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Introduction

In this talk, the problem of partial hedging is studied by
constructing hedging strategies that minimize conditional
value-at-risk (CVaR) of the portfolio. Two aspects of the problem
are considered: minimization of CVaR with initial capital bounded
from above, and minimization of hedging costs subject to a CVaR
constraint. The Neyman-Pearson lemma is used to deduce
semi-explicit solutions. The results are illustrated by constructing
CVaR-efficient hedging strategies for a call option in the
Black-Scholes model, call option in regime-switching telegraph
market model and embedded call option for equity-linked life
insurance contract.
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Partial Hedging

@ In a complete unconstrained financial market every contingent
claim with discounted payoff H can be hedged perfectly.

@ Perfect hedging requires initial capital in the amount of

Ho = Ep+[H].

In a constrained market perfect hedging is not always possible.
Example of a constraint: initial capital bounded by Vo < Hp.
The problem is to select the “best” partial hedging strategy.

One of the approaches is to optimize a risk measure.
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Selecting Target Risk Measure

@ Properties of the optimal hedging strategy depend on the risk
measure being optimized.

@ Poor choice of the risk measure generally leads to poor results.
@ Examples of risk measures:

Linear shortfall risk

Quadratic loss

Probability of successful hedging
Value-at-risk

Conditional value-at-risk

Lower/upper tail conditional expectation
Worst conditional expectation

Expected shortfall
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Choosing a Risk Measure

Linear Shortfall Risk, Quadratic Loss, Probability of Successful Hedging

Let random variable L represent loss (can be negative).

Quadratic loss: Ep[L?].

o
o Linear shortfall risk: Ep[LT],where x* = max(x,0).
o
e Probability of successful hedging: P(L < 0).
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Choosing a Risk Measure

Value-at-Risk and Conditional Value-at-Risk

@ VaR and CVaR are defined for a fixed level « € (0,1).
o Let L, and L™ be lower and upper a-quantiles of L:

Ly = inf{ixeR : P[L<x]>a},
L = inf{xeR : P[L<x]>a}

e Value-at-risk (VaR) at level a:
VaR*(L) = L1-9),
e Conditional value-at-risk (CVaR) at level a:
CVaR*(L) = inf {z+1 -Ep [(L—2)"| : zeR}.

@ Note that the infimum in CVaR definition is always attained
as minimum (see Rockafellar and Uryasev, 2000).
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Choosing a Risk Measure

Tail Conditional Expectation, Worst Conditional Expectation and Expected Shortfall

e Lower tail conditional expectation (lower TCE) at level a:
TCE,(L) = E[L | L > L),
e Upper tail conditional expectation (upper TCE) at level a:
TCE*(L) = E[L | L > L(~%)],
e Worst conditional expectation (WCE) at level a:
WCE, (L) =sup{E[L| A] : A€ F,PIA] >a}.

o Expected shortfall (ES) at level a:

BSu(L) = 1+ (BlL- Lmr, )] + Lamw - (PIL = Loa)] ).
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Choosing a Risk Measure

Relationships between TCE, WCE, ES and CVaR

@ The following relationships are true for any loss function:

ES, = CVaR",

TCE* < TCE, < CVaR%,

TCE* < WCE, < CVaR".

e TCE"(L) = TCE,(L) = WCE,(L) = CVaR"*(L) if and only if
P(L> L) =, P(L> L o) >0

or
P(L> L3, L# Ly ) =0.
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Choosing a Risk Measure

A Discrete-State Example: Where VaR Fails and CVaR Does Not

o Consider a world with three states: IP(w;) = IP(w2) = 0.48,
IP(w3) = 0.04 and three different loss functions: Ly, Ly and Ls.

w1 | W2 w3 IP[L < 0] VaRo_05 IE[L2] CVaR0_05
Ly | —1 1] 10 0.48 1.00 4.96 8.20
Ly | -1 1| 100 0.48 1.00 | 400.96 80.20
L3 | —2 1] 10 0.48 1.00 6.40 8.20

