Portfolio optimization under partial information
with expert opinions

Ralf Wunderlich

Zwickau University of Applied Sciences

Joint work with Rüdiger Frey (Leipzig, Germany)
Abdelali Gabih (Marrakech, Morocco)

6th World Congress of the Bachelier Finance Society , Toronto, June 22 - 26, 2010
Introduction

Classical **Merton problem** in dynamic portfolio optimization

- Stock returns \(\frac{dS_t}{S_t} = \mu dt + \sigma dW_t \)
 - risk-free interest rate \(r \)

- Maximize \(E [U(X_T)] \)
 - for power utility \(U(x) = \frac{x^\theta}{\theta}, \theta < 1, \theta \neq 0 \)

- Optimal proportion of wealth invested in risky asset
 \[
 h_t^{(0)} = \frac{1}{1 - \theta} \frac{\mu - r}{\sigma^2} = \text{const}
 \]

\(h^{(0)} \) is a key building block of optimal strategies in more complicated models
Portfolio Optimization and Drift

- Sensitive dependence of investment strategies on drift of assets
- Drifts are hard to estimate empirically
 need data over long time horizons
 (other than volatility estimation)
- Problems with stationarity: drift is not constant
Implications

- **Academic literature:** drift is driven by unobservable factors
 Models with partial information, apply filtering techniques
 Björk, Davis, Landén (2010)
 - Linear Gaussian models
 Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...
 - Hidden Markov models

- Practitioners use static Black-Litterman model
 Apply Bayesian updating to combine subjective views (such as "asset 1 will grow by 5%")
 with empirical or implied drift estimates

- Present paper combines the two approaches
 consider dynamic models with partial observation including expert opinions
Implications

- **Academic literature**: drift is driven by unobservable factors
 - Models with partial information, apply filtering techniques
 - Björk, Davis, Landén (2010)
 - Linear Gaussian models
 - Lakner (1998), Nagai, Peng (2002), Brendle (2006), ...
 - Hidden Markov models

- **Practitioners** use static **Black-Litterman model**
 - Apply Bayesian updating to combine
 - subjective views (such as “asset 1 will grow by 5%”)
 - with empirical or implied drift estimates
Implications

- **Academic literature:** drift is driven by unobservable factors. Models with partial information, apply filtering techniques.
 - Björk, Davis, Landén (2010)
 - Linear Gaussian models
 - Hidden Markov models

- **Practitioners** use static Black-Litterman model
 - Apply Bayesian updating to combine subjective views (such as “asset 1 will grow by 5%”) with empirical or implied drift estimates

- Present paper combines the two approaches consider dynamic models with partial observation including expert opinions
Financial Market Model

\((\Omega, \mathcal{G} = (\mathcal{G}_t)_{t \in [0, T]}, P)\) filtered probability space (full information)

Bond
\[S^0_t = 1 \]

Stocks
prices \(S_t = (S^1_t, \ldots, S^n_t)\), returns \(dR^i_t = \frac{dS^i_t}{S^i_t} \)

\[dR_t = \mu(Y_t) \, dt + \sigma \, dW_t \]
\(\mu(Y_t) \in \mathbb{R}^n \) drift, \(\sigma \in \mathbb{R}^{n \times n} \) volatility
\(W_t \) \(n \)-dimensional \(\mathcal{G} \)-Brownian motion

Factor process
\(Y_t \) finite-state Markov chain, independent of \(W_t \)
Financial Market Model

\((\Omega, \mathcal{G} = (\mathcal{G}_t)_{t \in [0,T]}, P)\) filtered probability space (full information)

Bond
\[S_t^0 = 1 \]

Stocks
prices
\[S_t = (S_t^1, \ldots, S_t^n)\top, \]
returns
\[dR_t^i = \frac{dS_t^i}{S_t^i} \]

\[dR_t = \mu(Y_t) \, dt + \sigma \, dW_t \]

\[\mu(Y_t) \in \mathbb{R}^n \] drift,
\[\sigma \in \mathbb{R}^{n \times n} \] volatility

\[W_t \quad n\text{-dimensional } \mathcal{G}\text{-Brownian motion} \]

Factor process
\(Y_t \) finite-state Markov chain, independent of \(W_t \)

state space
\[\{e_1, \ldots, e_d\}, \] unit vectors in \(\mathbb{R}^d \)

states of drift
\[\mu(Y_t) = MY_t \] where
\[M = (\mu_1, \ldots, \mu_d) \]

generator matrix \(Q \)

initial distribution
\[(\pi^1, \ldots, \pi^d)\top \]
Investor Information

Investor is not informed about factor process Y_t, he only observes

Stock prices S_t or equivalently stock returns R_t

Expert opinions own view about future performance
news, recommendations of analysts or rating agencies

\Rightarrow Model with *partial information*.

