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The phonon-induced decoherence of orbital degrees of freedom in quantum dots (QDs) is studied
in order to verify the feasibility of quantum information processing (QIP) in the QD technology. A
source of an unavoidable partial leakage of the information from a QD is the dressing of quickly (sub-
ps) excited carriers (electrons/excitons) in QDs mostly with inertial crystal deformation modes (LA
phonons). This ps-time process scales as the QD size divided by the LA phonon velocity. For a polar
medium (e.g. self-assembled GaAs/InAs dots) polarization effects (LO phonons) also contribute to
dephasing however with a longer time scale (up to 100 ps) proportional to the square of the QD
diameter. The anharmonicity effects (e.g. LO-TA in GaAs) enhance the efficiency of this channel
again to the order of a few ps—inconveniently located between the possible sub-ps operation time
and the ns exciton recombination time. Relatively slow (of a ps scale) dressing of electrons with
phonon clouds is also a source of the temporal inefficiency of Pauli blocking (in spin-charge conversion
schemes) since a quickly excited electron differs from an electron stored in a QD and thus already
dressed with phonons. In a polar medium an additional confinement-induced enhancement of the
interaction of carriers with optical phonons is also predicted (strong enhancement of the effective
Fröhlich constant in a QD, strengthening polaronic effects). In so-called magnetic QDs, i.e. dots
placed in a diluted magnetic semiconductor medium (promising for the coherent spin control) the
role of phonons is played by magnons. The dressing of a localized spin with magnons also results in
an inconvenient time scale of dephasing (of the order of 100 ps, similarly as for LO phonons due to
the quadratic form of the magnon dispersion).

I. INTRODUCTION

Recent progress in coherent quantum control1 gives rise to the interest in the possibility of QIP within the solid state
technology employing orbital2–5 or spin6–9 degrees of freedom in QDs. In spite of the still growing accuracy both in
QD manufacturing and control techniques, including the observation of Rabi oscillations3,10–14 and the demonstration
of entanglement between states of interacting dots15, a complete implementation of a quantum gate on QDs has
not been achieved so far. Since fault-tolerant quantum schemes require the decoherence per quantum gate to be
below the threshold of 10−5 (DiVincenzo conditions16), the most important problem emerging within the challenging
field of QD-based quantum computing is how to overcome the phonon decoherence in optically driven QD gates
(orbital degrees of freedom) or how to accelerate single-qubit spin operations in the magnetic-field-driven ones. An
estimation of the decoherence in state-of-the-art QD systems is thus of major importance. Since QDs are embedded
in a surrounding crystal structure, the crucial role in the decoherence (relaxation and dephasing) of orbital degrees of
freedom is played by phonons. Phonons are also important in the decoherence of the spin in QDs, not only due to the
spin-orbit interaction but also due to Hund-like rules in multi-electron dots17 and in spin-charge conversion schemes.

The dipole-type interaction couples the electric field of a laser pulse only with charge degrees of freedom which
can be thus directly manipulated in a controlled way even on the time-scale down to femtoseconds18. Due to the
lattice inertia, a fast charged carrier excitation leaves the lattice in its initial state leading to the creation of a bare
electron-hole pair. On the other hand, it is known that eigenstates of an interacting carrier-phonon system correspond
to a composite quasiparticle: the electron-hole pair accompanied by a coherent phonon cloud (lattice polarization
or deformation)19,20. The phonon cloud corresponds to the energy-minimizing state of the lattice and is therefore
characterized by a negative energy shift (red-shift) with respect to the original bare exciton energy. The excess energy
is being transferred from the QD region to the rest of the crystal (to the phonon subsystem) and locally in the dot
it is creating a dressed exciton being a coherent composition of the bare exciton and a local phonon cloud. If only
longitudinal optical (LO) phonons are considered, this composite particle can be called exciton-polaron in analogy to
the Fröhlich electron-polaron. The corresponding energy red-shift in a typical QD is of the order of a few meV21,22

for dressing with LO phonons. Dressing with acoustic phonons, due to deformation effects (longitudinal acoustic,
LA) and piezoelectric effects (transversal acoustic, TA) results in an usually much smaller energy shift, even by a few
orders of magnitude. However, acoustic phonons mostly contribute to the overal dephasing.