@ In the example above:
o P[L; <0] =P[Ly <0] =P[L3 <0],
e VaR 05(L1) = VaRp.05(L2) = VaR.05(L3),
o E[(L1)?] <E[(L3)?] < E[(L2)?],
o CVaRg05(L1) = CVaRo.05(L3) < CVaRg.05(L2).
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Minimizing Conditional Value-at-Risk

Problem Setup in Continuous Time

o Let the discounted price process X; be a semimartingale on a
standard stochastic basis (Q, F, (Ft)sejo,7), IP), with
Fo = {@, Q}

o A self-financing strategy: initial capital Vo > 0 and a
predictable process ¢,. For each strategy (g, ) the value
process V; is

t
Vi — v0+/ g.dXs, Vtelo, Tl.
0

A strategy (Vo, &) is admissible if
Vi >0, Vtel0,T], P-as.

Denote the set of all admissible self-financing strategies by A.
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Minimizing Conditional Value-at-Risk

Problem Setup in Continuous Time

e Consider a short position in a contingent claim whose
discounted payoff is an Fr—measurable random variable
He LY(P), H>0.

@ In a complete market there exists a unique martingale
measure IP* & [P, and the perfect hedging strategy requires
allocating initial capital Hy = Ep-+[H]| (risk-neutral price).

e For each strategy (V, &) define loss function:

L=1L1(Vo,&)=H—Vr.

e Capital constraint: Vo < Vy < Ho.
@ The problem is to minimize CVaR over the set of admissible
self-financing strategies:

CVaR, (Vp, i ,
aRe(Vo.8) —  min

Vo < V.
Alexander Melnikov Dynamic Hedging of Conditional Value-at-Risk



Minimizing Conditional Value-at-Risk

Reducing the Problem to a Problem of One-Dimensional Optimization

@ Recall that
CVaR*(Vp, &) = inf{z—i— L. Ep [(H —Vp— z)ﬂ L ze€ ]R} ,
and define

Ay = {(M,8) | (W, 8) e A, Vo < W},

— 1, ; _ _ >\t
c(z) = z+¢ (Vo,rg)QA\-,OIEP [(H=Vr—2)"].

@ Then
min  CVaR,(Vp, ¢) = min ¢c(z).
B, VR (V- 8) = i €l
o If we manage to derive an explicit form for c(z), the initial

problem is reduced to a problem of one-dimensional
minimization.
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Minimizing Conditional Value-at-Risk

Subproblem: Minimizing Linear Shortfall Risk

@ The problem is to find an explicit expression for the function

c(z)=z+1. in Ep[(H-Vr—2)"].
(z2) =z i (VOBIGHAVO IP[( T Z)}

e Note that (H— V7 —z)" = ((H—z)" — Vr)Tand consider
the problem

E H—2)"T— V)T — min .
p|(H=2)" = Vr)] (Vo.0)eAy,

@ The latter is a problem of linear shortfall risk minimization
with respect to a contingent claim whose payoff (H — z)™
depends on parameter z. The solution (V(z), (2z)) may be
derived with the help of Neyman-Pearson lemma (Follmer and
Leukert, 2000).
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Minimizing Conditional Value-at-Risk

Minimizing Linear Shortfall Risk: The Neyman-Pearson Solution

The optimal strategy (Vo(z), &(z)) for the problem

E H—2z)"— V)" min
p [( z) ) — (Vo,C)IGAVO

is a perfect hedge for H(z) = (H — z)"®(z), where

p(z) = l{d{%x,(z)}"")’(z)'l{

Fos(o}
a(z) = inf{a >0: Ep- [(H—Z)Jr . 1{j£>a}] < \70} :
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Minimizing Conditional Value-at-Risk

Final Results

The optimal strategy ( Vo, &) for the problem

CVaR,(Vp,¢) —  min
(V0.8 B,

is a perfect hedge for H(2) = (H — 2)"®(2), where §(z) is the
randomized test from linear shortfall risk subproblem, 2 is the
point of global minimum of

z+ 1 Ep[(H-2)"(1-¢(2))], forz<z*,
clz) = { z, for z > z*,
on interval z < z*, and z* is a real root of equation
Vo = Ep:[(H—z")"].
Besides, one always has
CVaR,(Vp, &) = c(2).



