Mirror Principle B. Lian, K. Liu, C.H. Liu, and S.T. Yau

Outline

- Overview of problems
- Mirror Principle
- History
- Some Conjectures

Overview

- Topological sigma model
$=$ intersection theory on complex loop space.
- "Complex loop space" of a projective manifold X :

$$
\{f: \Sigma \rightarrow X \text { holo. }\}
$$

- Fix $f_{*}[\Sigma]=d \in H_{2}(X, \mathbf{Z})$, genus $(\Sigma)=g$; but allow Σ to vary, and decorate Σ by finitely many points $p_{1}, . ., p_{k}$. The mapping space is a finite dimensional quasi-projective variety.
- Problem: Do intersection theory on (modified version of) this mapping space.
- Naive approach:
- Mapping space is a quasi-projective variety

$$
M_{g, k}(d, X)=\left\{\left(\Sigma, f, x_{1}, . ., x_{k}\right)\right\}
$$

with expected dimension, say R.

- Incidence conditions: fix cycles $V_{1}, . ., V_{k}$ in X with

$$
\sum \operatorname{codim} V_{i}=R
$$

and require that

$$
f\left(x_{i}\right) \in V_{i}
$$

- $\left\{\left(\Sigma, f, x_{1}, . ., x_{k}\right) \mid f\left(x_{i}\right) \in V_{i}\right\}$ should have dimension 0 . Regarded as a 0 -cycle, its degree would be number:

$$
\left(V_{1}, . ., V_{k}\right) \mapsto a \text { number }
$$

BUT...

- $M_{g, k}(d, X)$ is noncompact and typically has the wrong dimension.
- The incidence conditions need not cut down to 0 dimension.
- Ruan-Tian (symplectic), Kontsevich (algebraic): formulate intersection theory on compactified mapping spaces.
- Stable map moduli space:

$$
\bar{M}_{g, k}(d, X):=\left\{\left(C, f, x_{1}, . ., x_{k}\right)\right\} / \sim
$$

where C is a genus g projective curve, at worst nodal. $f: C \rightarrow X$ is a degree d map, and $x_{1}, . ., x_{k}$ are smooth points on C.

- Stability condition:
if $f\left(C_{1}\right)=p t$ then C_{1}, together with its special points, has no infinitesimal auto.
- Equiv. relation:
$\left(C, f, x_{1}, . ., x_{k}\right) \sim\left(C^{\prime}, f^{\prime}, x_{1}^{\prime}, . ., x_{k}^{\prime}\right)$ if there is an isomorphism h

$$
\begin{array}{ccc}
x_{i} & \mapsto & x_{i}^{\prime} \\
C & \xrightarrow{h} & C^{\prime} \\
f \searrow & \circ & \swarrow f^{\prime} \\
& X &
\end{array}
$$

- $\bar{M}_{g, k}(d, X)$ can have impure dimension. Li-Tian construct a cycle in Chow group $A_{R}\left(\bar{M}_{g, k}(d, X)\right)$ (cf. Fukayo-Ono, Behrend-Fentachi, Ruan, Siebert): virtual fundamental cycle for $\bar{M}_{g, k}(d, X)$.
- Notation: $L T_{g, k}(d, X)$ be the virtual fundamental cycle of $\bar{M}_{g, k}(d, X)$ of pure dimension

$$
R=\left\langle c_{1}(X), d\right\rangle+(1-g) \operatorname{dim}(X)+k-3
$$

- It plays the role of the fundamental cycle of a compact manifold.

Problem

- Fix a vector bundle E on $M_{g, k}(d, X)$, and a char. class $b(E) \in A^{*}\left(M_{g, k}(d, X)\right)$. Fix cohomology classes $\omega_{1}, . ., \omega_{k}$ on X. Study the integrals

$$
K_{D}:=\int_{L T_{g, k}(d, X)} e_{1}^{*} \omega_{1} \cdots e_{k}^{*} \omega_{k} b(E)
$$

$D=(g, k ; d)$.

- For simplicity, will restrict to $\omega_{1}=\cdots=\omega_{k}=$ 1. All results here have been generalized to the case when ω_{i} are arbitrary. The class b will be Euler class, Chern polynomial, or more generally any multiplicative class.
- Definition: A vector bundle $V \rightarrow X$ is called convex if $H^{1}\left(\mathbf{P}^{1}, f^{*} V\right)=0$ for any holomorphic map $f: \mathbf{P}^{1} \rightarrow X$.
- A convex bundle induces

- Examples: the tangent bundle of $X=\mathbf{P}^{n}$; any positive power of the hyperplane bundle.
- Similarly for concave bundle $V: H^{0}\left(C, f^{*} V\right)=0$, $\forall f: C \rightarrow X$ genus g maps.
- Denote by $E=V_{D} \rightarrow M_{g, k}(d, X), D=(g, k ; d)$, the vector bundle induced by a convex/concave bundle V. Also write $V_{D}^{\prime} \rightarrow M_{g, k+1}(d, X)$.