Investor needs to “learn” the drift from observable quantities.
Modelled by marked point process \(I = (T_n, Z_n) \sim I(dt, dz) \)

- At random points in time \(T_n \sim \text{Poi}(\lambda) \) investor observes r.v. \(Z_n \in \mathcal{Z} \)
- \(Z_n \) depends on current state \(Y_{T_n} \), density \(f(Y_{T_n}, z) \)
 \((Z_n)\) cond. independent given \(\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T]) \)
Expert Opinions

Modelled by marked point process $I = (T_n, Z_n) \sim I(dt, dz)$

- At random points in time $T_n \sim \text{Poi}(\lambda)$ investor observes r.v. $Z_n \in \mathcal{Z}$
- Z_n depends on current state Y_{T_n}, density $f(Y_{T_n}, z)$
 (Z_n) cond. independent given $\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T])$

Examples

- Absolute view: $Z_n = \mu(Y_{T_n}) + \sigma \varepsilon_n$, (ε_n) i.i.d. $\mathcal{N}(0, 1)$
 The view “S will grow by 5%” is modelled by $Z_n = 0.05$
 σ_ε models confidence of investor

- Relative view (2 assets): $Z_n = \mu_1(Y_{T_n}) - \mu_2(Y_{T_n}) + \tilde{\sigma}_\varepsilon \varepsilon_n$
Expert Opinions

Modelled by marked point process \(I = (T_n, Z_n) \sim I(dt, dz) \)

- At random points in time \(T_n \sim \text{Poi}(\lambda) \) investor observes r.v. \(Z_n \in \mathbb{Z} \)
- \(Z_n \) depends on current state \(Y_{T_n} \), density \(f(Y_{T_n}, z) \)
 \((Z_n)\) cond. independent given \(\mathcal{F}_T^Y = \sigma(Y_s : s \in [0, T]) \)

Examples

- Absolute view: \(Z_n = \mu(Y_{T_n}) + \sigma \varepsilon \varepsilon_n, \quad (\varepsilon_n) \text{ i.i.d. } N(0, 1) \)
 The view “S will grow by 5%” is modelled by \(Z_n = 0.05 \)
 \(\sigma \varepsilon \) models confidence of investor

- Relative view (2 assets): \(Z_n = \mu_1(Y_{T_n}) - \mu_2(Y_{T_n}) + \tilde{\sigma} \varepsilon \varepsilon_n \)

Investor filtration \(\mathbb{F} = (\mathcal{F}_t) \) with \(\mathcal{F}_t = \sigma(R_u: u \leq t; (T_n, Z_n): T_n \leq t) \)
Admissible Strategies described via portfolio weights h^1_t, \ldots, h^n_t

$$\mathcal{H} = \{(h_t)_{t \in [0, T]} \mid h_t \in \mathbb{R}^n, \int_0^T \|h_t\|^2 < \infty, \quad h \text{ is } \mathbb{F}\text{-adapted} \}$$
Optimization Problem

Admissible Strategies described via portfolio weights \(h^1_t, \ldots, h^n_t \)

\[
\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n, \int_0^T ||h_t||^2 < \infty, \\
h \text{ is } \mathbb{F}-\text{adapted}\}\]

Wealth

\[
dX_t^h = X_t^h h_t^\top (\mu(Y_t) \, dt + \sigma \, dW_t), \quad X_0^h = x_0
\]

Utility function

\[
U(x) = \frac{x^\theta}{\theta}, \quad \text{power utility}, \quad \theta \in (-\infty, 1) \setminus \{0\}
\]

\[
U(x) = \log(x) \quad \text{logarithmic utility} \quad (\theta = 0)
\]
Optimization Problem

Admissible Strategies: described via portfolio weights h^1_t, \ldots, h^n_t

$$\mathcal{H} = \{(h_t)_{t \in [0,T]} \mid h_t \in \mathbb{R}^n, \int_0^T \|h_t\|^2 < \infty, \quad h \text{ is } \mathbb{F}-\text{adapted}\}$$