Minimizing Hedging Costs

The Dual Problem Setup in Continuous Time

@ The dual problem is to minimize initial capital subject to a
CVaR constraint:

% in Ep:|V in ,
P b, R,
CVaR(X(Vo,C) < C CVaRa(VT) < C.
@ Recall that

_ 1
CVaRy(Vo, &) = min <z+ —Ep(H— V7 — z)+>

and consider a family of problems

Ep- [V—,—] — VTmei-r;_T,

Ep(H—Vr—2)" <(C—2z)-a.
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Minimizing Hedging Costs

A Helpful Calculus Lemma

Lemma

Let X be a solution of

f(x) — min,
xeX

: <o
min glx,z) <c

Then the following family of problems also admits solutions,

denoted x(z):
f(x) — min,
xeX
g(x,z) <ec
Besides, one always has
% = x(2),

where z is a point of global minimum of f(%(z)).
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Minimizing Hedging Costs

Applying the Lemma to the Dual Problem

o Let V1 (z) be the solution of
Ep«[V in ,
P [ T] —> VTEIS!—T
Ep(H—Vr—2)" <(C—2z)-a
@ Then the solution of the dual problem
Ep- |V in ,
P [ T] —> VTEIS!—T
CVaR,(Vr) < C.

can be expressed as V1 = V1(2),where

]EH)*[VT(E)] = Ein IEHJ*[VT(Z)]

zeR
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Minimizing Hedging Costs

Dual Problem: Final Results (Part 1)

If Ep[H] > Ca and Ep[(H — C)*] > 0, the optimal strategy
(Vo, &) for the dual problem is a perfect hedge for
(H=2)*(1—§(2)), where (z) is defined by

P(z) = 1{%>a(z)}+7(z)'1 dr —3(z)

3(z) = inf{aEO:]E]p [(H—z)+-1{d};>a}}g(C—z)a},
v@)——(C_Z”‘EPV”—”+‘{%>an

Er [(H-2)" 1ig o0y
and 2 is a point of minimum of function

d(z) = Ep- [(H—2)"(1-§(2))]

on interval —co < z < C.
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Minimizing Hedging Costs

Dual Problem: Final Results (Part 2)

o If Ep[H] < Ca or Ep[(H — C)T] <0, the optimal strategy
(Vo, &) for the dual problem is a passive strategy (do nothing).

o If the first inequality is not satisfied, target CVaR is too high
compared to the expected payoff on the contingent claim, so
there is no need to hedge.

o If the second inequality is not satisfied, the payoff is bounded
from above by a constant less than C, so CVaR can never
reach its target value no matter what strategy is used.
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CVaR Hedging in the Black-Scholes Model

The Discounted Price Process

@ Let the underlying S; and bond price B; follow

B, = et
{ St = Soexp(cW; + ut).
@ SDE for the discounted price process X; = B; 1S;:
{ dX; = Xe(0cdW; + mdt),

Xo = xo,
o2
where m:y—r—k?.
@ Terminal value and Radon-Nikodym derivative:
Xr = xpexp (O'WT +(m— ;02)7') ,
dP* 1 2
g - &P (—:W—r 5 (g) T) = const'X;m/‘72.
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CVaR Hedging in the Black-Scholes Model

The Contingent Claim

@ The contingent claim of interest is a plain vanilla call option
with payoff (St — K)™.
@ The discounted payoff H is equal to

= (X7 — Ke "T)T.
@ The initial capital Hy required for a perfect hedge is
= Ep:[H] = x® 4 (Ke ") —Ke "T®_(Ke '),

where

@i(K)_q><'"X§\F'”Ki f)

and () is a c.d.f. for standard normal distribution.
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CVaR Hedging in the Black-Scholes Model

Problem Setting

@ Assume the initial capital V; is limited by Vo < Hp.
@ For simplicity of presentation, assume m > 0.