The Gluing Identity

- Enlarge $M_{g, k}(d, X)$ to

$$
M_{D}:=M_{g, k}\left((1, d), \mathbf{P}^{1} \times X\right)
$$

The projection $\mathbf{P}^{1} \times X \rightarrow X$ induces a map

$$
M_{D} \xrightarrow{\pi} M_{g, k}(d, X) .
$$

Pulling back $b\left(V_{D}\right)$ via π, we get a cohomology class $\pi^{*} b\left(V_{D}\right)$ on M_{D}.

- \mathbf{C}^{\times}acts on \mathbf{P}^{1} by the standard rotation. This induces an \mathbf{C}^{\times}action on M_{D}. Will do localization on M_{D} relative to this action.
- Each fixed point in M_{D} comes from gluing pairs in $M_{g_{1}, k_{1}+1}\left(d_{1}, X\right) \times M_{g_{2}, k_{2}+1}\left(d_{2}, X\right)$ at a marked point x. Here $D=D_{1}+D_{2}$ where $D_{i}=\left(g_{i}, k_{i} ; d_{i}\right)$.
- Call this component $F_{D_{1}, D_{2}}$, and $i: F_{D_{1}, D_{2}} \rightarrow$ M_{D} inclusion. There are two natural projection maps

$$
\begin{aligned}
p_{0}: F_{D_{1}, D_{2}} & \rightarrow M_{g_{1}, k_{1}+1}\left(d_{1}, X\right) \\
p_{\infty}: F_{D_{1}, D_{2}} & \rightarrow M_{g_{1}, k_{1}+1}\left(d_{1}, X\right)
\end{aligned}
$$

Pulling back $b\left(V_{D_{1}}^{\prime}\right)$ via p_{0}, and $b\left(V_{D_{2}}^{\prime}\right)$ via p_{∞}, we get cohomology classes $p_{0}^{*} b\left(V_{D_{1}}^{\prime}\right)$ and $p_{\infty}^{*} b\left(V_{D_{2}}^{\prime}\right)$ on $F_{D_{1}, D_{2}}$.

- Theorem(Gluing Identity): On $F_{D_{1}, D_{2}}$ we have identity of cohomology classes:

$$
i^{*} \pi^{*} b\left(V_{D}\right)=p_{0}^{*} b\left(V_{D_{1}}^{\prime}\right) p_{\infty}^{*} b\left(V_{D_{2}}^{\prime}\right)
$$

- Next: transfer this identity to some simple manifold...

Functorial localization

- Given $f: A \rightarrow B$, a G-equiv. map of G manifolds;

$$
\begin{array}{rccc}
f^{-1}(E) \supset & F & \xrightarrow{i_{F}} & A \\
g \downarrow & & \downarrow f \\
E & \xrightarrow{j_{E}} & B .
\end{array}
$$

For $\omega \in H_{G}^{*}(A)$, we have identity on E :

$$
\frac{j_{E}^{*} f_{*}(\omega)}{e_{G}(E / B)}=g_{*} \frac{i_{F}^{*}(\omega)}{e_{G}(F / A)}
$$

Comparison theorem

- There is a version for stable map moduli:

$$
i: F_{D_{1}, D_{2}} \rightarrow M_{D}
$$

plays the role of $i_{F}: F \rightarrow A$. Evaluation map

$$
e: F_{D_{1}, D_{2}} \rightarrow X
$$

evaluating at gluing point plays the role of $g: F \rightarrow$ E.

- Fix a projective embedding $X \subset \mathbf{P}^{n}$. Each map stable $\left(f, C, x_{1}, . ., x_{k}\right)$ is a degree $(d, 1)$ map into $X \times \mathbf{P}^{1} \subset \mathbf{P}^{n} \times \mathbf{P}^{1}$.
- Corresponding to this are $n+1$ polynomials $f_{i}\left(w_{0}, w_{1}\right)$ each vanishing of order d_{i} at $\left[a_{i}, b_{i}\right] \in \mathbf{P}^{1}$.
- Theorem(Li-Lian-Liu-Yau): The corrrespondence

$$
\left(f, C, x_{1}, . ., x_{k}\right) \mapsto\left[f_{0}, . ., f_{n}\right]
$$

defines an equivariant morphism $\varphi: M_{D} \rightarrow N_{d}$ where N_{d} is the projective space of $(n+1)$-tuple of polynomials of degree d.

