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1. Introduction.
A smooth projective variety X of dimension d is called a Calabi–Yau variety if
(1) H i(X,OX) = 0 for every i, 0 ≤ i ≤ d, and
(2) X has the trivial canonical bundle.

We introduce the Hodge numbers hi,j(X) := dimHj(X,Ωi
X). Then the condition (1) is that hi,0(X) = 0 for

every i, 0 < i < d, and the condition (2) is that the geometric genus pg(X) := hd,0(X) = 1. The dimension
one Calabi–Yau varieties are nothing but elliptic curves, and the dimension two Calabi–Yau varieties are K3
surfaces. The dimension three ones are Calabi–Yau threefolds. Note that Calabi–Yau threefolds are Kähler
manifolds, so that h1,1 > 0. The Euler characteristic of a Calabi–Yau threefold is given by χ = 2(h1,1−h2,1).
Conjecturally, |χ| should be bounded, and the presently known bound is 960.

The (naive) mirror symmetry conjecture for Calabi–Yau threefolds asserts that given a Calabi–Yau
threefold X , there is its mirror partner X∗, which is also a Calabi–Yau threefold, such that h1,1(X∗) =
h2,1(X), h2,1(X∗) = h1,1(X) and χ(X∗) = −χ(X).

In this lecture, we consider Calabi–Yau varieties as arithmetic objects. Assume that Calabi–Yau varieties
are defined over Q, or more generally, over a number field. The main theme of this talk is to discuss the
modularity of Calabi–Yau varieties over Q (or a number field) in dimensions 1, 2 and 3.

1. The modularity conjecture for Calabi–Yau varieties.

For dimension 1, the modularity conjecture has been established for all elliptic curves defined over Q
by the celebrated efforts of Wiles and his former students.

Theorem (Wiles, et al.): Every elliptic curve E over Q is modular. More precisely, the L-series of E
is globally determined by a cusp form of weight 2 on Γ0(N) where N is the conductor of E.

For dimension 2, the modularity conjecture has been proved for singular K3 surfaces. (Here “singular”
means that the Néron–Severi group of a K3 surface has the maximal possible Picard number, namely,
20 = h1,1(X).)

Theorem (Shioda and Inose): Every singular K3 surface X is modular. More precisely, X has a
model defined over a number field K and its L-series of X is given, up to a finitely many Euler factors, by
L(X, s) = ζK(s − 1)20L(f, s) where f is a cusp form of weight 3 (possibly twisted by some character) on
some congruence subgroup of PSL2(Z) (e.g., Γ1(N) or Γ0(N)).

For dimension 3, there is a special class of Calabi–Yau threefolds, rigid Calabi–Yau threefolds, for which
the mirror symmetry conjecture fails (as a mirror partner does not have h1,1(X∗) > 0).

The modularity conjecture for rigid Calabi–Yau threefolds over Q: Every rigid Calabi–Yau
threefold over Q is modular.

This conjecture may be regarded as a concrete realization of the conjecture of Fontaine and Mazur, which
claims that every odd irreducible 2-dimensional Galois representation arising from geometry is modular.

Now we will formulate the modularity conjecture more precisely. Assume that a rigid Calabi–Yau
threefold X has a suitable “integral” model. A rational prime p is called a good prime if X mod p is
smooth and defines a rigid Calabi–Yau threefold over F̄p. For a good prime, let Frobp denote the Frobenius
morphism, and let it act on H3

et(X,Q`). Define Pp,3(T ) := det(1 − Frobp T |H3(X,Q`)). Then Pp,3(T ) =
1 − t3(p)T + p3T 2 ∈ Z[T] with t3(p) ∈ Z, |t3(p)| ≤ 2p3/2. Furthermore, by the Lefschetz fixed point
formula, t3(p) can be expressed in terms of the number of rational points on X over Fp. Indeed, t3(p) =
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1 + p3 + (1 + p)ph1,1 − #X(Fp) for all but finitely many p. The L-series of X is then defined by

L(X, s) := L(H3
et(X,Q`), s) = (∗)

∏

p:good

1

1 − t3(p)p−s + p3−2s

where (∗) is the factor corresponding to bad primes.