@ Our goal is to derive a hedging strategy that minimizes CVaR
of the portfolio.

Alexander Melnikov Dynamic Hedging of Conditional Value-at-Risk



CVaR Hedging in the Black-Scholes Model

Solution

The optimal strategy (Vp, &) is a perfect hedge for
A(z) = (X7 — (Ke='T +2))* l{x >B(2)} where 2 is a point of

global minimum of ¢(z) on (—o0, z*),

c(z) = z+1-xe [mchi (Ke_’T + z) - CIDi(E(z))] -
(Ke™'T + 2) [cbi <Ke”T + z) - éi(i;(z))} ,
where @4 (x) = @4 (xe™™T), z* is the solution of
Vo= x@, (Ke T +2*) — (Ke T +2)®_(Ke " +2),
and for each z € R, b(z) is the solution of

x0®;(b) — ((Ke T +2))®_(b) = W,
b> (Ke T +z).
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CVaR Hedging in the Black-Scholes Model

Numerical Example: Optimal CVaR vs. Initial Capital (1)

o Consider a plain vanilla call option with strike price of
K = 110 and time to maturity T = 0.25.

@ Assume that financial market evolves according to the
Black-Scholes model with parameters

c=03, pu=0.09, r=0.05.

@ Initial stock price is Sg = 100.

@ The objective is to construct CVaRg g25-optimal partial
hedging strategies for the call option with variable amount of
initial capital available, ranging from 0 to the fair price of the
option.
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CVaR Hedging in the Black-Scholes Model

Numerical Example: Optimal CVaR vs. Initial Capital (2)
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CVaR Hedging of Equity-Linked Insurance Contracts

Probabilistic Setup and Assumptions

(Q, F,IP) is "financial” probability space, as described earlier.
Consider "actuarial” probability space (Q, F, ).

Let random variable T (x) denote the remaining lifetime of a
person aged x.

Let 7px = IP[T(x) > T] be a survival probability for the next
T years of the insured.

Assume that T (x) does not depend on the evolution of
financial market.
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CVaR Hedging of Equity-Linked Insurance Contracts

Equity-Linked Pure Endowment Contract

@ Insurance company is obliged to pay the benefit in the amount
of H to the insured, giving the insured is alive at time T.

e His an Fr-measurable non-negative random variable.

@ The optimal price is traditionally calculated as an expected
present value of cash flows under the risk-neutral probability.

@ The "insurance” part of the contract doesn't need to be
risk-adjusted since the mortality risk is unsystematic.

@ Brennan-Shwartz price of the contract:
TUx=Ep {TEIP* {H ' 1{T(x)>T}” = 7px " Ep: [H],

where H = He'T is the discounted benefit.
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CVaR Hedging of Equity-Linked Insurance Contracts

Problem Setting

The problem of the insurance company is to mitigate financial
part of risk and hedge H in the financial market.

However,
TUx < Ep+ [H] ,
hence the perfect hedge is not accessible.
@ For a fixed client age x and time horizon T, denote
\70 = TPx ]E]p* [H]
@ We can now consider the problem of CVaR-optimal hedging of

H with capital constraint Vo < V4 and apply all techniques
described earlier to derive the solution.

The related dual problem can also be considered.
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CVaR Hedging of Equity-Linked Insurance Contracts

Numerical Example (Black-Scholes)

Consider an equity-linked pure endowment contract with
benefit being a call option wih strike price of K = 110.

Let the starting price of the underlying be equal to Xp= 100.

Let "financial” world be driven by the Black-Scholes model:
u=20.09 r=0.05 o=03.