Dressing with phonons appears to be a relatively slow process—of a ps scale as we will show below—and turns out
to be governed mainly by phonon dispersions and the dot size. The characteristic dressing time depends on the QD
size (the scale of confinement), and it can be approximated as the ratio of the dot size and the phonon velocity. It
corresponds to the time needed for the transfer of the excess energy from the QD region to the surrounding crystal.

In a polar material (here we consider the weakly polar GaAs as the most typical medium for QDs) with dominating
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coupling of electrons with LO phonons, this polarization interaction produces almost all energy red-shift of the
composite quasiparticle. The deformation interaction of the exciton with LA phonons is of a few orders of magnitude
weaker (in the GaAs case) and thus results in a negligibly small additional energy shift (similarly to TA phonons).
Despite of the small energy shift, dephasing due to LA phonons is pronouced. The gapless, almost linear (near to the
Γ point) and wide dispersion of LA phonons allows for an effective (many LA phonons contribute) and quick channel
of the deformation energy transfer from the step-by-step dressing exciton to the phonon sea.

The transfer of the excess polarization energy from the dot region to the surrounding medium allowing the creation
of an exciton-polaron by means of LO phonons is considerably distinct from the LA channel. Firstly, because of the
presence of a relatively wide gap in the dispersion of LO phonons (∼36 meV in GaAs, i.e. much larger than the
energy shift of the dressed particle which is of the order of a few meV) the process of dressing via the LO channel
cannot be interpreted as elementary phonon excitations unlike in the case of gapless LA phonons. For the LO channel
we deal rather with a coherent multiparticle process. The dressing is a redistribution of the original instant bare
exciton energy over the whole system consisting of the dressed exciton (only few LO phonon modes couple to the
exciton23) and the rest of LO phonons. The initial bare exciton state is not a stationary state of the total system
including phonons. The kinetics of dressing corresponds to the time-evolution of this nonstationary state. Since the
exciton-phonon system is closed, the average energy is conserved, even though at different instants of time the mean
energy is distinctly shared between particular parts of the system. LO phonons coherently contribute to the averaged
energy, according to the total system wave function which is however not of a separable structure. Secondly, the
dispersion of LO phonons is narrow (especially near to the Γ point) and of an almost parabolic form (this region of
small k is the most important one due to the bottle-neck effect for QDs similarly as for the LA channel). It results
in a longer dressing time via the LO channel (for not extremely small dots) in comparison to the LA channel since
the group velocity of LO phonons is considerably smaller than that of LA phonons. For LO phonons this velocity
scales as the inverse of the dot size which gives an additional factor for an estimation of the dressing-time scale, as
it is proprtional to the square of the dot diameter. The dressing with LO phonons is however aided by the LO-TA
anharmonicity, the quickest anharmonic channel in GaAs, which allows for a polarization energy transfer to the TA
phonon sea. In this case the characteristic time can be estimated as the dot size divided by TA phonon velocity and
multiplied by anharmonicity and exciton-LO phonon coupling constants.

The shortest timescale of all dressing processes (LA channel in GaAs medium at least) can be treated as a limit
for the unavoidable decoherence (dephasing) of rapidly created exciton states in QDs (also of the ground state),
strongly limiting optically driven QIP in nanoscopic systems. Longer processes as those via LO phonons (even aided
by LO-TA) are also inconvenient since they additionally confine adiabatical switching regime to a slower range.

These problems are described and analyzed below in detail for a typical state-of-the-art strain induced InAs/GaAs
QD within the Green function approach24,25. The QD is modelled by a parabolic confinement potential17 (distinct for
electrons and holes). Other shapes of QD confining potential (square well or Gaussian) does not significantly modify
the results.

