Approximating Eigenpairs in Quantum Chemistry

Robert C. Ward, Wilfried Gansterer

Department of Computer Science,

University of Tennessee

Richard P. Muller

Materials and Process Simulation Center, Beckman Institute, California Institute of Technology

Supported by DOE ASCI/ASAP

Outline

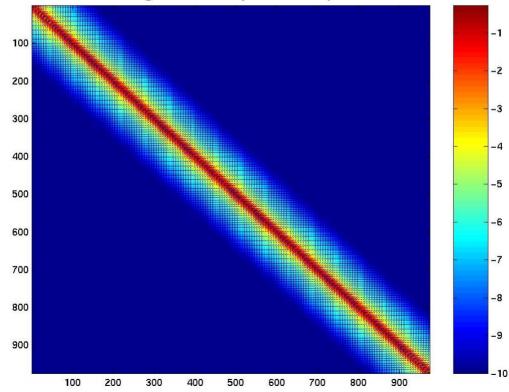
- Introduction, problem statement
- Framework: Approximation levels
- D&C (tridiagonal/block-tridiagonal)
- Analysis and experimental results
- Summary and outlook

Introduction

Central Problem I

• Given: Symmetric matrix $A \in \mathbb{R}^{n \times n}$, preferably "diagonally heavy"

log10 of abs(alkane80)



Central Problem II

- Given: Symmetric matrix $A \in \mathbb{R}^{n \times n}$ (preferably "diagonally heavy"), tolerance parameter τ
- Wanted: Approximate spectral decomposition $A \approx \hat{V} \hat{\Lambda} \hat{V}^{T}$, s.t.

$$||A - \hat{V} \hat{\Lambda} \hat{V}^{T}|| \le \tau$$
 and $||\hat{V}^{T} \hat{V} - I|| \le \varepsilon_{\text{mach}}$

- Essentially the full spectrum required

Application: Quantum Chemistry

- Quantum-mechanical equations for many-electron systems (non-relativistic time-independent Schroedinger Equation)
- Restricted Closed-Shell Hartree-Fock Approximation
- Linearization: expand unknown molecular orbitals into finite series of basis functions

Application: Quantum Chemistry

- Construct the *Fock matrix F* and the *Overlap matrix* $S \Rightarrow$
- *Roothaan Equations* (nonlinear eigenvalue problem):
 F(C) C = S C E
- Self-consistent-field (SCF) procedure ⇒ sequence of (generalized) linear eigenproblems

Application: Quantum Chemistry

• Objective:

- Develop efficient *approximate* linear eigensolver for use in SCF procedure
- Desirable properties ("wish list"):
 - Variable accuracy parameter
 - Efficiency
 - Parallelization

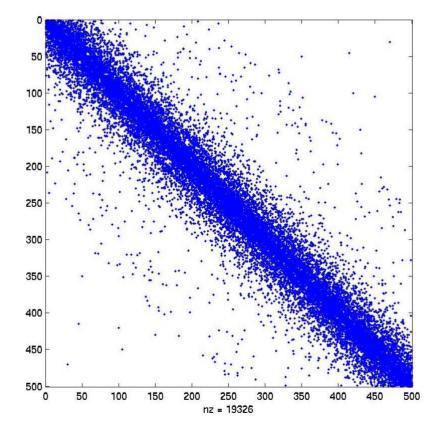
Approximation Levels

3 Levels of Approximation

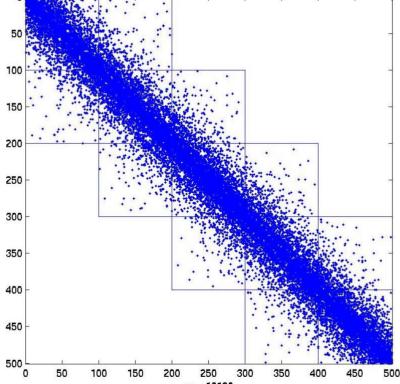
• Approximate A by a symmetric blocktridiagonal matrix B.

