An Equity-Interest Rate Hybrid Model with Stochastic Volatility and the Interest Rate Smile

Lech A. Grzelak & Cornelis W. Oosterlee

Bachelier Conference- 6th World Congress
June 22-26, 2010 Toronto
The Objectives of the Research

To build an Equity-Interest Rate Hybrid model which:

⇒ generates a smile on the equity side;
⇒ includes stochastic interest rate with interest rate smile;
⇒ enables non-zero correlations between the underlying processes;
⇒ allows efficient calibration;
⇒ First, the Heston-Hull-White Hybrid model:

\[
\begin{align*}
\frac{dS}{S} &= r \, dt + \sqrt{\sigma} \, dW^Q_x, \\
\, d\sigma &= \kappa (\bar{\sigma} - \sigma) \, dt + \gamma \sqrt{\sigma} \, dW^Q_\sigma, \\
\, dr &= \lambda (\theta - r) \, dt + \eta \, dW^Q_r,
\end{align*}
\]

with correlations: \(\rho_{x,\sigma} \neq 0\), \(\rho_{x,r} \neq 0\) and \(\rho_{\sigma,r} \neq 0\).

⇒ With the Feynman-Kac theorem, for \(x = \log S\) the corresponding PDE is given by:

\[
\begin{align*}
r \phi &= \phi_t + (r - 1/2\sigma) \phi_x + \kappa (\bar{\sigma} - \sigma) \phi_\sigma + \lambda (\theta_t - r) \phi_r \\
&\quad + 1/2 \sigma \phi_{x,x} + 1/2 \gamma^2 \sigma \phi_{\sigma,\sigma} + 1/2 \eta^2 \phi_{r,r} \\
&\quad + \rho_{x,\sigma} \gamma \sigma \phi_{x,\sigma} + \rho_{x,r} \eta \sqrt{\sigma} \phi_{x,r} + \rho_{\sigma,r} \eta \gamma \sqrt{\sigma} \phi_{\sigma,r}.
\end{align*}
\]

⇒ In the present form the model is not affine \([\text{Duffie et al. 2000}]\).
By linearization of the non-affine terms in the covariance matrix we find an approximation:

\[
\begin{pmatrix}
\sigma & \rho_{\sigma,\gamma} \sqrt{\sigma} & \rho_{\sigma,\eta}\Psi \\
\rho_{\sigma,\gamma} \sqrt{\sigma} & \gamma_2 \sigma & \rho_{\sigma,\eta}\Psi \\
\rho_{\sigma,\eta}\Psi & \gamma_2 \sigma & \eta^2
\end{pmatrix}
\approx
\begin{pmatrix}
\sigma & \rho_{\sigma,\gamma} \sqrt{\sigma} & \rho_{\sigma,\eta}\Psi \\
\rho_{\sigma,\gamma} \sqrt{\sigma} & \gamma_2 \sigma & \rho_{\sigma,\eta}\Psi \\
\rho_{\sigma,\eta}\Psi & \gamma_2 \sigma & \eta^2
\end{pmatrix}.
\]

We linearize the non-affine term $\sqrt{\sigma}$ by Ψ:

\[\Psi = \mathbb{E}(\sqrt{\sigma}) \quad \text{or} \quad \Psi = \mathcal{N}(\mathbb{E}(\sqrt{\sigma}), \text{Var}(\sqrt{\sigma}))\].

The expectation for the CIR-type process is known analytically:

\[\mathbb{E}(\sqrt{\sigma}) = \sqrt{2}c e^{-\lambda/2} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{\lambda}{2}\right)^k \frac{\Gamma\left(\frac{1+d}{2} + k\right)}{\Gamma\left(\frac{d}{2} + k\right)},\]

with c, d and λ being known deterministic functions.

Affine approximation \Rightarrow efficient pricing!
We set: $\kappa = 0.5$, $\gamma = 0.1$, $\lambda = 1$, $\eta = 0.01$, $\theta = 0.04$ and $\rho_{x,\sigma} = -0.5$, $\rho_{x,r} = 0.6$.