II. PHONON DRESSING OF AN EXCITON IN A QD

In order to investigate the time evolution of the nonstationary state corresponding to a rapidly created QD exciton
(in the limit—instantly excited exciton; in practice sub-ps time-scale process) we consider the Hamiltonian describing
a single exciton interacting with phonons

H =
∑

n

Ena†nan +
∑
q,s

h̄ωs(q)c†q,scq,s +
1√
N

∑
q,n1,n2,s

Fs(n1, n2,q)a†n1
an2

(
cq,s + c†−q,s

)
, (1)

where the interaction with LO (s = o) and LA (s = a) phonons is described by functions

Fo(n1, n2,q) = −e

q

√
2πh̄Ω

vε̃

∫
Φ∗n1

(Re,Rh)
(
eiq·Re − eiq·Rh

)
Φn2(Re,Rh) d3Re d3Rh (2)

and

Fa(n1, n2,q) = −
√

h̄q

2MCa

∫
Φ∗n1

(Re,Rh)
(
σee

iq·Re − σheiq·Rh
)
Φn2(Re,Rh) d3Re d3Rh. (3)

Here c
(†)
q,s is the bosonic annihilation (creation) operator for a LO or a LA phonon with the quasi-momentum q and

with the frequency ωo = Ωq ' Ω− βq2 (Ω denotes the gap of LO phonons at the Γ point) and ωa = Caq, where Ca is
the sound velocity for LA phonons, M—the mass of ions in the elementary cell, σe(h)—the deformation constant for
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electrons (holes), v—the volume of the elementary cell, N—the number of cells in the crystal, ε̃ = (1/ε∞− 1/ε0)−1—
the effective dielectric constant Re(h) is the position of the electron (hole), Φn(Re,Rh) is the exciton wave function
and a

(†)
n —the annihilation (creation) operator of the exciton.

We will consider the exciton single-particle causal Green function

Gc(n1, n2, t) = − i

h̄
〈T{an1(t)a

†
n2

(0)}〉.

The symbol 〈...〉 denotes the temperature dependent averaging with respect to phonon degrees of freedom and the
vacuum of the exciton (cf. Ref. 26). It corresponds to the case when the grand canonical averaging sector without
exciton—the vacuum, is energetically distant (by the order of 1 eV) from the next sectors.

For t ≥ 0 this Green function up to a constant factor coincides with the correlation function 〈an1(t)a
†
n2

(0)〉, modulus
of which gives a measure of the fidelity of the time dependent state (for n1 = n2, in particular of the ground state for
n1 = n2 = 0), since it corresponds to the overlap of the state at time t with this state at the initial moment t = 0.
The Fourier transform of the correlation function In1,n2(ω) =

∫∞
−∞〈an1(t)a

†
n2

(0)〉eiωtdt is usually called the spectral
density24,25, and it can be expressed by the imaginary part of the causal Green function

Im Gc(n1, n2, ω) = − 1
2h̄

(
1 + e

− h̄ω
kBT

)−1

I(n1, n2, ω), (4)

where Gc(n1, n2, ω) =
∫∞
−∞Gc(n1, n2, t)eiωtdt. Moreover

ImGr(n1, n2, ω) = − 1
2h̄

(
1− e

− h̄ω
kBT

)−1

I(n1, n2, ω),

where Gr(n1, n2, t) = − i
h̄Θ(t)〈[an1(t), a

†
n2

(0)]−〉 = 1
2π

∫∞
−∞Gr(n1, n2, ω)e−iωtdω is the commutation retarded Green

function which describes the linear dielectric response to a e-m wave coupled to the exciton27. In our case, of the
instant creation of the exciton, the time-dependent e-m signal is assumed as δ(t) .