(thresholding, reordering, bandwidth reduction,...)

Original Matrix



Block-Tridiagonal Approximation B

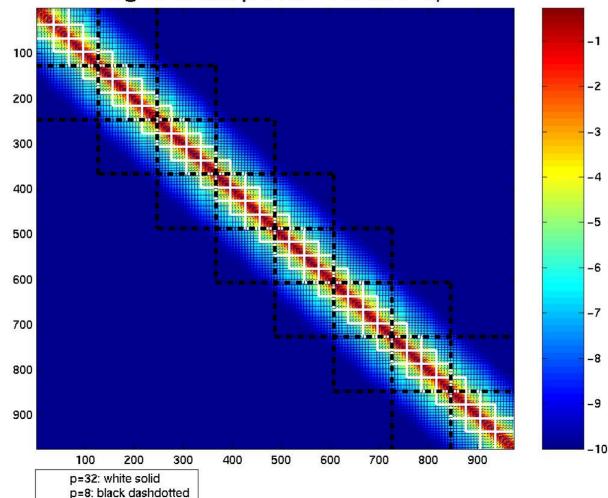


nz = 19120

QC Linear Alkane: alkane80

САрЕ

log10 of abs(FCNDOAlkane80)



11/15/01

14

Approximation Error I

 Error caused by thresholding and reordering can be bounded

$$\alpha_i - \beta_i \leq n\tau_1$$

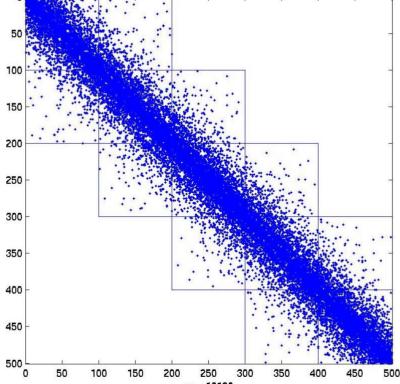
where α_i ...eigenvalues of A β_i ...eigenvalues of B τ_1 ...thresholding tolerance

3 Levels of Approximation

- Approximate A by a symmetric blocktridiagonal matrix B.
- Approximate the off-diagonal blocks of B by low(er) rank matrices (→ B').

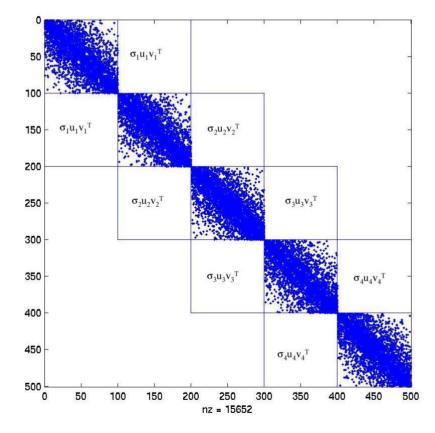
(SVD-based rank-r_i approximations)

Block-Tridiagonal Approximation B



nz = 19120

Rank-1 Approximation of CAPET Off-Diagonal Blocks

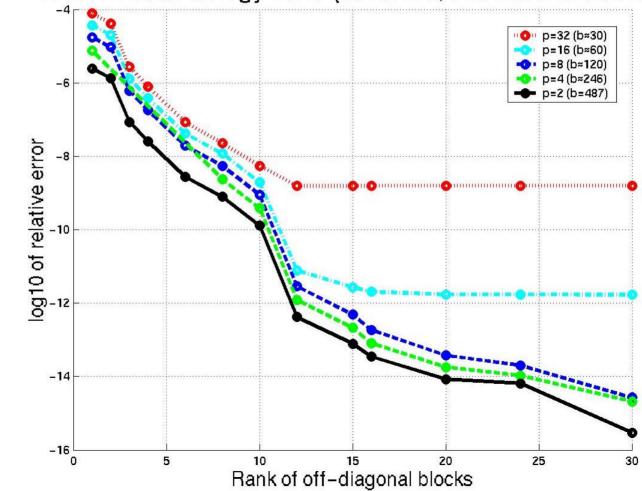


Relative Errors in 2nd Iteration Energy

11/15/01

САрЕ

2nd iteration energy error (alkane80, standard deflation)