The Modularity Conjecture: There is a cusp form f of weight 4 on some Γ0(N) where N is divisible
only by bad primes, such that L(X, s) = L(f, s).

If X is not a rigid Calabi–Yau threefold over Q, the modularity conjecture can still be formulated for a
rank 2 motive in H3

et(X,Q`).

2. Gathering evidence to the modularity conjecture.
Now we give evidence to the modularity conjecture for rigid Calabi–Yau threefolds. The construction

of rigid Calabi–Yau threefolds is rather difficult, and we have at moment about fifteen rigid Calabi–Yau
threefolds. Here are some of those examples.

The Schoen quintic. Let Y : X5
0 +X5

1 +X5
2 +X5

3 +X5
4 − 5X0X1X2X3X4 = 0 ⊂ P4. Then Y has

125 nodes. Resolving singularities, one obtains a Calabi–Yau threefold X with h3,0 = 1, h2,1 = 0, h1,1 = 25
and χ = 50.

Theorem (Schoen, Bloch, Serre, Faltings): There is a cusp form f of weight 4 on Γ0(5
2) such that

L(X, s) = L(f, s). Furthermore, f(q) can be expressed in terms of η-functions.

The Hirzebrich quintic. Consider a regular pentagon in R2 with vertices (u, 0), (− 1
2 ,±

u
√

2−u
2 ),

( 1−u
2 ,±

√
2−u
2 ) with u = 1+

√
5

2 . Taking the product of five lines defining the pentagon, we obtain the
following affine equation F (x, y) = (x + 1

2 )(y2 − y2(2x2 − 2x + 1) + 1
5 (x2 + x − 1)2). Let Y be the affine

threefold defined by F (x, y) − F (u,w) = 0. Then Y has 126 nodes. Blowing up Y along 126 nodes, we
obtain a smooth Calabi- -Yau threefold X with h3,0 = 1, h2,1 = 0, h1,1 = 152 and χ = 152. (Incidentally,
this rigid Calabi–Yau threefold has the largest Euler characteristic among all rigid Calabi- -Yau threefolds
known today.) From the defining equation, it is plain that 2 and 5 are bad primes.

Theorem (van Geemen and Werner): There is a cups form f of weight 4 on Γ0(252) such that L(X, s) =
L(f, s). Here f(q) is not expressible in terms of η- functions.

The Verrill rigid Calabi–Yau threefold. Consider the root lattice A3. All roots of A3 are given by
{ei−ej | 0 ≤ i, j ≤ 4, i 6= j} where {ei | i = 1, 2, 3, 4} is the standard basis for R4. To each root ei−ej , assign
the monomial XiX

−1
j . Summing over all the roots, and equating it with λ ∈ P1, one get a toric variety:

(X1 +X2 +X3 +X4)(X
−1
1 +X−1

2 +X−1
3 +X−1

4 ) = λ + 4 ⊂ P3 × P1. This is not a Calabi–Yau threefold

yet. To produce a Calabi–Yau threefold, we take the double cover of the base by putting λ = (t−1)2

t . Then
resolving singularities, one obtains a Calabi–Yau threefold X with h3,0 = 1, h2,1 = 0, h1,1 = 50 and χ = 100.

Theorem (Verrill, M-H. Saito and Yui): There is a cusp form f of weight 4 on Γ0(6) such that
L(X, s) = L(f, s). Here f is expressed in terms of η- functions, f(q) = η(q)2η(q2)2η(q3)2η(q6)2.

The complete intersection P7(2, 2, 2, 2). Let Y be the image of the complete intersection defined by
the four equations:

Y 2
0 = X2

0 +X2
1 +X2

2 +X2
3

Y 2
1 = X2

0 −X2
1 +X2

2 −X2
3

Y 2
2 = X2

0 +X2
1 −X2

2 −X2
3

Y 2
3 = X2

0 −X2
1 −X2

2 +X2
3

Let X be a smooth resolution. Then X is a rigid Calabi- -Yau threefold with H1,1 = 128.