Figure: Comparison of implied Black-Scholes volatilities from Monte Carlo (40.000 paths and 500 steps) and Fourier inversion.
Intermediate Summary

⇒ The linearization method provides a high quality approximation;
⇒ The projection procedure can be simply extended to high dimensions;
⇒ The method is straightforward, and does not involve complex techniques;
⇒ Alternative methods for approximating the hybrid models are:
 ● Markovian projection based methods [Antonov-2008].
 ● Models with indirect correlation structure [Giese-2004, Andreasen-2006];
We now consider the Stochastic Volatility Libor Market Model [Andersen, Brotherton-Ratcliffe-2005], [Andersen, Andreasen-2000]. For $L_k := L(t, T_{k-1}, T_k)$ we define

$$L(t, T_{k-1}, T_k) \equiv \frac{1}{\tau_k} \left(\frac{P(t, T_{k-1})}{P(t, T_k)} - 1 \right), \text{ for } t < T_{k-1}. $$

with the dynamics under their natural measure given by:

$$\begin{cases}
 dL_k = \sigma_k (\beta_k L_k + (1 - \beta_k)L_k(0)) \sqrt{V} dW^k_k, \\
 dV = \lambda (V(0) - V) dt + \eta \sqrt{V} dW^k_V,
\end{cases}$$

with $dW^k_i dW^k_j = \rho_{i,j} dt$, for $i \neq j$ and $dW^k_V dW^k_i = 0$.

Efficient calibration with Markovian Projection Method [Piterbarg-2005].
Fast pricing of European-style equity options:

\[\Pi(t) = B(t)\mathbb{E}^Q \left(\frac{(S(T_N) - K)^+}{B(T_N)} \middle| \mathcal{F}_t \right) \], with \(t < T_N \),

with \(K \) the strike, \(S(T_N) \) the stock price at time \(T_N \), filtration \(\mathcal{F}_t \) and a numéraire \(B(T_N) \).

The money-savings account \(B(T_N) \) is assumed to be correlated with stock \(S(T_N) \).

We switch between the measures: From risk neutral \(Q \) to the \(T_N \)-forward \(Q^{T_N} \):

\[\Pi(t) = P(t, T_N)\mathbb{E}^{T_N} \left((F^{T_N}(T_N) - K)^+ \middle| \mathcal{F}_t \right) \], with \(t < T_N \),

with \(F^{T_N}(t) \) the forward of the stock \(S(t) \), defined as:

\[F^{T_N}(t) = \frac{S(t)}{P(t, T_N)}. \]

The ZCB \(P(t, T_N) \) is not well-defined for all \(t \)!
Since $P(T_{k-1}, T_{k-1}) = 1$ we find for the ZCB $P(t, T_k)$:

$$P(t, T_k) = (1 + \tau_k L(t, T_{k-1}, T_k))^{-1}.$$

For $t \neq T_{k-1}$ we use the interpolation from [Schlögl-2002]:

$$P(t, T_k) \approx (1 + (T_k - t)L(t, T_{k-1}, T_k))^{-1}, \text{ for } T_{k-1} \leq t \leq T_k.$$

This ZCB interpolation is sufficient for calibration purposes but for pricing callable exotics more attention is needed [Piterbarg-2004, Davis et al.-2009, Beveridge & Joshi-2009].
Under the T_N-forward measure we have:

\Rightarrow An equity part is driven by the Heston model:

$$
\frac{dS}{S} = (\ldots)dt + \sqrt{\xi}dW^N_x,
$$
$$
d\xi = \kappa(\bar{\xi} - \xi)dt + \gamma\sqrt{\xi}dW^N_{\xi}.
$$

\Rightarrow The SV Libor Market Model under the T_N-measure is given by:

$$
dL_k = -\phi_k\sigma_k V \sum_{j=k+1}^{N} \frac{\tau_j\phi_j\sigma_j}{1 + \tau_jL_j} \rho_{k,j}dt + \sigma_k\phi_k\sqrt{V}dW^N_k,
$$
$$
dV = \lambda(V(0) - V)dt + \eta\sqrt{V}dW^N_V,
$$

with $\phi_k = \beta_kL_k + (1 - \beta_k)L_j(0)$.
We define the following correlation structure:
Deriving the Forward Dynamics

\[F_{TN} = \frac{S}{P(t, TN)} \] is a tradable, so \(F_{TN} \) is a martingale under the \(T_N \)-forward measure:

\[
dF_{TN}(t) = \frac{1}{P(t, T_N)} dS(t) - \frac{S(t)}{P^2(t, T_N)} dP(t, T_N).
\]

