On the relative pricing of long maturity S&P 500 index options and CDX tranches

Pierre Collin-Dufresne Robert Goldstein Fan Yang

Bachelier World Congress: June 2010
Securitized Credit Markets Crisis

- Pre-crisis saw large growth in securitized credit markets (CDO).
- Pooling and tranching used to create ‘virtually risk-free’ AAA securities, in response to high demand for highly rated securities.
- During the crisis all AAA markets were hit hard:
 - Home equity loan CDO prices fell (ABX.HE AAA < 60%).
 - Super Senior (30-100) tranche spreads > 100bps.
 - CMBX.AAA (super duper) > 750bps.
- Raises several questions:
 - Q? Were ratings incorrect (ex-ante default probability higher than expected)?
 - Q? Are ratings sufficient statistics (risk ≠ expected loss)?
 - Q? Were AAA tranches mis-priced (relative to option prices)?
- Many other surprises:
 - Corporate Credit spreads widened (CDX-IG > 200bps).
 - Cash-CDS basis negative (-200 bps for IG; -700bps for HY).
 - LIBOR-Treasury and LIBOR-OIS widened (> 400bps).
 - Long term Swap spreads became negative (30 year swap over Treasury < -50 bps).
 - Defaults on the rise (Bear Stearns, Lehman).
Evidence from ABX markets

- ABX.HE (subprime) AAA and BBB spreads widened dramatically (prices dropped)
Evidence from CMBX markets

- CMBX (commercial real estate) AAA spreads widened even more dramatically
Corporate IG CDX Tranche spreads

▶ The impact on tranche prices was dramatic

▶ Implied correlation on equity tranche hit > 40%
▶ Correlation on Super-Senior tranches > 100%! with standard recovery assumption
▶ Relative importance of expected loss in senior tranche versus in equity tranche indicates increased crash risk.
Evidence from S&P500 Option markets

- Implied volatility index widened dramatically: increased market and crash risk.
CDX Index & CDX Tranche Markets

- **Credit Default Swaps (CDS)**
 - Buyer of protection makes regular (quarterly) payments = CDS spread
 - Seller of protection makes buyer whole if underlying bond defaults
 - CDS spread \(\approx \) corporate bond spread \((y - r_f) \)

- **CDX Investment Grade (IG) Index**
 - Portfolio of 125 IG credits
 - Buyer of protection makes regular payments on remaining portfolio notional
 - Seller of protection makes buyer whole at time of each bond default
 - CDX index spread \(\approx \) weighted average of CDS spreads

- **CDX (IG) Tranches written on same portfolio**
 - Associated with standard attachment/detachment points (subordination levels):
 - 0-3% (Equity tranche)
 - 3-7% (Mezzanine tranche)
 - 7-10%
 - 10-15%
 - 15-30% (Senior tranche)
 - 30-100% (Super-senior tranche)
 - Buyer of protection makes regular payments on remaining tranche notional
 - Seller of protection makes buyer whole for each bond default which reduces tranche notional

- CDS, CDX index spreads determined from *marginal* default probabilities.
- CDX tranche spreads need entire *joint* distribution (correlation market).
Relation Between SP500 Index Option Prices and CDX Tranche Spreads

- Given the Arrow-Debreu (or state) prices for every date and every state of nature, one can determine the arbitrage-free price of any (derivative) security

- Given option prices across all strikes (and dates) of SP500 index options, one can back out the A/D prices
 - Breeden and Litzenberger (1978)

- Due to diversification effects of 125 firms composing CDX index, CF’s associated with CDX tranche positions closely tied to overall market performance
 - Identifying state prices from option prices should be useful for estimating tranche spreads

- In practice, strikes typically limited to (70% - 130%) of current index levels

- Can we extrapolate state prices from SP500 option prices to price credit derivatives?
 - Payoffs of most senior tranches associated with losses well below 70% of current levels
 - Need to extrapolate well beyond observable prices
Structural/Copula Models of Default

- Specify market (S&P500) value dynamics as:
\[
\frac{dM}{M} = (r - \delta_M) \, dt + \sigma_M \, dz_M^Q
\]

- Specify firm asset value dynamics via CAPM (market plus idiosyncratic risks):
\[
\frac{dA_i}{A_i} = (r - \delta_i) \, dt + \beta_i \sigma_M \, dz_M^Q + \sigma_i \, dz_i^Q
\]

Note: total variance is sum of market variance plus idiosyncratic variance
\[
v_i^2 = (\beta_i \sigma_M)^2 + \sigma_i^2
\]

- Default occurs if \(A(t) \leq B \) for \(t < T \)