Theorem (Nygaard and van Geemen): There is a csup form f of weight 4 on Γ0(8) such that L(X, s) =
L(f, s). Here f is expressed in terms of η-functions, f(q) = [η(q2)η(q4)]4.
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3. The methods for establishing the modularity conjecture.
We now discuss methods of establishing the modularity. There are at least four possible approaches in

this regard. They are listed as follows.

(1) The Serre–Faltings criteria to establish equivalence of two 2-dimensional residual Galois representa-
tions. In our setting, this boils down to establish the equality: t3(p) = the p-th Fourier coefficient of f(q)
for all p (Serre), for finitely many p (Faltings). Also one needs the Chebotarev density theorem to conclude
the equivanence of two 2-dimensional Galois representations involved.

This is the standard approach, and it is used to establish the modularity for the Schoen quintic, the
Hirzebrich quintic, and also for the Verrill quintic (by H. Verrill).

(2) Wiles’ approach. For d = 1, Wiles established equivalence of two 2-dimensional mod ` residual
Galois representations arising from an elliptic curve and cusp form of weight 2 for ` = 3. For rigid Calabi–
Yau threefolds, apply Wiles’ method for, say ` = 7. Recently, the modularity of odd irreducible mod 7
2-dimensional Galois representations has been established.

(3) Geometric structures of rigid Calabi–Yau threefolds (toward classification of rigid Calabi–Yau three-
folds). This is motivated by the classification theorem for singular K3 surfaces (due to Shioda and Inose)
that every singular K3 surface is either a Kummer surface of product of two isogenous elliptic curves with
CM, or a double cover of a Kummer surface of former type.

Lemma (Schoen): Let Y be a relatively minimal rational elliptic surface with section. Assume that Y
has exactly four singular fibers of type Ib, b > 0. Take the fiber product Y ×P1 Y and then take its small
resolution, X . Then X is a rigid Calabi–Yau threefold.

We now apply Schoen’s Lemma to elliptic modular surfaces. Let Γ ⊂ PSL2(Z) be a torsion-free
arithmetic subgroup. Let CΓ be the modular curve. Then there is a universal family of elliptic curves
π : SΓ → CΓ. The fibration π is called the elliptic modular surface associated to Γ. A natural question
is: Which Γ give rise to rigid Calabi–Yau threefolds via Schoen’s construction? The answer is given by the
following Lemma.

Lemma (Beauville, Schoen, Sebbar): There are only six subgroups, and they are: Γ(3), Γ0(4) ∩
Γ(2), Γ1(5), Γ1(6) = Γ0(6), Γ0(8) ∩ Γ1(4) and Γ0(9) ∩ Γ1(3).

Proposition Let Γ be one of the six subgroups in the above Lemma. Then the rigid Calabi–Yau
threefold X associated to Γ is modular, that is, L(X, s) = L(f, s) where f is a cusp form of weight 4 on Γ.

The proposition follows from the Shimura isomorphism, together with Deligne’s work.

To establish the modularity for a given rigid Calabi–Yau threefold X , one tries to construct birational
morphism defined over Q from X to one of the elliptic modular rigid Calabi–Yau threefolds. This method
is applied by M-H. Saito and Yui to establish the modularity for the Verrill rigid Calabi–Yau threefold.

Theorem (M-H. Saito and Yui): Let Y : (X1 +X2 +X3)(X1X2 +X2X3 +X3X1) = (s+ 1)X1X2X3 ⊂
P2 × P1 be an elliptic surface. Then the minimal resolution of Y is isomorphic to the elliptic modular
surface associated to Γ1(6) = Γ0(6). Let X be the Verrill rigid Calabi–Yau threefold over Q. Then X
is birationally equivalent over Q to the minimal resolution of the fiber product Y ×P1 Y . Consequently,
L(X, s) = L( ˜Y ×P1 Y , s) = L(f, s) where f = η(q)2η(q2)2η(q3)2η(q6)2.