The causal Green function satisfies the equation of motion

ih̄
d

dt
Gc(n1, n2, t) = δ(t)δn1,n2 −

i

h̄
〈T{[an1(t),H(t)]−a†n2

(0)}〉, (5)

which can be rewritten as a Dyson-type equation

(h̄ω − En1)Gc(n1, n2, ω)−
∑
n3

Mn1,n3(ω)Gc(n3, n2, ω) = δn1,n2 , (6)

with the mass operator

Mn1,n5(ω) =
i

2π
√

N

∑

n3,k,s

Fs(n1, n3,k) (7)

×
∑

n4,k′′,s′′

∫
dω4 Gc(n3, n4, ω + ω4)Γ(n4, n5, ω + ω4,k′′, s′′, ω4)Dc(k′′, s′′,k, s, ω4),

where Γ is the appropriate vertex function24,25,28 and

Dc(k, s,k′, s′, t) = − i

h̄
〈T{[ck,s(t) + c†−k,s(t)][ck′,s′(0) + c†−k′,s′(0)]}〉

is the phonon causal Green function. For a weak exciton-phonon coupling, the phonon function D can be replaced
by the free phonon function D0.

Since Fs(n1, n2,k) ∼ gs, where gs is the exciton-phonon coupling constant, then |Mn1,n3(ω)|2 ∼ g2
s . For gs ¿ 1,

with the accuracy up to g3
s , we have from Eq. (6)

Gc(n, n, ω) =
1

h̄ω − En −Mn,n(ω)
. (8)
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Neglecting multi-phonon processes, for the real and the imaginary part of the mass operator M (i.e. Mn,n(ω) =
∆n(ω)− iγn(ω)) we obtain the following equations (similar as for the bulk case28)

∆n(ω) =
1
N

∑

k,s,n1

|Fs(n, n1,k)|2
[

(1 + Nk,s)(h̄ω − En1 −∆n1(ω − ωs(k))− h̄ωs(k))
[h̄ω − En1 −∆n1(ω − ωs(k))− h̄ωs(k)]2 + γ2

n1
(ω − ωs(k))

+
Nk,s(h̄ω − En1 −∆n1(ω + ωs(k)) + h̄ωs(k))

[h̄ω − En1 −∆n1(ω + ωs(k)) + h̄ωs(k)]2 + γ2
n1

(ω + ωs(k))

]
(9)

and

γn(ω) =
1
N

∑

k,s,n1

|Fs(n, n1,k)|2
[

(1 + Nk,s)γn1(ω − ωs(k))
[h̄ω − En1 −∆n1(ω − ωs(k))− h̄ωs(k)]2 + γ2

n1
(ω − ωs(k))

+
Nk,sγn1(ω + ωs(k))

[h̄ω − En1 −∆n1(ω + ωs(k)) + h̄ωs(k)]2 + γ2
n1

(ω + ωs(k))

]
, (10)

Note that for T = 0 the above system of equations simplifies as then Nk,s = 0.
In order to solve the system of Eqs. (9)–(10) let us make some material estimations. For GaAs we assume:29

m∗
e = 0.067m0, m∗

h = 0.38m0 (isotropic—for the sake of simplicity) and ε0 = 12.9, ε∞ = 10.9, σe = 6.7 eV, σh = −2.7
eV, h̄Ω = 36.4 meV, ρ = 5.36 g/cm3, Ca = 4.8 · 105 cm/s. For the model InAs/GaAs self-assembled QD we assume
h̄ωe

0 = 20 meV, h̄ωh
0 = 3.5 meV, le =

√
h̄

m∗
eωe

0
= lh =

√
h̄

m∗
hωh

0
= 7.5 nm—i.e. the same lateral dimension for

noninteracting e and h; for vertical confinement l
e(h)
z ' 2 nm (suitably to the appropriately chosen ω

e(h)
z ).

An approximate wave function which describes the ground state of the exciton (including the Coulomb interaction)
with a high accuracy is of the form

Φ0(re, rh) =
1

(π)3/2

1
LeLhLz

e
− r2

e⊥
2L2

e
− r2

h⊥
2L2

h
− z2

e+z2
h

L2
z , (11)

where (for the parameters used here) Le = 6.6 nm and Lh = 5.1 nm, Lz = lz. The difference for e and h is due to the
fact that the Coulomb interaction energy is comparable to the inter-level distance for a heavier hole while the lowest
excited electron states are much higher in the energy.