Approximation Error II

 Error caused by rank approximation of off-diagonal blocks can be bounded as

$$|\beta_i - \lambda_i| \leq 2\sqrt{n} \max_{k=1,2,\dots,p-1} \sum_{j=r_k+1}^{m_k} \sigma_j^k$$

where β_i ...eigenvalues of B λ_i ...eigenvalues of B' (approximated blocks) σ_j^k ...j-th singular value of the k-th subdiagonal block

3 Levels of Approximation

- Approximate A by a symmetric blocktridiagonal matrix B.
- Approximate the off-diagonal blocks of B by low(er) rank matrices (→ B').
- Apply (approximative) block divide-andconquer algorithm to B'.

(relaxed deflation,...)

Divide-and-Conquer for *Tridiagonal* Problems

[Golub (1973); Bunch et al. (1978); Cuppen (1981); Dongarra & Sorensen (1987); Gu & Eisenstat (1994/1995); Tisseur & Dongarra (1999);...]

Divide-and-Conquer

Transform - Solve - Back-Transform Transform - Solve - Back-Transform

Split

Synthesize

Transform - Solve - Back-Transform

Tridiagonal Divide-and-Conquer

 Central task: Eigenvalues and -vectors of a rank-one modification problem

$$D + xx^T$$

with a diagonal matrix D

Deflation

 $D + xx^T$

- Zero component $x_i = 0 \Rightarrow$ corresponding eigenpair is known explicitly
- Multiple entry $d_i \Rightarrow$ corresponding eigenpairs can be computed cheaply
- Problem size can be reduced *(deflated)*
- Cost for eigenvector update is reduced (block structured eigenvector matrix)

Tridiagonal D&C

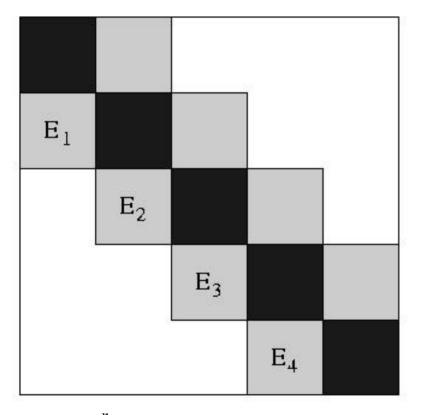
- Accumulation (multiplication) of eigenvector matrices
- Theoretical arithmetic complexity:

$$c_{\frac{4}{3}}n^{3} + O(n^{2})$$
 flops

In practice often lower due to deflation
One of the fastest algorithms available

(*Approximative*) Divide-and-Conquer for *Block-Tridiagonal* Matrices

Block-Tridiagonal D&C



$$E_{i} = \sum_{j=1}^{r_{i}} \sigma_{j}^{i} u_{j}^{i} v_{j}^{i^{T}}, \ i = 1, 2, ..., p-1$$

• Subdivision (p blocks):

- SVDs (off-diagonal)
- Corrections and eigendecompositions (diagonal blocks)
- Synthesis:
 - r_i rank-one modifications per off-diagonal block
 - Best merging order: lowest rank last