- From Black/Scholes/Merton, to determine CDS spread, only need to know \(v^2 \)
 - To determine CDX index spread on 2 (or 125) identical firms, only need to know \(v^2 \)

- Consider insurance contract (\(\sim \) CDX tranches) that pays iff exactly 1 firm defaults
 - If \(v^2 = (\beta \sigma_M)^2 \), returns perfectly correlated: either zero firms or all firms will default
 - value of insurance on exactly one default is zero
 - If \(v^2 > (\beta \sigma_M)^2 \), returns are imperfectly correlated: a single default is possible
 - value of insurance on exactly one default is positive
Coval, Jurek and Stafford (CJS, 2009)

- Model Specification (≈ standard copula with Option-implied market factor)
 - Estimate 5-year state prices using 5-year SP500 option prices (≈ local vol model)
 - Specify idiosyncratic risk as Gaussian diffusion
 - Calibrate model to match the 5-year CDX index spread
 - Have only 5-year state prices; estimating PV[CF’s] (0-5 years)

- Findings: Observed spreads on
 - equity tranche too high compared to model predictions
 - other tranches (except super-senior) too low compared to model predictions

<table>
<thead>
<tr>
<th></th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
<th>30-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1472</td>
<td>135</td>
<td>37</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>CJS</td>
<td>914</td>
<td>267</td>
<td>150</td>
<td>87</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

- Interpretation:
 - sellers of insurance on senior tranches naive:
 - focused on high credit ratings/low probability of payout
 - did not properly account for the level of systematic risk exposure
Our Approach

- **Methodology:**
 - Specify several (jump-diffusion-SV) structural model for both market (S&P500) and individual (CDX) firm dynamics.
 - Price options (closed-form) and tranches (Monte-carlo simulations).
 - Calibrate market dynamics to match **all maturities** and strikes of SP500 options.
 - Calibrate idiosyncratic dynamics to match **all maturities** of CDX index spreads.
 - Calibrate to beta and total variance (estimated from CRSP/Compustat for constituents of CDX index).

- **Main Findings:**
 - Spread on super-senior tranche too far out of the money to estimate using option prices.
 - Taking Super Senior spreads as input, other tranche spreads well estimated by **any** model.

- **Interpretation:**
 - Sellers of insurance on senior tranches sophisticated:
 - Required fair (relative) compensation for risks involved.
 - May have enjoyed the “window dressing” associated with highly rated securities (≈ rating ‘arbitrage’).
A structural model for pricing long-dated S&P500 options

The market model is the Stochastic Volatility Common Jump (SVCJ) model of Broadie, Chernov, Johannes (2009):

\[
\begin{align*}
\frac{dM_t}{M_t} &= (r - \delta) dt + \sqrt{V_t} dw^Q_1 + (e^\gamma - 1) dq - \bar{\mu}_y \lambda^Q dt + (e^{\gamma_c} - 1) (dq_c - \lambda^Q_c dt) \\
\frac{dV_t}{V_t} &= \kappa_v (\bar{V} - V_t) dt + \sigma_v \sqrt{V_t} (\rho dw^Q_1 + \sqrt{1 - \rho^2} dw^Q_2) + y_v dq \\
\frac{d\delta_t}{\delta_t} &= \kappa_\delta (\bar{\delta} - \delta_t) dt + \sigma_\delta \sqrt{V_t} (\rho_1 dw^Q_1 + \rho_2 dw^Q_2 + \sqrt{1 - \rho_1^2 - \rho_2^2} dw^Q_3) + y_\delta dq.
\end{align*}
\]

We add stochastic dividend yield (SVDCJ) to help fit long-dated options as well.

The parameters of the model are calibrated to 5-year index option prices obtained from CJS.

State variables are extracted given parameters from time-series of short maturity options (obtained from OptionMetrics).

Advantage of using structural model: Arbitrage-free extrapolation into lower strikes (needed for senior tranches).
A structural model of individual firm’s default

- Given market dynamics, we assume individual firm i dynamics:

\[
\frac{dA_i(t)}{A_i(t)} + \delta_A dt - rdt = \beta_i \left(\sqrt{V_t} dw^Q_t + (e^y - 1) dq - \bar{\mu}_y \lambda^Q dt \right) + \sigma_i dw_i \\
+ (e^{y_C} - 1)(dq_C - \lambda^Q dt) + (e^{y_i} - 1)(dq_i - \lambda^Q dt).
\]

- Note
 - β: exposure to market excess return (i.e., systematic diffusion and jumps).
 - dq_C: ‘catastrophic’ market wide jumps.
 - dq_i: idiosyncratic firm specific jumps.
 - dw_i: idiosyncratic diffusion risks.

