

LILLIAN PIERCE Princeton University

Discrete fractional integral operators

We consider higher dimensional versions of discrete fractional integral operators first investigated by Stein and Wainger. Specifically, we define operators I_{λ} and J_{λ} for $0 < \lambda < 1$ by

$$I_{\lambda}f(n) = \sum_{m \in \mathbb{Z}_{+}^{k}} \frac{f(n - |m|^{2})}{|m|^{k\lambda}}, \qquad J_{\lambda}f(n, t) = \sum_{m \in \mathbb{Z}_{+}^{k}} \frac{f(n - m, t - |m|^{2})}{|m|^{k\lambda}};$$

here I_{λ} acts on functions of \mathbb{Z} , J_{λ} on functions of \mathbb{Z}^{k+1} . Our interest is in proving the boundedness of these operators from ℓ^p to ℓ^q for appropriate p, q, λ . We show how this can be done using complex interpolation and ideas originating from the circle method in number theory; furthermore we consider the case where $|m|^2$ is replaced by a more general quadratic form.