For

|Fo(0, 0,k)|2 ' πe2h̄Ωk2

18vε̃
(L2

e − L2
h)2e−αk2

= go
k2

k2
m

e−αk2

and

|Fa(0, 0,k)|2 ' h̄k

2MCa
(σe − σh)2e−αk2

= ga
k

km
e−αk2

,

where km = (6π2/v)1/3 is the Debye wave number (' 1.2 · 108 cm−1), α = l2/2, and l is the size of the QD averaged
over all directions (i.e. the averaged ground state size), the same for the electron and the hole (it is well smaller than
the lateral dimension le(h), but greater than the vertical one lz). The exponential factor e−αk2

reflects the bottle-neck
effect for QDs (for InAs/GaAs QDs one can estimate go ≈ 3 · 10−2 eV2, ga ≈ 4 · 10−4 eV2).

For the interaction with LO phonons the Fröhlich constant αe = e2

h̄ε̃

√
m∗

e
2h̄Ω is important. In GaAs-bulk αe '

0.068, whereas for electrons confined in InAs/GaAs QD it has been reported to be ca. 100% larger19). This strong
enhancement is explained by nonadiabatic corrections30.

In Eq. (9) the major term is the first one, i.e. the energy red-shift is mainly due to the interaction of the exciton
with optical phonons (polaron effect). Taking γn(ω) = 0 on the rhs of Eq. (9) as the zeroth approximation, one arrives
with the equation for the energy shift

∆n(ω) =
1
N

∑

k,n1

|Fo(n, n1,k)|2
[

1 + Nk,o

h̄ω − En1 −∆n1(ω − Ω)− h̄Ω
+

Nk,o

h̄ω − En1 −∆n1(ω − Ω) + h̄Ω

]

+
1
N

∑

k,n1

|Fa(n, n1,k)|2
[

1 + Nk,a

h̄ω − En1 −∆n1(ω − Cak)− h̄Cak
+

Nk,a

h̄ω − En1 −∆n1(ω − Cak) + h̄Cak

]
.(12)
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In this equation the first term determines the energy shift due to dressing with LO phonons, whereas the second
one corresponds to LA phonons. The latter term is small and could be safely neglected, but it contributes to the
derivative d∆

dω |ω=E+∆ as the derivative of the first term (∼ F 2

(h̄Ω)2 ) is small due to the gap in the dispersion of LO
phonons and it is strongly enhanced for gapless LA phonons term, which is important for estimation of a residuum
of the Green function in a pole, cf. Eq. (15). Note also that in the first term in the above equation we neglected the
weak LO phonon dispersion since it results in a negligible correction to ∆. Note that from the above equation yields
a similar one found via Davydov diagonalization of the Fröhlich Hamiltonian for the exciton27 (by taking in Eq. (12)
h̄ω = En + ∆n, neglecting the LA phonon term and assuming ∆n independent of ω).

The numerical solution of Eq. (12) for n = 0 provides the ground state energy shift ∆0 ∼ −5 meV for a QD with
the parameteres as listed above.

Assuming γ = 0 in the rhs of Eq. (10), the imaginary part of the mass operator is given by the equation

γn(ω) =
π

N

∑

k,n1

{|Fo(n, n1,k)|2 [(1 + Nk,o)δ(h̄ω − En1 −∆n1 − h̄Ωk) + Nk,oδ(h̄ω − En1 −∆n1 + h̄Ωk)]

+|Fa(n, n1,k)|2 [(1 + Nk,a)δ(h̄ω − En1 −∆n1 − h̄Cak) + Nk,aδ(h̄ω − En1 −∆n1 + h̄Cak)]
}

. (13)