Wealth:

$$dX^h_t = X^h_t h^\top_t (\mu(Y_t) dt + \sigma dW_t), \quad X^h_0 = x_0$$

Utility function:

$$U(x) = \frac{x^\theta}{\theta}, \quad \text{power utility,} \quad \theta \in (-\infty, 1) \setminus \{0\}$$

$$U(x) = \log(x) \quad \text{logarithmic utility} \quad (\theta = 0)$$

Reward function:

$$v(t, x, h) = E_{t,x}[U(X^h_T)] \quad \text{for } h \in \mathcal{H}$$

Value function:

$$V(t, x) = \sup_{h \in \mathcal{H}} v(t, x, h)$$

Find optimal strategy $h^* \in \mathcal{H}$ such that $V(0, x_0) = v(0, x_0, h^*)$
Filtering and Reduction to Full Information

HMM Filtering - only return observation

Filter

\[p_t^k := P(Y_t = e_k | \mathcal{F}_t) \]

\[\hat{\mu}(Y_t) := E[\mu(Y_t) | \mathcal{F}_t] = \mu(p_t) = \sum_{j=1}^{d} p_t^j \mu_j \]
Filtering and Reduction to Full Information

HMM Filtering - only return observation

Filter

\[p_t^k := P(Y_t = e_k | \mathcal{F}_t) \]

\[\hat{\mu}(Y_t) := E[\mu(Y_t) | \mathcal{F}_t] = \mu(p_t) = \sum_{j=1}^{d} p_t^j \mu_j \]

Innovation process

\[\tilde{W}_t := \sigma^{-1}(R_t - \int_0^t \hat{\mu}(Y_s) ds) \] is an \(\mathbb{F} \)-BM

HMM filter

\[p_0^k = \pi^k \]

\[dp_t^k = \sum_{j=1}^{d} Q_{jk} p_t^j dt + a_k(p_t)^\top d\tilde{W}_t \]

where

\[a_k(p) = p^k \sigma^{-1}(\mu_k - \sum_{j=1}^{d} p^j \mu_j) \]
HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between ‘information dates’ T_n
HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between ‘information dates’ T_n

Bayesian updating at $t = T_n$:

$$p^k_{T_n} \propto p^k_{T_{n-}} f(e_k, Z_n)$$

recall: $f(Y_{T_n}, z)$ is density of Z_n given Y_{T_n}

with normalizer

$$\sum_{j=1}^{d} p^j_{T_{n-}} f(e_j, Z_n) =: \bar{f}(p_{T_{n-}}, Z_n)$$
HMM Filtering - including expert opinions

Extra information has no impact on filter p_t between ‘information dates’ T_n

Bayesian updating at $t = T_n$:

$$p^k_{T_n} \propto p^k_{T_n^-} f(e_k, Z_n) \quad \text{recall: } f(Y_{T_n}, z) \text{ is density of } Z_n \text{ given } Y_{T_n}$$

with normalizer $\sum_{j=1}^d p^j_{T_n^-} f(e_j, Z_n) =: \tilde{f}(p_{T_n^-}, Z_n)$

HMM filter

$$p^k_0 = \pi^k$$

$$dp^k_t = \sum_{j=1}^d Q^{jk} p^j_t dt + a_k(p_t)^\top d\tilde{W}_t + p^k_{t^-} \int_Z \left(\frac{f(e_k, z)}{f(p_{t^-}, z)} - 1 \right) \gamma(dt \times dz)$$

Compensated measure

$$\gamma(dt \times dz) := l(dt \times dz) - \lambda dt \sum_{k=1}^d p^k_{t^-} f(e_k, z) \, dz \quad \text{compensator}$$
Filtering: Example

Drift

Stock Price

\[\exp \left(\int_0^t \mu(Y_s) \, ds \right) \]
Filtering: Example

Drift

- Drift

Stock Price

- $\exp(\int_0^t \mu(Y_s) \, ds)$
- Stock Price S_t
Filtering: Example

Drift

drift

Stock Price

exp(∫₀ᵗ μ(Yₛ) ds)

Stock Price Sₜ

time t
Consider augmented state process \((X_t, p_t)\)

Wealth

\[
dX_t^h = X_t^h h_t^\top \left(\mu(Y_t) \right) dt + \sigma d\tilde{W}_t, \quad X_0^h = x_0
\]

Filter

\[
dp_t^k = \sum_{j=1}^{d} Q^{jk} p_t^j dt + a_k(p_t)^\top d\tilde{W}_t
\]

\[
+p_t^k \int_{\mathcal{Z}} \left(\frac{f(e_k, z)}{f(p_{t-}, z)} - 1 \right) \gamma(dt \times dz), \quad p_0^k = \pi^k
\]
Consider augmented state process \((X_t, p_t)\)