@ We optimize CVaR of hedging strategies for confidence level
« = 0.025 and variable time horizon.

@ We use survival probabilities from mortality table UP94 @
2015 (Uninsured Pensioner Mortality 1994 Table Projected to
the Year 2015) from McGill et al., " Fundamentals of Private
Pensions” (2004)).
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CVaR Hedging of Equity-Linked Insurance Contracts

Numerical Example: Optimal CVaR for Ages 1-70
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CVaR Hedging of Equity-Linked Insurance Contracts

Numerical Example: Optimal CVaR for Ages 1-35
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CVaR Hedging in Telegraph Market Model

Two-State Telegraph Market Model: Definition

@ Let o(t) € {1,2},0(0) = 1 be a continuous time Markov
chain process with Markov generator

L A A
7 Ay —Ar )7

@ Define the main driving factors of the market:
t N,
Xt = /CU(S)dS, Jt = Zh”(—rj—)’
3 0
where ¢ = (c1, ¢2), h = (h1, h2) and N; is the number of
jumps of o (t) up to time t.
© The risk-free asset is defined by dB: = r,(;)B:dt, and the
interest rate r has two states (ry, r2).
@ The risky asset is defined similarly to Merton's model:

dsi_- = St_d(Xt + Jt)
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CVaR Hedging in Telegraph Market Model

Absence of Arbitrage and Completeness

@ Telegraph market model can be described as a complete
market model with two traded assets, where dynamics of the
risky asset features jumps and regime switching.

@ The model can be viewed as a generalization of Merton's
model preserving completeness of the market.

The telegraph model is arbitrage free if and only if

s — Co

hy

>0 o0c=1,2

If the model is arbitrage free, it is complete.

Alexander Melnikov Dynamic Hedging of Conditional Value-at-Risk



CVaR Hedging in Telegraph Market Model

Computing Expectations (1)

@ Our algorithm for deriving CVaR-optimal strategies requires
computing expectations of the form

E[f(ST.B7)  1iz,<2]

for various functions f and constants a, both under the
statistical measure IP and under the risk-neutral measure P*.

@ 5, B; and Z; may all be expressed in terms of X; and Ni;
consider g(+, -) such that

E[f(ST,BT) - 1{ZT<a}] = E[g (X, Ni)].
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CVaR Hedging in Telegraph Market Model

Computing Expectations (2)

@ Expand the expected value above by conditioning on N; = n:

E[g(Xt, Nt)] Z/gxnpntxd

n>0

where pp(t, x) is defined as

Pt %) = %]P [{X: < x} N {N; = n}].
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CVaR Hedging in Telegraph Market Model

Computing Expectations (3)

For all t > 0 and x € R,
po(t, x) = e M(x — cit)

and for all k > 1

A X X k=1
prka(tx) = ,("’_“ ,)‘(”@ft_l)))!)z exp (— by (£, %) — Ba(t,%))
_ Pt X)), (t x)
pzk(trx) - k 2 '
where
Cot — X
Pu(tx) = Alcz—a’
X —cCt
Po(t.x) = /\2cz—61'

and x € (min{cit, cot}, max{cit, cat}).
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CVaR Hedging in Telegraph Market Model

Numerical Example: Optimal CVaR vs. Initial Capital (1)

o Consider a plain vanilla call option with strike price of
K = 100 and time to maturity T = 1.

@ Assume that financial market evolves according to the
telegraph market model with parameters

c = —05 ¢ =05,
A1 = A =5,
n = rn= 0.07,

hy = 0.5, hy=—0.35.

@ Initial stock price is So = 100.

@ The objective is to construct CVaRg g25-optimal partial
hedging strategies for the call option with variable amount of
initial capital available, ranging from 0 to the fair price of the
option.
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CVaR Hedging in Telegraph Market Model

Numerical Example: Optimal CVaR vs. Initial Capital (2)
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