The first term in Eq. (13) describes the polarization energy transfer to the LO phonon sea, whereas the second one
corresponds to the deformation energy transfer from a gradually dressing exciton to the LA phonon sea. γ can
be estimated for the ground state (n = 0) neglecting higher exciton levels, by performing the integral over k and
employing the δ functions

γ0(ω) ' Ax3e
− αx2

h̄2C2
a [Θ(x)(1 + N(x))−Θ(−x)N(−x)]

+B
[
Θ(h̄Ω− x)(h̄Ω− x)3/2e−

α(h̄Ω−x)
h̄β Θ(−0.9h̄Ω + x)(1 + N(x))

+Θ(h̄Ω + x)(h̄Ω + x)3/2e−
α(h̄Ω+x)

h̄β Θ(−0.9h̄Ω− x)N(−x)
]
, (14)

where x = h̄ω − Ẽ0, Ẽ0 = E0 − ∆0 is the energy of the exciton-polaron, N(x) = (e
x

kBT − 1)−1, A = (σe−σh)2

4πρh̄3C5
a
,

B = e2h̄Ω(L2
e−L2

h)2

36ε̃2(h̄β)5/2 . For GaAs we assumed the dispersion of LO phonons in the form31 Ωk = Ω− βk2 and for k = km,
Ωkm = 0.9Ω. The first term in Eq. (14) corresponds to the LA channel and the second one to the LO channel
of energy dissipation. For GaAs A ' 0.053 meV−2, B ' 1.47 · 107 meV−1/2, α

h̄2C2
a
' (l[nm]/4)20.8 meV−2 and

α
h̄β ' (l[nm]/4)28.79 meV−1.

As γ0 is zero at x = 0 (cf. Eq. (14)) this point is a well defined pole of the causal Green function. It corresponds to
a quasiparticle—the dressed exciton (i.e. a generalized exciton-polaron being an exciton dressed both with LO and
LA phonon clouds). The time evolution of the dressing process is described by the correlation function which can be
found from the imaginary part of the causal Green function. This function is of the form

Gc(0, 0, ω) =
1

h̄ω − E0 −∆(ω) + iγ(ω) + iε
=

a−1

x + iγ′(x) + iε
, (15)

where

a = 1− d∆(ω)
h̄dω

∣∣∣∣
ω=Ẽ′0

= 1 +
1
N

∑

k,s

∣∣∣∣
Fs(0, 0,k)

h̄ωs(k)

∣∣∣∣
2

[1 + 2Ns(k)], (16)

γ′(x) = γ(x)/a (also x is renormalized, x = h̄ω − Ẽ′
0, Ẽ′

0 = Ẽ0/a), and ε = 0+. The imaginary part of the Green
function (15) has the form

Im Gc(0, 0, ω) = −a−1πδ(x)− a−1γ′(x)/x2

1 + (γ′(x)/x)2
. (17)

In order to find the needed correlation function dependence upon time, the inverse Fourier transform of the spectral
function must be performed. Employing Eq. (4) one has

I(t) = −2h̄
1
2π

∞∫

−∞
dω Im Gc(0, 0, ω)e−iωt, (18)
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FIG. 1: Spectral intensity vs energy (Fourier representation of the correlation function for several temperature values and
the averaged dot size l = 2 nm); the satellite peaks correspond to the LO phonon channel, whereas the central peak with a
side-band to the LA phonon channel; absorption processes are important only at higher temperatures (left peaks).

where the indices n1 = n2 = 0 of I are suppressed.
The first term in Eq. (17) yields

I(1)(t) = a−1e−i
Ẽ0
h̄ t.

Note that in the latter term of Eq. (17) for temperature T < 100 K one can safely neglect the second term in the
denominator, consistently with the accuracy assumed within the perturbative treatment. This permits the change of
the order of integration over ω and k—the integration over ω can be performed first, employing the delta-function form
(13). Note that in the derivation of Eq. (14) the integration over k was performed first, and the whole denominator
contributed. Integrating first over frequencies we arrive with a simplified but convenient representation in the form

I(2)(t) = a2 − a−1 1
N

∑

k,s

∣∣∣∣
Fs(0, 0,k)

h̄ωs(k)

∣∣∣∣
2 {

[1 + Ns(k)]e−i[Ẽ0/h̄+ωs(k)]t + Ns(k)e−i[Ẽ0/h̄−ωs(k)]t
}

.