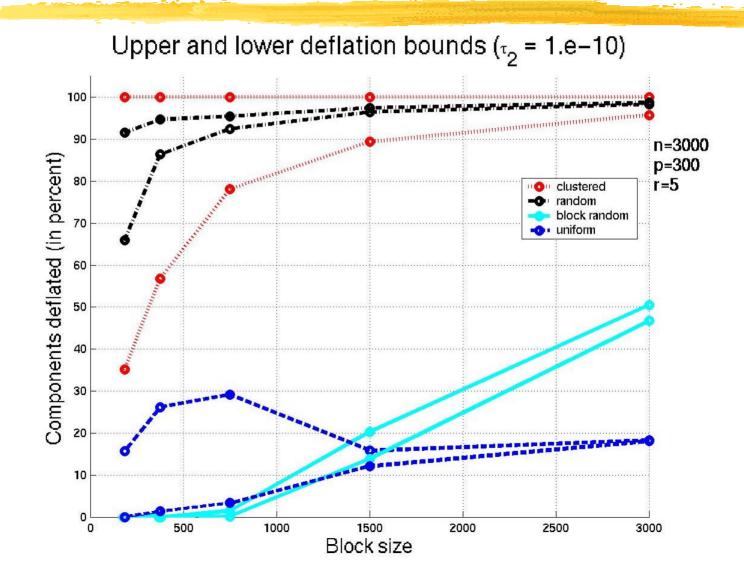
Relaxed Deflation

- Standard deflation tolerance (LAPACK): $\tau_L := c \varepsilon \|B'\|$
- Relaxed deflation tolerance $\tau_2 < \tau_L$
 - Absolute eigenvalue error proportional to au_2
 - Allows for (potentially) much more deflation
 - Significant computational savings
 - Very attractive if medium/low accuracy is sufficient

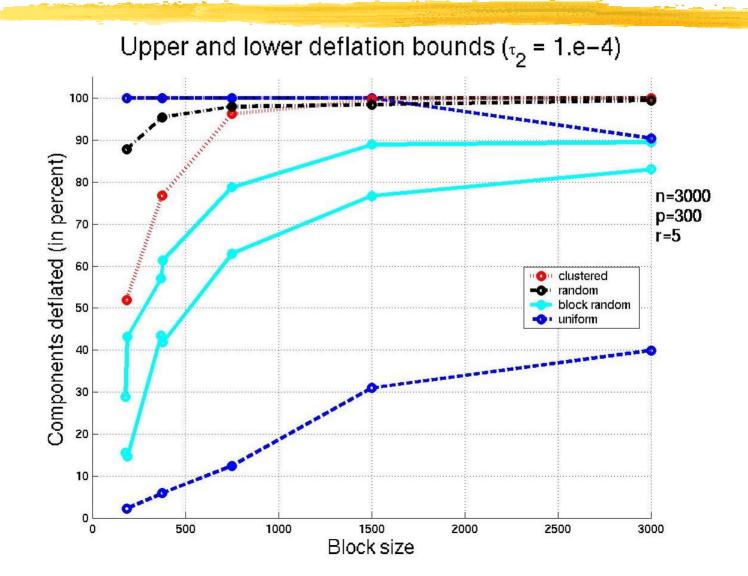
Deflation-Experiments I

- 3 test matrices with prescribed eigenvalue distributions:
 - "clustered": clustered around 0
 - "random": random between -1 and 1
 - "uniform": uniform between -1 and 1
- Additionally, "block random" matrix:
 - random diagonal blocks, off-diagonal blocks from random singular vectors

Deflation-Experiments II



Deflation-Experiments III



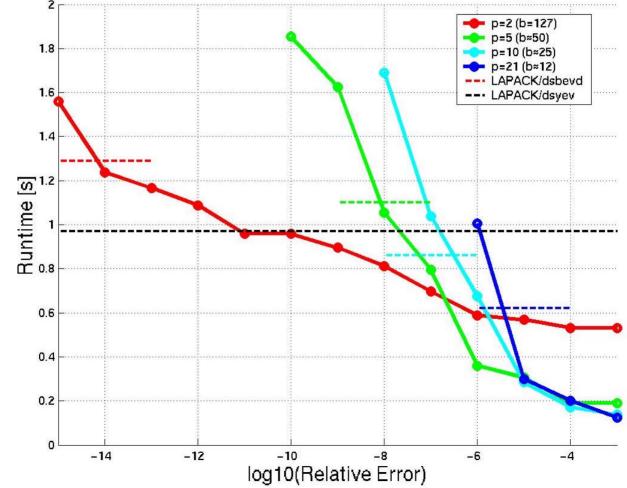
Runtimes --Comparison with LAPACK

 "block random": n=3000, p=300 (10x10), eigenvectors accumulated, times in [s]

