Speaker: Moshe Jarden

Title: Relatively projective profinite groups and pseudo closed fields

Abstract: One of the main problems of Field Arithmetic and Galois Theory is the classification of absolute Galois groups among all profinite groups. A partially successful way to attack the problem has been to relate properties of a field to properties of its absolute Galois group. For example, the absolute Galois group of a PAC field is projective. Conversely, every projective group appears as a Galois group of a PAC field. Similar relations hold between PRC fields and real projective groups and PpC fields and p-adically projective groups. More generally, let \mathcal{F} be a finite set of finite extensions of \mathbb{R} or of \mathbb{Q}_p (where p varies) which is closed under Galois isomorphism. Let G be a profinite group. Then G is isomorphic to the absolute Galois group of a pseudo-\mathcal{F}-closed field K if and only if G is \mathcal{F}-projective and $\text{Subgr}(G, \text{Gal}(\mathbb{F}))$ is strictly closed in $\text{Subgr}(G)$ for each $\mathbb{F} \in \mathcal{F}$.

The talk will supply proofs for the basic results about PAC fields and projective groups and will explain the notions and the technique involved in the more general result about P\mathcal{F}C fields.