It may be noted, comparing with Eq. (16), that at t = 0 one has I(1)(t = 0) = a−1 and I(2)(t = 0) = a−1(a− 1), thus
providing a correct normalization of the correlation function. Moreover this attitude results in formulas allowing for
explicit estimations of characteristic dressing times for both LA and LO channels, expressing them by means of the
LO and LA phonon dispersions.

Both the spectral density and its inverse Fourier transform (the correlation function) calculated numerically are
plotted in Figs. 1–3 for various temperatures and dot sizes, and compared with the experimental data. The coin-
cidence of the time behavior of the fidelity measure (the correlation function) calculated above with that observed
experimentally for a 0.2 ps pulse exciton in a small QD32 is very good (Fig. 2). In Fig. 3 (insets) the dressing time
for LA and LO channels vs dot size is plotted. The LA dressing channel is the most effective one and for typical QDs
it gives a picosecond time scale of dressing. The LO channel is slower and accompanied by oscillations related to the
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FIG. 2: Modulus of the correlation function |〈a(t)a†(0)〉| (the Fourier transform of the spectral density–a measure of the fidelity
of the ground excitonic state) vs time (right); the same from experiment for a 0.2 ps pulse exciton, after Ref. 32 (left); vertical
dashes indicate the origins of curves to allow a better comparison with the right picture.

gap in the LO phonon dispersion. The inclusion of the LO channel does not significantly modify the simultaneous
LO and LA dephasing in comparison to that due to the LA channel solely (cf. Fig. 3). Thus the most effective and
the quickest— the LA dressing channel provides the limit for the adiabatic creation of a generalized exciton-polaron
in InAs/GaAs QDs.
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FIG. 3: The typical shape of the modulus of the correlation function for LA phonons only (upper-left), for LO phonons only
(upper-right), for LO and LA phonons jointly (lower-left); the oscillations correspond to the gap in the LO phonons dispersion;
dressing time vs averaged QD size for the LA channel and the LO channel (lower-right).

III. CONCLUSIONS

For a nanometer confinement scale for carries in semiconductors like in the case of QDs we deal with a specific
and completely different type of phonon-induced phenomena compared to the bulk case. The main features of this
behavior can be listed as follows:

• The nanometer confinement scale results in the energy scale close to the resonace with optical phonons—
thus coupling with LO phonons is always in the strong regime19 resulting in a significanit modification of the
electron/exciton spectrum, i.e. in strong polaronic effects—the typical energy shift for an electron-polaron is of
the order of 10% of the confinement energy, whereas for an exciton-polaron it is of the order of 5%.
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• The nanometer scale of confinement leads to a significant enhancement of the effective Fröhlich constant due to
nonadiabatic effects. This additionally rises the electron-LO phonon interaction30.

• The interaction with LA phonons in nanostructures is diminished since the energy conservation and the fact
that nanostructure dimensions are incommensurate with phonons wavelengths result in a pronounced so-called
bottle-neck effect33.

• Relaxation rates in QDs (diagonal decoherence) for polarons (induced by the LO-TA and LO-LA anharmonicity)
are at least one order of magnitude longer than in the bulk case, mostly due to coherent effects, combined bottle-
neck effect and Fröhlich constant enhancement20.

This list can be supplemented by the following statement, according to the above discussion.

• Dephasing in QDs (the off-diagonal decoherence) for a generalized exciton–polaron is of a ps time-scale due to
the process of dressing of the exciton with LA phonons via the transfer of the local excess of the deformation
energy to the LA phonon sea.