⇒ Dynamics for \(S(t) \) are known (the Heston model), for ZCB \(P(t, T_N) \) we find:

\[
\frac{1}{P(t, T_N)} = (1 + (T_{m(t)} - t)L_{m(t)}(T_{m(t)} - 1)) \prod_{j=m(t)+1}^{N} (1 + \tau_j L(t, T_{j-1}, T_j)).
\]

with \(m(t) = \min\{k : t \leq T_k\} \).
For the ZCB $P(t, T_N)$ we are only interested in diffusion coefficients:

$$\frac{dP(t, T_N)}{P(t, T_N)} = (...) dt - \sqrt{V} \sum_{j=m(t)+1}^{N} \frac{\tau_j \sigma_j \phi_j}{1 + \tau_j L_j} dW_j^N.$$

The forward $F_{T_N}(t)$ dynamics are now given by:

$$\frac{dF_{T_N}}{F_{T_N}} = \sqrt{\xi} dW_x^N \underbrace{+ \sqrt{V} \sum_{j=m(t)+1}^{N} \frac{\tau_j \sigma_j \phi_j}{1 + \tau_j L_j} dW_j^N}_{\text{asset}} \underbrace{+ \sqrt{V} \sum_{j=m(t)+1}^{N} \frac{\tau_j \sigma_j \phi_j}{1 + \tau_j L_j} dW_j^N}_{\text{interest rate}}.$$

The model is not affine!
We freeze the Libor rates [Glasserman, Zhao-1999], [Hull, White-1996], [Jäckel, Rebonato-2000], i.e.:

\[L_j(t) \approx L_j(0) \quad \Rightarrow \quad \phi_j(t) \approx L_j(0). \]

Now, the linearized dynamics are given by:

\[\frac{dF^T_N}{F^T_N} \approx \sqrt{\xi} dW^N_x + \sqrt{V} \sum_{j=m(t)+1}^{N} \frac{\tau_j \sigma_j L_j(0)}{1 + \tau_j L_j(0)} dW^N_j. \]

The model does not depend on the Libor processes! It is fully described by the volatility structure.
The model is now given by:

\[
\frac{dF^T_N}{F^T_N} \approx \sqrt{\xi} dW^N_x + \sqrt{V} \Sigma^T dW^N, \\
d\xi = \kappa(\bar{\xi} - \xi)dt + \gamma \sqrt{\xi} dW^N_\xi, \\
dV = \lambda(V(0) - V)dt + \eta \sqrt{V} dW^N_V,
\]

with appropriate column vectors Σ and dW^N.

Under the log-transform, $x = \log F^T_N$, we find:

\[
dx \approx -\frac{1}{2} \left(\sqrt{\xi} dW^N_x + \sqrt{V} \Sigma^T dW^N \right)^2 + \sqrt{\xi} dW^N_x + \sqrt{V} \Sigma^T dW^N.
\]

Since dW^N_x is correlated with dW^N cross terms are still not affine!
We set: \(A = m(t) + 1, \ldots, N \) and \(\psi_j = \frac{\tau_j \sigma_j L_j(0)}{1 + \tau_j L_j(0)} \).

The dynamics for \(x = \log F^T_N \) are given by:

\[
\begin{align*}
\text{d}x & \approx -\frac{1}{2} \left(\xi + A_1(t) V + 2\sqrt{V}\sqrt{\xi} A_2(t) \right) \text{d}t + \sqrt{\xi} \text{d}W^N_x + \sqrt{V} \Sigma^T \text{d}W^N,
\end{align*}
\]

with

\[
A_1(t) := \sum_{j \in A} \psi_j^2 + \sum_{i,j \in A, i \neq j} \psi_i \psi_j \rho_{i,j}, \quad \text{and} \quad A_2(t) := \sum_{j \in A} \psi_j \rho_{x,j}.
\]

The drift and covariance matrix include the non-affine term \(\sqrt{V}\sqrt{\xi} \), we linearize it by:

\[
\sqrt{\xi} \sqrt{V} \approx \mathbb{E}(\sqrt{\xi} \sqrt{V})
\]

\[
\Downarrow \quad \mathbb{E}(\sqrt{\xi}) \mathbb{E}(\sqrt{V}) =: \vartheta(t).
\]
With Feynman-Kac theorem we find the corresponding PDE:

\[
0 = \phi_t + \frac{1}{2} \left(\xi + A_1 V + 2A_2 \vartheta(t) \right) (\phi_{xx} - \phi_x) \\
+ \kappa (\bar{\xi} - \xi) \phi_x + \lambda (V(0) - V) \phi_V + \frac{1}{2} \eta^2 V \phi_{VV} \\
+ \frac{1}{2} \gamma^2 \phi_{\xi,\xi} + \rho \phi_{x,\xi} \gamma \phi_{x,\xi}
\]

subject to \(\phi(u, X(T), 0) = \exp(iux(T_N)) \).