Wealth
\[
dX^h_t = X^h_t h^\top_t \left(\mathbf{\mu}(Y_t) \right) dt + \sigma d\tilde{W}_t, \quad X^0_t = x_0
\]

Filter
\[
dp^k_t = \sum_{j=1}^d Q^k j p^j_t dt + a_k(p_t)^\top d\tilde{W}_t
\]
\[
+ p^k_{t-} \int_{\mathcal{Z}} \left(\frac{f(e_k, z)}{f(p_{t-}, z)} - 1 \right) \gamma(dt \times dz), \quad p^k_0 = \pi^k
\]

Reward function
\[
v(t, x, p, h) = E_{t,x,p}[U(X^h_T)] \quad \text{for} \quad h \in \mathcal{H}
\]

Value function
\[
V(t, x, p) = \sup_{h \in \mathcal{H}} v(t, x, p, h)
\]

Find \(h^* \in \mathcal{H}(0)\) such that \(V(0, x_0, \pi) = v(0, x_0, \pi, h^*)\)
Solution for Power Utility

Risk-sensitive control problem (Nagai & Runggaldier (2008))

Let \(Z^h := \exp \left\{ \theta \int_0^T h_s^\top \sigma d\tilde{W}_s - \frac{\theta^2}{2} \int_0^T h_s^\top \sigma \sigma^\top h_s ds \right\} \), assume \(E[Z^h] = 1 \)

Change of measure: \(P^h(A) = E[Z^h 1_A] \) for \(A \in \mathcal{F}_T \)
Solution for Power Utility

Risk-sensitive control problem \(^\text{(Nagai & Runggaldier (2008))}\)

Let \(Z^h := \exp \left\{ \theta \int_0^T h_s \sigma d\tilde{W}_s - \frac{\theta^2}{2} \int_0^T h_s \sigma \sigma^\top h_s ds \right\} \), assume \(E[Z^h] = 1\)

Change of measure: \(P^h(A) = E[Z^h 1_A] \) for \(A \in \mathcal{F}_T\)

Reward function

\[
E_{t,x,p}[U(X^h_T)] = \frac{x^\theta}{\theta} E_{t,p}^h \exp \left\{ - \int_t^T b^{(\theta)}(p_s, h_s) ds \right\}
\]

\[=: v(t, p, h) \text{ independent of } x\]

where \(b^{(\theta)}(p, h) := -\theta \left(h^\top Mp - \frac{1 - \theta}{2} h^\top \sigma \sigma^\top h \right)\)
Solution for Power Utility

Risk-sensitive control problem
(Nagai & Runggaldier (2008))

Let
\[Z^h := \exp \left\{ \theta \int_0^T h_s^\top \sigma d\tilde{W}_s - \frac{\theta^2}{2} \int_0^T h_s^\top \sigma \sigma^\top h_s ds \right\}, \]
assume \(E[Z^h] = 1 \)

Change of measure:
\[P^h(A) = E[Z^h 1_A] \quad \text{for} \quad A \in \mathcal{F}_T \]

Reward function
\[E_{t,x,p}[U(X^h_T)] = \frac{x^{\theta}}{\theta} E_t^h \left[\exp \left\{ -\int_t^T b^{(\theta)}(p_s, h_s) ds \right\} \right] \]

\[=: v(t, p, h) \quad \text{independent of} \ x \]

where
\[b^{(\theta)}(p, h) := -\theta \left(h^\top M p - \frac{1 - \theta}{2} h^\top \sigma \sigma^\top h \right) \]

Admissible strategies
\[\mathcal{A} = \mathcal{H} \cap \{ (h_t) \mid E[Z^h] = 1 \} \]

Value function
\[V(t, p) = \sup_{h \in \mathcal{A}} v(t, p, h) \]

Find \(h^* \in \mathcal{A} \) such that
\[V(0, \pi) = v(0, \pi, h^*) \]
HJB-Equation

\[V_t(t, p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t, p) - b^{(\theta)}(p, h) V(t, p) \right\} = 0 \]

terminal condition \(V(T, p) = 1 \)

where \(\mathcal{L}^h \) generator of the filter process \(p_t \) under measure \(P^h \)
HJB-Equation

\[V_t(t, p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t, p) - b^{(\theta)}(p, h) V(t, p) \right\} = 0 \]

terminal condition \(V(T, p) = 1 \)

where \(\mathcal{L}^h \) generator of the filter process \(p_t \) under measure \(P^h \)