• Dephasing due to LO phonons is slower—at 100 ps scale, due to the weak LO phonon dispersion near to the
Γ point; the transfer of the excess polarization energy out the QD in due of the polaron formation is however
accelerated by the LO-TA anharmonic coupling, which is very efficient in GaAs, leading again to a few ps scale.

All these effects refer not only to QDs but rather to all nanometer-scale structures. Therefore phonon-induced
phenomena will probably play much more important role in the whole imminent nanotechnology than in the 3D and
2D semiconductor structures. An example of such a new phenomenon can be related to the spin of the electron in
a QD. When the electron is stored in a QD for a sufficiently long time, then it is completely dressed with all types
of phonons, i.e. it is a generalized polaron. The next electron rapidly excited to this dot is however a bare electron,
unless the excitation is performed adiabatically. The new bare electron in the dot does not satisfy the exact Pauli
blockade since it is a different (undressed) particle, and we can refer this property to a temporal, partial limitation of
the instant Pauli blockade. This limits spin-charge conversion schemes (using Pauli blocking) to times longer than ps.

Acknowledgments

Supported by the Polish Ministry of Scientific Research and Information Technology under the grant No 2 P03B
085 25 and No PBZ-MIN-008/P03/03

1 D. Bouwmeester, A. Ekert and A. Zeilinger, The Physics of Quantum Information, Springer Verlag 2000.
2 E. Biolatti, Phys. Rev. Lett. 85, 5647 (2000).
3 X. Li et al., Science 301, 809 (2003).
4 F. Troiani, E. Molinari and U. Hohenester, Phys. Rev. Lett. 90, 206802 (2003).
5 S. De Rinaldis et al., Phys. Rev. B 65, 081309 (2002).
6 T. Calarco et al., Phys. Rev. A 68, 12310 (2003).
7 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
8 G. Burkard, D. Loss and D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).
9 A. Imamoglu et al., Phys. Rev. Lett. 83, 4204 (1999).

10 T.H. Stievater et al., Phys. Rev. Lett. 87, 133603 (2001).
11 H. Kamada et al., Phys. Rev. Lett. 87, 246401 (2001).
12 H. Htoon et al., Phys. Rev. Lett. 88, 087401 (2002).
13 A. Zrenner et al., Nature 418, 612 (2002).
14 P. Borri et al., Phys. Rev. B 66, 081306 (2002).
15 M. Bayer et al., Science 291, 451 (2001).
16 A Quantum Information Science and Technology Roadmap, http://qist.lanl.gov
17 L. Jacak, P. Hawrylak and A. Wojs, Quantum Dots, Springer Verlag 1998.
18 J.M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
19 S. Hameau et al., Phys. Rev. Lett. 83, 4152 (1999).
20 L. Jacak et al., Phys. Rev. B 65, 113305 (2002).
21 O. Verzelen, R. Ferreira and G. Bastard, Phys. Rev. Lett. 88, 146803 (2002).
22 L. Jacak et al., Eur. Phys. J. D 22, 319 (2003).
23 H. Castella and R. Zimmermann, Phys. Rev. B 59, R7801 (1999).



9

24 A.A. Abrikosov, L.P. Gorkov and M.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Moscow
1962 (in Russian).

25 W.L. Bonch-Bruevich and S.W. Tiablikov, Green Function Methods in Statistical Mechanics, Moscow 1961 (in Russian).
26 A. Suna, Phys. Rev. 135, A111 (1964).
27 A.S. Davydov, Solid State Theory, Moscow 1976 (in Russian).
28 S.A. Moskalenko et al., Fiz. Tverdogo Tela 10, 356 (1968).
29 S. Adachi, J. Appl. Phys. 58, 1 (1985).
30 L. Jacak, J. Krasnyj and W. Jacak, Phys. Lett. A 304, 168 (2002).
31 D. Strauch and B. Dorner, J. Phys. Cond. Matter 2, 1457 (1990).
32 P. Borri et al., Phys. Rev. Lett. 87, 157401 (2001).
33 U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 (1990).