- The fixed points in N_{d} are copies of \mathbf{P}^{n}. There is a similar theorem if we have an embedding $X \subset$ $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{m}}$. Then N_{d} is replaced by a product W_{d} of N_{d} 's. Label the fixed points by $Y_{d_{1}, d_{2}}$, and inclusion

$$
j: X \subset Y_{d_{1}, d_{2}} \rightarrow W_{d}
$$

- Putting together a commutative square:

$$
\begin{array}{ccc}
F_{D_{1}, D_{2}} & \xrightarrow{i} & M_{D} \\
e \downarrow & \circ & \downarrow \varphi \\
X & \xrightarrow{j} & W_{d} .
\end{array}
$$

- Theorem: (Comparison Theorem) For any equivariant class ω on M_{D}, we have an identity on X :

$$
\frac{j^{*} \varphi_{*}\left(\omega \cap L T_{D}\right)}{e\left(X / W_{d}\right)}=e_{*} \frac{i^{*} \omega \cap\left[F_{D_{1}, D_{2}}\right]}{e\left(F_{D_{1}, D_{2}} / M_{D}\right)}
$$

Denote the RHS by $J_{D_{1}, D_{2}} \omega$.

- Theorem: Consider the integral

$$
K_{D}=\int_{L T_{g, k}(d, X)} b\left(V_{D}\right)
$$

Suppose the integrand has the right degree. Then $\int_{X} e^{-H \cdot t} J_{O, D} \pi^{*} b\left(V_{D}\right)=(-1)^{g}(2-2 g-d \cdot t) K_{D}$.

- Thus the goal is to compute the numbers K_{D} by first computing the classes $J_{D_{1}, D_{2}} \pi^{*} b\left(V_{D}\right)$ on X. Let's restrict to $g=0$ and $k=0$ for simplicity.

Solving the Gluing Identity

- Gluing Identity \Longrightarrow
- Theorem: We have the identity of cohomology classes on X :

$$
\begin{aligned}
& b(V) \cdot J_{D_{1}, D_{2}} \pi^{*} b\left(V_{D}\right) \\
= & J_{D_{1}, O} \pi^{*} b\left(V_{D_{1}}\right) \cdot J_{O, D_{2}} \pi^{*} b\left(V_{D_{2}}\right) .
\end{aligned}
$$

- For general X, complete classification of solutions not available.
- Important Fact: the Gluing Identity is functorial; if $V \rightarrow X$ is T-equivariant bundle, there is a T equivariant version.
- Definition: A T-manifold X is called a balloon manifold if
i. X^{T} is finite
ii. (GKM) T-weights on $T_{p} X$ at fixed point p are pairwise linearly independent.
iii. The moment map is injective on X^{T}.
- Examples: projective toric manifolds, flag manifolds.
- For ANY balloon manifold X, the T-equiv. Gluing Identity can be solved completely in terms of restrictions $\left.T X\right|_{C}$ and $\left.V\right|_{C}$ where $C \cong \mathbf{P}^{1}$ are T invariant curves in X.
- There is a linear algorithm to compute all equivariant classes $J_{D_{1}, D_{2}} \pi^{*} b\left(V_{D}\right)$, hence all intersection numbers K_{D}, in terms of these data.
- Example: X : toric manifold
$D_{1}, . ., D_{N}: T$-invariant divisors

$$
\begin{aligned}
& V=\oplus_{i} L_{i}, \quad c_{1}\left(L_{i}\right) \geq 0 \text { and } c_{1}(X)=c_{1}(V) . \\
& b(V)=e(V)
\end{aligned}
$$

$$
\Phi(T)=\Sigma K_{D} e^{d \cdot T}
$$

$$
\begin{aligned}
& B(t)=e^{-H \cdot t} \sum_{d} \prod_{i}^{\left\langle c_{1}\left(L_{i}\right), d\right\rangle} \prod_{k=0}\left(c_{1}\left(L_{i}\right)-k\right) \\
& \times \frac{{ }^{\Pi}\left\langle D_{a}, d\right\rangle<0{ }^{\Pi}{ }_{k=0}^{-\left\langle D_{a}, d\right\rangle-1}\left(D_{a}+k\right)}{{ }^{\Pi}\left\langle D_{a}, d\right\rangle \geq 0{ }^{\Pi}{ }_{k=1}^{\left\langle D_{a}, d\right\rangle}\left(D_{a}-k\right)} e^{d \cdot t} .
\end{aligned}
$$

- Computing generating function $\Phi(t)=\Sigma K_{d} e^{d t}$. There are explicitly computable functions $f(t), g(t)$, such that

$$
\int_{X}\left(e^{f} B(t)-e^{-H \cdot T} e(V)\right)=2 \Phi-\Sigma T_{i} \frac{\partial \Phi}{\partial T_{i}}
$$

where $T=t+g(t)$ (mirror transformation).