The corresponding characteristic function is given by:

\[
\phi(u, X(t), \tau) = \exp(A(u, \tau) + iux(t) + B(u, \tau) \xi(t) + C(u, \tau) V(t)),
\]

with \(\tau = T_N - t \).

The ODEs for \(A(u, \tau), B(u, \tau), C(u, \tau) \) are of Heston-type and can be solved recursively [Andersen, Andreasen-2000].
We price an equity call option and investigate the accuracy of the approximation.

For equity we take:

\(\kappa = 1.2, \quad \bar{\xi} = 0.1, \quad \gamma = 0.5, \quad S(0) = 1, \quad \xi(0) = 0.1. \)

For the interest rate model we take term structure:

\[P(0, T) = \exp(-0.05 T), \quad \beta_k = 0.5, \quad \sigma_k = 0.25, \quad \lambda = 1, \quad V(0) = 1, \quad \eta = 0.1. \]

The correlation structure is given by:

\[
\begin{pmatrix}
1 & \rho_{x,\xi} & \rho_{x,1} & \cdots & \rho_{x,N} \\
\rho_{\xi,x} & 1 & \rho_{\xi,1} & \cdots & \rho_{\xi,N} \\
\rho_{1,x} & \rho_{1,\xi} & 1 & \cdots & \rho_{1,N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{N,x} & \rho_{N,\xi} & \rho_{N,1} & \cdots & 1
\end{pmatrix}
= \begin{pmatrix}
1 & -0.3 & 0.5 & \cdots & 0.5 \\
-0.3 & 1 & 0 & \cdots & 0 \\
0.5 & 0 & 1 & \cdots & 0.98 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0.5 & 0 & 0.98 & \cdots & 1
\end{pmatrix}.
\]
Figure: Comparison of implied Black-Scholes volatilities for the European equity option, obtained by Fourier inversion of approximation and by Monte Carlo simulation.
Conclusion

⇒ We have developed an efficient approximation method projecting non-affine models on affine versions;
⇒ We have presented an extension of the Heston model with stochastic interest rates:
 ● Short-rate processes;
 ● SV LMM;
⇒ The model can be easily generalized to FX options;
References

We investigate the effect of β on equity implied vol. with Monte Carlo simulation of the full-scale model:

Figure: The effect of the interest rate skew, controlled by β_k, on the equity implied volatilities. The Monte Carlo simulation was performed with for maturity $T = 10$.

The prices of the European style options are rather insensitive to skew parameter β!
We consider an investor who is willing to take some risk in one asset class in order to obtain a participation in a different asset class.

An example of such hybrid product is *minimum of several assets* [Hunter-2005] with payoff defined as:

\[
\text{Payoff} = \max \left(0, \min \left(C_n(T), k\% \times \frac{S(T)}{S(t)} \right) \right),
\]

where \(C_n(T) \) is an n-years CMS, and \(S(T) \) is a stock.

By taking \(T = \{1, 2, \ldots, 10\} \) and the payment date \(T_N = 5 \) we get:

\[
\Pi_H(t) = P(t, T_5) \mathbb{E}^{T_5} \left[\max \left(0, \min \left(\frac{1 - P(T_5, T_{10})}{\sum_{k=6}^{10} P(T_5, T_k)}, k\% \times \frac{S(T_5)}{S(t)} \right) \right) \bigg| \mathcal{F}_t \right].
\]
Figure: The value for a minimum of several assets hybrid product. The prices are obtained by Monte Carlo simulation with 20,000 paths and 20 intermediate points. Left: Influence of β; Right: Influence of $\rho_{x,L}$.
Now, we compare the results with Heston-Hull-White model

⇒ From calibration routine we have: \(\lambda = 0.0614, \eta = 0.0133, \)
\(r_0 = 0.05 \) and \(\kappa = 0.65, \gamma = 0.469, \bar{\xi} = 0.090, \rho_{x,\xi} = -0.222 \) and
\(\xi_0 = 0.114. \)

⇒ Calibration ensures that prices on the equities are the same, so the hybrid price differences can only result from the interest rate component!

Figure: Hybrid prices obtained by two different hybrid models, H-LMM and HHW. The models were calibrated to the same data set.
The SV LMM model provides much fatter tails for CMS rate than the Hull-White model.