Optimal Strategy

\[h^* = h^*(t, p) = \frac{1}{(1 - \theta)(\sigma \sigma^\top)^{-1}} \left\{ Mp + \frac{1}{V(t, p)} \sigma \sum_{k=1}^d a_k(p) V_{p^k}(t, p) \right\} \]
HJB-Equation

\[V_t(t, p) + \sup_{h \in \mathbb{R}^n} \left\{ \mathcal{L}^h V(t, p) - b^{(\theta)}(p, h) V(t, p) \right\} = 0 \]

terminal condition \(V(T, p) = 1 \)

where \(\mathcal{L}^h \) generator of the filter process \(p_t \) under measure \(P^h \)

Optimal Strategy

\[h^* = h^*(t, p) = \frac{1}{(1 - \theta)(\sigma \sigma^\top)^{-1}} \left\{ Mp + \frac{1}{V(t, p)} \sigma \sum_{k=1}^{d} a_k(p) V_{p^k}(t, p) \right\} \]

- myopic strategy + correction

Certainty equivalence principle does not hold
Plugging in h^* into the HJB equation and substituting $V = G^{1-\theta}$ we derive a

Transformed HJB-Equation for $G = G(t, p)$

$$G_t + \frac{1}{2} tr[A^\top(p)A(p)D^2G] + B^\top(p) \nabla G + C(p)G$$

$$+ \frac{\lambda}{1 - \theta} \int_{Z} \frac{G^{1-\theta}(t, p + \Delta(p, z)) - G^{1-\theta}(t, p)}{G^{-\theta}(t, p)} \bar{f}(p, z) dz = 0,$$

$$G(T, p) = 1,$$

The functions A, B, C, Δ are defined in the paper.

Note that the equation has a **linear diffusion part** but **nonlinear integral term**.
Starting approximation is the myopic strategy

\[h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^T)^{-1} M \rho_t \]

The corresponding reward function is

\[V^{(0)}(t, p) := v(t, p, h^{(0)}) = E_{t,p} \left[\exp \left(- \int_t^T b^{(\theta)}(p_{s}^{h^{(0)}}, h_{s}^{(0)}) ds \right) \right] \]
Policy Improvement

Starting approximation is the myopic strategy

\[h_t^{(0)} = \frac{1}{1-\theta}(\sigma\sigma^\top)^{-1}Mp_t \]

The corresponding reward function is

\[V^{(0)}(t, p) := v(t, p, h^{(0)}) = E_{t,p} \left[\exp \left(-\int_t^T b^{(\theta)}(p_{s}^{h^{(0)}}, h_{s}^{(0)}) ds \right) \right] \]

Consider the following optimization problem

\[
\max \left\{ \mathcal{L}^h V^{(0)}(t, p) - b^{(\theta)}(p, h) V^{(0)}(t, p) \right\}
\]

with the maximizer

\[
h^{(1)}(t, p) = h^{(0)}(t, p) + \frac{1}{(1 - \theta) V^{(0)}(t, p)} (\sigma^\top)^{-1} \sum_{k=1}^{d} a_k(p) V_{p_k}^{(0)}(t, p)
\]
Policy Improvement

Starting approximation is the myopic strategy

\[h_t^{(0)} = \frac{1}{1-\theta} (\sigma \sigma^\top)^{-1} M p_t \]

The corresponding reward function is

\[V^{(0)}(t, p) := v(t, p, h^{(0)}) = E_{t,p} \left[\exp \left(- \int_t^T b^{(\theta)}(p_s^{h^{(0)}}, h_s^{(0)}) ds \right) \right] \]

Consider the following optimization problem

\[
\max_h \{ \mathcal{L}^h V^{(0)}(t, p) - b^{(\theta)}(p, h) V^{(0)}(t, p) \}
\]

with the maximizer

\[
h^{(1)}(t, p) = h^{(0)}(t, p) + \frac{1}{(1-\theta) V^{(0)}(t, p)} (\sigma^\top)^{-1} \sum_{k=1}^d a_k(p) V_{p_k}^{(0)}(t, p)
\]

For the corresponding reward function \(V^{(1)}(t, p) := v(t, p, h^{(1)}) \) it holds

Lemma (\(h^{(1)} \) is an improvement of \(h^{(0)} \))

\[V^{(1)}(t, p) \geq V^{(0)}(t, p) \]
Numerical Results

Drift

- Drift
- Z_n
- Filter

Strategy h_t ($\theta = 2/3$)

- Myopic
- Policy Impr.
For $t = T_n$: nearly full information \implies correction ≈ 0