(4) The intermediate Jacobians of rigid Calabi–Yau threefolds. For a Calabi–Yau threefold X , there are
the Hodge decomposition and Hodge filtration:

H3(X,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊃ {0}

where F 0 = H3,0 ⊕H2,1 ⊕H1,2, F 2 = H3,0 ⊕H2,1, F 2 = H3,0. The intermediate Jacobian J2(X) is defined

by J2(X) = H3(X,C)
F 2H3(X,C)+H3(X,Z) . If X is rigid, F 1 = F 2 = F 3 = H3,0 and J2(X) = H0,3(X,C)/H3(X,Z) '

C/Z2 is a complex torus of dimension 1.

Question: A rigid Calabi–Yau threefold X over Q is modular if the intermediate Jacobian J 2(X) is
defined over a number field and is modular.
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This approach is currently pursued jointly with Xavier Xarles (University Autonoma Barcelona).

4. Calabi–Yau varieties of CM type.
Let E be an elliptic curve Let End(E) denotes the endormorphism ring of E, and End(E) ⊗ Q the

endormorphism algebra of E. It is known that End(E) ⊗ Q is isomorphic either to Q, or an imaginary
quadratic field over Q. An elliptic curve E is said to have complex multiplication or simply be of CM- type

if its endomorphism algebra End(E) ⊗ Q is an imaginary quadratic field over Q. Of course, not all elliptic
curves have CM. We try to generalize this notion to higher dimensional Calabi–Yau varieties.

Definition. A Calabi–Yau variety X of dimension ≥ 2 is said to of CM type if its Hodge group is
commutative.

Now let X be a K3 surface. There is the direct decomposition of the second cohomology group

H2(X,Q) = NS(X) ⊕ T (X)

where NS(X) denotes the Néron–Severi group of X consisting of the classes of algebraic cycles on X , and
T (X) is the orthogonal complement of NS(X) with respect to the cup product < , >. The Hodge
group Hdg(X) is the smallest algebraic subgroup of GL(T (X)) containing the image of U 1 := {z ∈ C∗ | z =
barz = 1}. A main result of Zarhin is that T (X) is an irreducuble Hodge module. So we may define the
endormorphism algebra E := EndHdg(T(X)) ⊗ Q. Then E is a commutative field over Q with dimension
dividing rankZT(X). In fact, E is either a totally real algebraic number field, or a CM field over Q.

Proposition Let X be a singular K3 surface. Then the following assertions hold ture.
(1) X is of CM type,
(2) E is an imaginary quadratic field over Q.
(3) X is defined over a number field K, and the L–series of X is a product of 20 copies of the Dedekind

zeta-function of K and the L–series of a modular form of weight 3 on some congruence subgroup of SL2(Z).

Now we consider rigid Calabi–Yau threefolds. For rigid Calabi–Yau threefolds of CM type, we can
establish the modularity conjecture. If X is a rigid Calabi–Yau threefold of CM type, then there is an
elliptic curve over Q with CM such that the representations associated to the Calabi–Yau threefold do come
from these representations, and this elliptic curve is (over C) is the intermediate Jacobian.

Theorem (Xarles and Yui) A rigid Calabi–Yau threefold of CM type is modular if and only if its
intermediate Jacobian is of CM type, and is modular.

Remarks (1) We should hasten to remark that not all rigid Calabi– Yau threefolds are of CM type,
contrary to the dimension 2 case.

(2) The modularity conjecture for non-CM rigid Calabi–Yau threefolds is still open. Recently, the
modularity of irreducible odd 2-dimensional Galois representations mod 7 has been established bu Manohar-
mayum. Use this result to establish the modularity of rigid Calabi–Yau threefolds over Q along the line of
Wiles, and Taylor–Wiles.

(3) The Hodge group (or the Mumford–Tate group) of a Calabi–Yau threefold is not an esay object
to compute. Therefore a compelling question is How can one compute the Hodge group of a Calabi–Yau

threefold?