Mirror History

- PHASE I:

- Gepner, Lerche-Vafa-Warner, Dixon (mid 80): idea of mirror conformal field theories.
- Greene-Plesser, Candelas-Lynker-Schimrigk, Klemm,. 89): mirror CYs in weight projective spaces.
- Candelas-de la Ossa-Green-Parkes (90): use mirror CYs to give enumerative predictions for quintics.
- Libgober-Teiteilboim, Morrison, Batyrev, Klemm et al, Candelas et al, Berglund et al, Hosono et al, ...(91-93): enumerative predictions for many examples of weighted projective complete intersection CYs.
- Batyrev, Borisov (91-93): mirror CYs in toric varieties.
- Hosono-Lian-Yau (94): propose genus 0 mirror formula for general toric CY complete intersections.
- Bershadsky-Cecotti-Ooguri-Vafa (95): higher genus formula.

- PHASE II:

- Vafa, Witten, Kontsevich, Ruan-Tian: math. foundation of quantum cohomology and intersection numbers.
- Ellingsrud-Stromme, Kontsevich (94): apply directly Atiyah-Bott to genus-0 Euler class of Candelas et al for \mathbf{P}^{4}.
- Givental, Bini-de Concini-Polito-Procesi, Pandharipande, (96-98): apply Atiyah-Bott and quantum cohomology theory to genus-0 Euler class for \mathbf{P}^{n}.
- Lian-Liu-Yau (97): develop functorial localization to any multiplicative char. classes, and new genus-0 formulas for \mathbf{P}^{n}.
- Klemm, Katz, Mayr, Vafa,..(97): B-model local mirror symmetry.
- Lian-Liu-Yau (97): math. foundation for A-model local mirror symmetry.
- Li-Tian, Behrend-Fantachi,... (97): foundation for virtual fundamental cycles.
- Graber-Pandaripande (97): Virtual localization.
- Li-Tian (98): symplectic and algebraic quantum cohomology theories are equivalent.
- Lian-Liu-Yau (98-99): apply functorial localization to any multiplicative classes for any projective manifold, at higher genus.
- Lian-C.H.Liu-Yau (99): reconstruct multiplicative classes for hypersurfaces of general type without mirror formula.
- Most recently: functorial localization of Lian-LiuYau becomes a popular technique. Eg. Bertram, Lee, ... cf. Gathmann.

Conjectures

- Let Y be a CY 3-fold. Then the virtual class $L T_{0,0}(d, Y)$ is a zero dimensional cycle. Let $K_{d} \in$ \mathbf{Q} be the degree of this cycle, and define the "instanton numbers" n_{d} by the formula

$$
K_{d}=\sum_{k \mid d} n_{d / k} .
$$

- Conjecture 1: the n_{d} are all integers.
- When Y is a toric complete intersection, then the n_{d} should be divisible by the "multidegrees" of Y.
- Example: when Y is the quintic 3 -fold, the n_{d} are divisible by 5^{3} (Clemens). Verified by Lian-Yau for 5 〈d.
- Near the "large radius limit", the periods of the mirror manifold X should be of the form, in local coordinates

$$
\begin{aligned}
& \omega_{0}=1+O(z), \quad \omega_{i}=\omega_{0} \log z_{i}+O(z \\
& \text { Che mirror map } z \mapsto q \text { has power series }
\end{aligned}
$$

$$
q_{i}:=\exp \left(\frac{\omega_{i}}{\omega_{0}}\right)_{21}=z_{i}+O\left(z^{2}\right) .
$$

- Conjecture 2: The expansions of the q_{i} have integral coefficients.
- This has been verified by Lian-Yau for hypersurfaces X in toric varieties with $H^{2}(X, \mathbf{Z})=\mathbf{Z}$.
- When X is a toric complete intersections, the series $q_{i}^{1 / h_{i}}$ should also have integer expansion, where h_{i} are "multidegrees" of Y.
- Example: when X is the mirror quintic, $h=5$, this has been observed by Vafa et al.