- Default occurs the first time firm value falls below a default barrier B_i (Black (1976)):

\[
\tau_i = \inf\{t : A_i(t) \leq B_i\}.
\]

- Recovery upon default is a fraction $(1 - \ell)$ of the remaining asset value.
Pricing of the CDX index via Monte-Carlo

- The running spread on the CDX index is closely related to a weighted average of CDS spreads.

- Determined such that the present value of the protection leg \(V_{idx,prot} \) equals the PV of the premium leg \(V_{idx,prem} \):

\[
V_{idx,prem}(S) = S E \left[\sum_{m=1}^{M} e^{-rt_m} (1 - n(t_m)) \Delta + \int_{t_{m-1}}^{t_m} du e^{-ru} (u - t_{m-1}) dn_u \right]
\]

\[
V_{idx,prot} = E \left[\int_0^T e^{-rt} dL_t \right].
\]

- We have defined:
 - The (percentage) defaulted notional in the portfolio: \(n(t) = \frac{1}{N} \sum_i 1_{\{\tau_i \leq t\}} \),
 - The cumulative (percentage) loss in the portfolio: \(L(t) = \frac{1}{N} \sum_i 1_{\{\tau_i \leq t\}} (1 - R_i(\tau_i)) \)
Pricing of the CDX Tranches via Monte-Carlo

- The tranche loss as a function of portfolio loss is
 \[T_j(L(t)) = \max[L(t) - K_{j-1}, 0] - \max[L(t) - K_j, 0]. \]

- The initial value of the protection leg on tranche-\(j \) is
 \[\text{Prot}_j(0, T) = \mathbb{E}^Q \left[\int_0^T e^{-rt} dT_j(L(t)) \right] \]

- For a tranche spread \(S_j \), the initial value of the premium leg on tranche-\(j \) is
 \[\text{Prem}_j(0, T) = S_j \mathbb{E}^Q \left[\sum_{m=1}^M e^{-rt_m} \int_{t_{m-1}}^{t_m} du (K_j - K_{j-1} - T_j(L(u))) \right]. \]

- Appropriate modifications to the cash-flows
 - Equity tranche (upfront payment),
 - Super-senior tranche (recovery accounting).
Calibration of firms’ asset value processes

- Calibrate 7 (unlevered) asset value parameters ($\beta, \sigma, B, \lambda_1, \lambda_2, \lambda_3, \lambda_4$) to match median CDX-series firm’s:
 - Market beta
 - Idiosyncratic risk (estimated from rolling regressions for CDX series constituents using CRSP-Compustat)
 - Term structure of CDX spreads (1 to 5 year)

- Set jump size to -2 (\sim jump to default).

- When present, calibrate catastrophic jump intensity to match super-senior ($\lambda_C < 1$ event per 1000 years).

- Set loss given default $1 - \ell$ to 40% (\sim match historical average) in normal times.

- Set $1 - \ell = 20\%$ if catastrophe jump occurs (\sim Altman et al.).

Average tranche spreads predicted for pre-crisis period

- We report six tranche spreads averaged over the pre-crisis period Sep 04 - Sep 07:
 - The historical values;
 - Benchmark model: Catastrophic jumps calibrated to match the super-senior tranche; Idiosyncratic jumps and default boundary calibrated to match the 1 to 5 year CDX index.
 - $\lambda^Q_C = 0$: No catastrophic jumps; Idiosyncratic jumps and default boundary calibrated to match 1 to 5 year CDX index;
 - $\lambda^Q_i = 0$: Catastrophic jumps calibrated to match the super-senior tranche; No idiosyncratic jumps; Default boundary calibrated to match only the 5Y CDX index.
 - $\lambda^Q_C = 0, \lambda^Q_i = 0$: No catastrophic jumps; No idiosyncratic jumps; Default boundary calibrated to match only the 5Y CDX index;
 - The results reported by CJS

