ABSTRACTS 1.2

AKOS MAGYAR

University of Georgia, Athens

A coloring problem for squares

One of the earliest results in Ramsey theory due to Schur, says that if the natural numbers are finitely colored, then there is a monochromatic solution of the equation: $x+y-z=0$. This was generalized by Rado, to equations $a_{1} x_{1}+\ldots+a_{s} x_{s}=0$, for which there is a subset of the coefficients which adds up to 0 . We consider an inhomogeneous version of Rado's equation, when only the squares of the natural numbers are finitely colored, that is the existence of monochromatic solutions x_{1}, \ldots, x_{s} to the equation: $a_{1} x_{1}^{2}+\ldots+a_{s} x_{s}^{2}=P(x)$, for a family of integral polynomials P satisfying a natural condition. The proof is inspired by a result of Khalfalah and Szemerédi on monochromatic solutions x_{1}, x_{2} of the equation: $x_{1}+x_{2}=x^{2}$.

