\nu)(\lambda_- - z)^\nu \sin(\nu \pi)) ;
 \]

- For $z > \lambda_+$:
 \[
 \Omega(\tau, z) = e^{-\tau c \Gamma(-\nu)}(-\nu - (-\lambda_+ + z)^\nu + \lambda_+^\nu - (z - \lambda_+)^\nu \cos(\nu \pi))
 \times \sin(\tau c \Gamma(-\nu)(z - \lambda_+)^\nu \sin(\nu \pi)) ;
 \]
Sensitivities

Denote by $S = Ke^x$, the spot price of the underlying. For a European call option,

$$\Delta = \frac{\partial V}{\partial S} = \frac{e^{-x}}{2\pi} \int_{\text{Im } \xi = \omega} \frac{e^{i(x+\mu \tau)\xi - \tau(r+\psi^0(\xi))}}{i\xi - 1} d\xi;$$

$$\Gamma = \frac{\partial^2 V}{\partial S^2} = \frac{e^{-2x}}{2\pi K} \int_{\text{Im } \xi = \omega} e^{i(x+\mu \tau)\xi - \tau(r+\psi^0(\xi))} d\xi,$$

$$\Theta = -\frac{\partial V}{\partial \tau} = -\frac{K}{2\pi} \int_{\text{Im } \xi = \omega} \frac{e^{i(x+\mu \tau)\xi - \tau(r+\psi^0(\xi))}}{(\xi + i)\xi} (r - i\mu \xi + \psi^0(\xi)) d\xi.$$
Sensitivities (cont.)

If X is an sRLPE of order $\nu \in (0, 1]$, then

$$\Delta = \frac{e^{-x-\tau r}}{\pi} \int_{-\infty}^{\lambda_-} e^{x'z} \frac{\Omega(\tau, z)}{-z-1} dz$$

$$\Gamma = \frac{e^{-2x-\tau r}}{\pi K} \int_{-\infty}^{\lambda_-} e^{x'z} \Omega(\tau, z) dz, \quad \Theta = \frac{Ke^{-\tau r}}{\pi} \int_{-\infty}^{\lambda_-} e^{x'z} \frac{\Omega_1(\tau, z)}{z(z+1)} dz$$

where

$$\Omega_1(\tau, z) = \frac{i}{2} \left(e^{-\tau \psi^0(iz-0)} \left[r + \mu z + \psi^0(iz - 0) \right]
- e^{-\tau \psi^0(iz+0)} \left[r + \mu z + \psi^0(iz + 0) \right] \right)$$
Realization of IAC in KoBoL Model

Change the variable $y = (\lambda_+ - z)^\nu$ in (4):

$$V(t, x) = R_\nu \int_0^\infty e^{-x'y^{1/\nu}} \cdot F(y) \cdot \sin(\delta_+ \sin(\nu\pi)y) \, dy$$

where $x' = -x - \mu \tau > 0$, $\delta_\pm = -\tau c_\pm \Gamma(-\nu)$,

$$R_\nu = Ke^{-r\tau + x'\lambda_+ + \delta_+ (-\lambda_-)^\nu + \delta_- \lambda_+^\nu / (\nu\pi)},$$

$$F(y) = \frac{e^{-\delta_+ \cos(\nu\pi)y - \delta_- (\lambda_+ - \lambda_- + y^{1/\nu})^\nu}}{(\lambda_- - y^{1/\nu})(\lambda_- + 1 - y^{1/\nu})} \cdot y^{1/\nu - 1}$$
Realization of IAC in KoBoL Model (cont.)

Set \(na = n\pi / (\delta_+ \sin(\nu \pi)) \), \(n = 0, 1, \ldots \), and change the variable \(y = z + na \):

\[
V(t, x) = R_{\nu} \sum_{n=0}^{\infty} (-1)^n \int_{0}^{a} F_n(x, z) dz,
\]

where

\[
F_n(x, z) = e^{-x'(z+na)^{1/\nu}} \cdot f_n(z)
\]

\[
f_n(z) = \frac{\sin(\pi z / a) \cdot e^{-\delta_+ \cos(\nu \pi)(z+na) - \delta_- (\lambda_+ - \lambda_- + (z+na)^{1/\nu})^{\nu}}}{(\lambda_- - (z + na)^{1/\nu}) \cdot (\lambda_- + 1 - (z + na)^{1/\nu}) \cdot (z + na)^{1-1/\nu}}
\]
Lemma

Let $z \in (0, a)$. Then

a) if $\nu \in (0, 0.5]$, then the sequence $\{F_n(z)\}$ is monotonically decreasing;

b) if $\nu \in (0.5, 1)$, then there exists N such that for $n \geq N$, the sequence $\{F_n(z)\}$ is monotonically decreasing.
Example: Fitting The Smile

Figure: Relative error of implied volatility surface obtained by enh-ref iFFT method. VG parameters: $c_+ = c_- = 0.15$, $\lambda_+ = 9$, $\lambda_- = -8$, $\mu \approx 0.0058$. European call option parameters: $r = 0.01$, $S = 1000$. IAC (multiple options) algorithm parameters: $\Delta_1 = 0.0625$, $\Delta_2 = 0.5$, $\epsilon = 5 \times 10^{-5}$, $A(x', \epsilon) = A(-0.1, 5 \times 10^{-5})$, $\Delta_x = 0.02$. Enh-ref iFFT algorithm parameters: $\Delta = 0.01$, $M = 2^{10}$, $M_2 = 3$, $M_3 = 3$. Relative error: $(V_{enh-ref} - V_{IAC})/V_{IAC}$.
Example: Fitting The Smile (cont.)

Figure: Implied volatility surface. **VG parameters:** $c_+ = c_- = 0.15$, $\lambda_+ = 9$, $\lambda_- = -8$, $\mu \approx 0.0058$. **European call option parameters:** $r = 0.01$, $S = 1000$. **IAC (multiple options) algorithm parameters:** $\Delta_1 = 0.0625$, $\Delta_2 = 0.5$, $\epsilon = 5 \times 10^{-5}$, $A(x', \epsilon) = A(-0.1, 5 \times 10^{-5})$, $\Delta_x = 0.02$.
Possible Efficiency Improvement

- C++ implementation with the x'-dependent truncation parameter
- Non-uniformly spaced grid

More Results

PC Characterization

The calculations presented were performed in MATLAB®7.4.0 (R2007a), on a PC with characteristics Intel®Core™2 Duo CPU (3.16GHz, 6MB L2 Cache, 1333MHz FSB), under the Genuine Windows®XP Professional operating system.