5. The modularity conjecture for Calabi–Yau varieties in general.
For K3 surfaces not necessarily of CM type, and for Calabi–Yau threefolds over number fields not

necessarily rigid, the modularity conjecture ought to be formulated along the line of the Langland Program.
Suppose that Calabi–Yau varieties in question are defined over number fields K. Let G denote the

absolute Galois group. Then there is the Galois representation

ρ : G → GL(H i
et(X̄,Q`)

and there is the associated L–series L(H i
et(X̄,Q`), s). The L-series of X is then defined by the d-th L-series

L(Hd
et(X̄,Q`), s) where d is the dimension of X .
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Theorem: (a) A K3 surface of Picard number 19 is modular.
(b) A Kummer surface is modular if and only if the associated abelian variety is modular.
(c) A K3 surface of Fermat type in a weighted projective space is modular.
(d) A K3 surface which is an orbifold of a surface of Fermat type in a weighted projective space is

modular.

For Calabi–Yau threefolds, we have the following partial results.

Theorem: (a) A Calabi–Yau threefold of Fermat type in a weighted projective space is modular.
(b) A Calabi–Yau orbifold of a threefold of Fermat type in a weighted projective space is modular.
(c) A K3 fibered Calabi–Yau threefold is modular if and only if the K3 fiber is modular.

The next natural step in this research endevour might be to consider Calabi–Yau threefolds over Q with
h2,1 = 1 or H1,1 = 1. Recently, Consani and Scholten considderd the affine singular Calabi–Yau threefold
defined by the equation:

Y : Ht(x, y) −Ht(u, v) = 0

where Ht(x, y) = Fa,b(x, y) = (x+ a)(y2 − x2)(y2 − b(x+ 1)2) with a = t(t+ 5)/(t2 − 5); b = t2/5. Let X be
a smooth resolution of Y . Then X is a Calabi–Yau threefold with h2,1 = 1, h1,1 = 138. The corresponding
Galois representation is of dimension 4. They have determined the L-series of X over Q. There is a Hilbert
cusp form of weight (2, 4) and level 5 such that L(X, s) = L(f, s). Over Q(

√
5), the L- series factors into

the product of two L–series corresponding to the 2–dimensional Galois representations.

6. Concluding remarks and open problems.

6.1: A pair of K3 surfaces (X,X∗) is said to be a mirror pair in the sense of Dolgachev if

Pic(X)⊥(= T(X)) = U = ⊕Pic(X∗).

In other words, a mirror pair of K3 surfaces (X,X∗) satisfies the identity:

rankZPic(X) + rankZPic(X∗) = 20.

Since the Tate conjecture is true for any K3 surfaces in characteristic zero, this identity is further equivalent
to the identity:

ords=1L(X, s) + ords=1L(X∗, s) = 20.

The mirror symmetry phenomenon for K3 surfaces can be interpreted in terms of L–series.

6.2: A natural quesiton is : Can one detect mirror symmetry for a mirror pair of Calabi–Yau threefolds?

Consider the one-parameter family of quintic threefold defined by the hypersurface: Y : X5
0 +X5

1 +X5
2 +

X5
3 +X5

4 − 5ψX0X1X2X3X4 = 0 ⊂ P4 where ψ is a parameter. A smooth resolution of Y is a Calabi–Yau
threefold X with h3,0 = 1, h2,1 = 101, h1,1 = 1 and χ = −200. The mirror partner X∗ exists.

Problem: Interprete the mirror symmetry phenomenon in terms of zeta-functions and L-series of X
and X∗.

Candelas, de la Ossa and Villegas computed the zeta-functions of X and X∗, using the solutions of
the GKZ hypergeometric system associated to the pair (X,X∗). The GKZ hypergeometric system contains
the solutions to the Picard–Fuchs differential equation (the fundamental periods) but it also has extraneous
solutions. These extraneous solutions do come into the description of the number #X(Fp) of rational points
on X . No explanations yet why this is so.

Stienstra also computed the zeta-functions of the mirror pair (X,X∗) of the quintic using formal defor-
mations. His description of the zeta-functions involves the mirror map.
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