$ au_2$	r _i =1	r _i =5	r _i =10
LAPACK tolerance	30.2	942.6	2344.6
10-10	23.1	582.6	1429.6
10-6	17.5	229.4	498.8
10-2	11.0	34.8	64.1
dsbevd	1501.7	1529.7	1551.4

Runtimes --Comparison with LAPACK

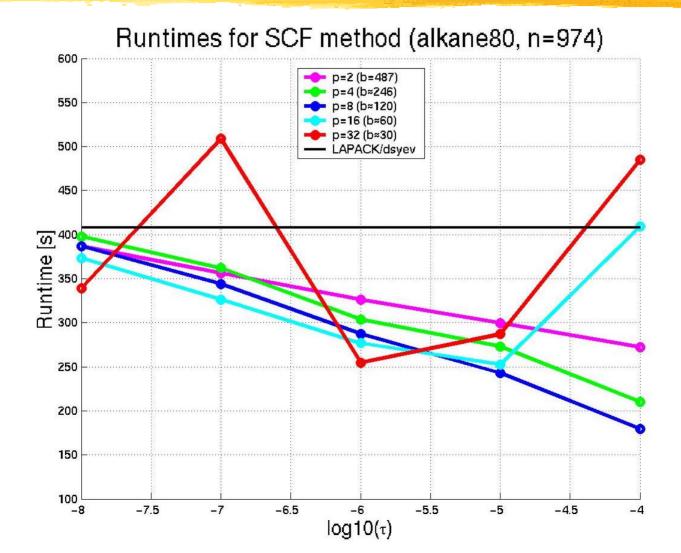
Prescribed accuracy in the 2nd iteration energy (alkane20)



QC: SCF Procedure

Compute **S** Determine **U** s.t. $U^*SU = I$ Guess C_n Do i = 0, 1, 2, ... Compute **F(C_i)** Compute $F'_i = U^*F(C_i)U$ Solve $F'_{i}C'_{(i+1)} = C'_{(i+1)}E_{(i+1)}$ Compute $C_{(i+1)} = UC'_{(i+1)}$ Check for convergence

Runtimes --Full SCF Procedure



11/15/01

36

Experimental Analysis

Efficient

- due to good data locality (maps well onto modern memory hierarchies)
- due to deflation
- Orders of magnitude faster than LAPACK if low accuracy requirements allow for
 - Low rank approximations
 - Large deflation tolerances

Summary and Outlook

Documentation

Eigenvectors via accumulation

- Rank-one off-diagonal approximations: "An Extension of the Divide-and-Conquer Method for a Class of Symmetric Block-Tridiagonal Eigenproblems", Gansterer, Ward, Muller, 2000. (submitted, also TR UT-CS-00-447)
- Arbitrary rank off-diagonal approximations: "Computing Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices", Gansterer, Ward, Muller, 2001. (submitted, also TR UT-CS-01-463)

Work in Progress/ Future Work

- Alternative eigenvector computation
 - URV decomposition + postprocessing
 - Higher rank modifications, FMM
 - Newton-type approach [Dongarra, Moler, Wilkinson (1983)]
- Higher accuracy
 - Better block-tridiagonal/banded approximation
- Parallelization

Future Work

Application to QC Problems (CalTech)

- Utilize information from previous SCF-cycle
- "Localization"
- Alternative eigensolvers (Krylov-subspace methods, Jacobi-Davidson,... ?)
- Methods for *nonlinear* eigenproblems
- Use the framework as a *preconditioner*

More Information

http://www.cs.utk.edu/~cape/