<table>
<thead>
<tr>
<th></th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
<th>30-100%</th>
<th>0-3% Upfrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>1472</td>
<td>135</td>
<td>37</td>
<td>17</td>
<td>8</td>
<td>4</td>
<td>0.34</td>
</tr>
<tr>
<td>benchmark</td>
<td>1449</td>
<td>113</td>
<td>25</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>0.33</td>
</tr>
<tr>
<td>$\lambda^Q_C = 0$</td>
<td>1669</td>
<td>133</td>
<td>21</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>$\lambda^Q_i = 0$</td>
<td>1077</td>
<td>206</td>
<td>70</td>
<td>32</td>
<td>12</td>
<td>4</td>
<td>0.22</td>
</tr>
<tr>
<td>$\lambda^Q_C = 0, \lambda^Q_i = 0$</td>
<td>1184</td>
<td>238</td>
<td>79</td>
<td>31</td>
<td>6</td>
<td>0</td>
<td>0.26</td>
</tr>
<tr>
<td>CJS</td>
<td>914</td>
<td>267</td>
<td>150</td>
<td>87</td>
<td>28</td>
<td>1</td>
<td>na</td>
</tr>
<tr>
<td>$</td>
<td>CJS−Data</td>
<td>$</td>
<td>24.3</td>
<td>6</td>
<td>9.4</td>
<td>17.5</td>
<td>∞</td>
</tr>
<tr>
<td>$</td>
<td>Benchmark−Data</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Errors are an order of magnitude smaller than those reported by CJS.

However, model without jumps \((\lambda^Q_C = 0, \lambda^Q_i = 0)\) generates similar predictions to CJS.

Why? Problem is two-fold:

- **Backloading** of defaults in standard diffusion model:

<table>
<thead>
<tr>
<th>Model</th>
<th>1 year</th>
<th>2 year</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>13</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Benchmark</td>
<td>13</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>(\lambda^Q_C = 0)</td>
<td>13</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>(\lambda^Q_i = 0)</td>
<td>6</td>
<td>7</td>
<td>16</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>((\lambda^Q_C = 0, \lambda^Q_i = 0))</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>28</td>
<td>45</td>
</tr>
</tbody>
</table>

- Idiosyncratic jumps generates a five-year loss distribution that is **more peaked** around the risk-neutral expected losses of 2.4%.

 (loss distribution with \(\lambda^Q_C = 0, \lambda^Q_i = 0\) has std dev of 2.9%, whereas loss distribution with \((\lambda^Q_i > 0, \lambda^Q_C = 0)\) has std dev of 1.7%).
More Generally....

- We claim that if:
 - Take any “reasonable” dynamic model of market returns to match SP500 option prices
 - Specify idiosyncratic dynamics as a diffusion process
 - Calibrate the model to match the 5-year CDX index

- Then model will generate:
 - Short term credit spreads that are well below observed levels
 - Tranche spreads similar to those found by CJS

<table>
<thead>
<tr>
<th></th>
<th>1 year</th>
<th>2 year</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E^Q)</td>
<td>0.27</td>
<td>0.83</td>
<td>1.75</td>
<td>3.00</td>
<td>4.69</td>
</tr>
<tr>
<td>our model</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>28</td>
<td>45</td>
</tr>
<tr>
<td>SVCJ</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>Heston</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>28</td>
<td>45</td>
</tr>
<tr>
<td>(E^Q)</td>
<td>0.01</td>
<td>0.13</td>
<td>0.81</td>
<td>2.33</td>
<td>4.69</td>
</tr>
</tbody>
</table>
More Generally....

- We claim that if:
 - Take any "reasonable" dynamic model of market returns to match SP500 option prices
 - Specify idiosyncratic dynamics as a diffusion process
 - Calibrate the model to match the 5-year CDX index

- Then model will generate:
 - Short term credit spreads that are well below observed levels
 - Tranche spreads similar to those found by CJS

<table>
<thead>
<tr>
<th></th>
<th>0-3% Upfrt</th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
<th>30-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>0.34</td>
<td>1472</td>
<td>135</td>
<td>37</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>our model</td>
<td>0.26</td>
<td>1184</td>
<td>238</td>
<td>79</td>
<td>31</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>SVCJ</td>
<td>0.22</td>
<td>1078</td>
<td>243</td>
<td>96</td>
<td>44</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Heston</td>
<td>0.23</td>
<td>1097</td>
<td>230</td>
<td>83</td>
<td>39</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>CJS</td>
<td>na</td>
<td>914</td>
<td>267</td>
<td>150</td>
<td>87</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>
Intuition for Findings

- Diffusion-based structural models can’t explain short maturity spreads for IG debt
 - Some level of jumps captured in market dynamics implied from options
 - However, most risk at individual firm level is idiosyncratic
 - Need to specify idiosyncratic dynamics with jumps to capture short term spreads

- By calibrating model to 5Y CDX index, all models agree on 5Y expected loss

- By calibrating model to observed term structure of spreads, defaults occur earlier
 - eliminate “backloading” of defaults
 - crucial for pricing equity tranche spreads
 - first default associated with ≈ 16% drop in insurance premium payments
 - timing of defaults so crucial that equity tranche typically priced with an up-front premium
 - Agents willing to pay more initially if future payments expected to drop more quickly
 - “Backloading” biases equity tranche spreads downward
 - Downward bias on equity tranche generates an upward bias on senior tranches

- In addition, calibrating model to short maturity spreads increases proportion of idiosyncratic risk to systematic risk
 - Tends to make loss distribution more peaked
 - Also tends to increase spreads on equity tranche/decrease spreads on senior tranches
Calibrating Model to Term Structure of CDX Index Spreads

- When models are calibrated to match short term credit spreads, the results of CJS disappear, and sometimes are even reversed!!

- Predicted super-senior tranche spreads ≈ 0

<table>
<thead>
<tr>
<th></th>
<th>0-3% Upfrt</th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
<th>30-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>0.34</td>
<td>1472</td>
<td>135</td>
<td>37</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>our model</td>
<td>0.40</td>
<td>1669</td>
<td>133</td>
<td>21</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SVCJ</td>
<td>0.35</td>
<td>1505</td>
<td>166</td>
<td>45</td>
<td>19</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Heston</td>
<td>0.34</td>
<td>1500</td>
<td>157</td>
<td>42</td>
<td>18</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Calibrating Model to Term Structure of CDX Index Spreads and SS Spread

- However, can add a “catastrophic jump” to market dynamics
 - has negligible impact on observed option prices
 - has large impact on SS spreads.

![Fitted five-year option-implied volatility function](image1)

![Five-year option-implied risk-neutral distribution](image2)
Calibrating Model to Term Structure of CDX Index Spreads and SS Spread

- However, can add a “catastrophic jump” to market dynamics
 - has negligible impact on observed option prices
 - has large impact on SS spreads.
 - Can improve fit further by taking tranche spreads in-sample

<table>
<thead>
<tr>
<th></th>
<th>0-3% Upfrt</th>
<th>0-3%</th>
<th>3-7%</th>
<th>7-10%</th>
<th>10-15%</th>
<th>15-30%</th>
<th>30-100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>0.34</td>
<td>1472</td>
<td>135</td>
<td>37</td>
<td>17</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>our model</td>
<td>0.33</td>
<td>1449</td>
<td>113</td>
<td>25</td>
<td>13</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SVCJ</td>
<td>0.30</td>
<td>1330</td>
<td>138</td>
<td>47</td>
<td>26</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Heston</td>
<td>0.29</td>
<td>1301</td>
<td>142</td>
<td>46</td>
<td>24</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>CJS</td>
<td>na</td>
<td>914</td>
<td>267</td>
<td>150</td>
<td>87</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>
Time Series Performance

- Model fits data well, both pre-crisis and crisis periods
Conclusion

- CF’s associated with CDX tranche spreads occur throughout 5 year horizon
 - need dynamic model of market and idiosyncratic dynamics to price consistently

- Market dynamics (mostly) extracted from option prices

- idiosyncratic dynamics extracted from term structure of credit spreads
 - need idiosyncratic jumps to explain short maturity spreads

- without these jumps:
 - default events are “backloaded”
 - ratio of idiosyncratic to market risk is off
 - CDX equity tranche spreads biased downward
 - CDX senior tranche spreads biased upward

- Super senior tranche spreads cannot be estimated via extrapolation
 - Instead, need to take them as input
 - Other tranche spreads well-predicted by any model that also matches option prices, CDS spreads

- Calibrating model to term structure of credit spreads imposes more structure/ less freedom
 - We used “HJM approach”
 - More consistently, can add state variables driving idiosyncratic jump processes
Are senior tranches priced inefficiently by naive investors?

- Investors care only about expected losses (≈ ratings) and not about covariance (ironic since they trade in correlation markets!).

⇒ Spreads across AAA assets should be equalized. Are they?

- All spreads should converge to Physical measure expected loss.
 - We observe large risk-premium across the board ($\lambda^Q/\lambda^P > 6$.)
 - Large time-variation in that risk-premium.

⇒ Time-variation in spreads should be similar to that of rating changes (smoother?).
- Evidence seems inconsistent with marginal price setters caring only about expected loss (≈ ratings).
What drives differences between structured AAA spreads?

- 'Reaching for yield' by rating constrained investors who **want** to take more risk because their incentives (limited liability) and **can** because ratings simply do not reflect risk and/or expected loss.

- Taking more risk by loading on systematic risk was the name of the game (agency conflicts).

- Possible that excess ‘liquidity’/leverage lead to spreads being ‘too’ narrow in all markets, but little evidence that markets were ex-ante mis-priced on a relative basis.

- Ex-post (during the crisis) other issues, such as availability of collateral and funding costs, seem more relevant to explain cross-section of spreads across markets.

- Indeed, how to explain negative and persistent:
 - swap spreads?
 - cds basis?