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Overview

• Topological sigma model
= intersection theory on complex loop space.

• “Complex loop space” of a projective manifold
X :

{f : Σ → X holo.}

• Fix f∗[Σ] = d ∈ H2(X,Z), genus(Σ) = g; but
allow Σ to vary, and decorate Σ by finitely many
points p1, .., pk. The mapping space is a finite di-
mensional quasi-projective variety.

• Problem: Do intersection theory on (modified ver-
sion of) this mapping space.
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• Naive approach:

• Mapping space is a quasi-projective variety

Mg,k(d,X) = {(Σ, f, x1, .., xk)}

with expected dimension, say R.

• Incidence conditions: fix cycles V1, .., Vk in X
with

∑

codim Vi = R

and require that

f (xi) ∈ Vi.
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• {(Σ, f, x1, .., xk)|f (xi) ∈ Vi} should have dimen-
sion 0. Regarded as a 0-cycle, its degree would be
number:

(V1, .., Vk) 7→ a number

BUT...

• Mg,k(d,X) is noncompact and typically has the
wrong dimension.

• The incidence conditions need not cut down to 0
dimension.

• Ruan-Tian (symplectic), Kontsevich (algebraic):
formulate intersection theory on compactified map-
ping spaces.

4



• Stable map moduli space:

M̄g,k(d,X) := {(C, f, x1, .., xk)}/ ∼

where C is a genus g projective curve, at worst
nodal. f : C → X is a degree d map, and x1, .., xk
are smooth points on C.

• Stability condition:
if f (C1) = pt then C1, together with its special

points, has no infinitesimal auto.

• Equiv. relation:
(C, f, x1, .., xk) ∼ (C ′, f ′, x′1, .., x

′
k) if there is an

isomorphism h

xi 7→ x′i
C h→ C ′

f ↘ ◦ ↙ f ′

X
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• M̄g,k(d,X) can have impure dimension. Li-Tian

construct a cycle in Chow group AR(M̄g,k(d,X))
(cf. Fukayo-Ono, Behrend-Fentachi, Ruan, Siebert):
virtual fundamental cycle for M̄g,k(d,X).

• Notation: LTg,k(d,X) be the virtual fundamen-

tal cycle of M̄g,k(d,X) of pure dimension

R = 〈c1(X), d〉 + (1 − g)dim(X) + k − 3.

• It plays the role of the fundamental cycle of a
compact manifold.
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Problem

• Fix a vector bundle E on Mg,k(d,X), and a char.
class b(E) ∈ A∗(Mg,k(d,X)). Fix cohomology
classes ω1, .., ωk on X . Study the integrals

KD :=
∫

LTg,k(d,X) e
∗
1ω1 · · · e

∗
kωk b(E).

D = (g, k; d).

• For simplicity, will restrict to ω1 = · · · = ωk =
1. All results here have been generalized to the
case when ωi are arbitrary. The class b will be
Euler class, Chern polynomial, or more generally
any multiplicative class.
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• Definition: A vector bundle V → X is called
convex if H1(P1, f∗V ) = 0 for any holomorphic
map f : P1 → X .

• A convex bundle induces

Vd H0(C, f∗V )
↓ ↓

M0,k(d,X) (C, f ).

• Examples: the tangent bundle of X = Pn; any
positive power of the hyperplane bundle.

• Similarly for concave bundle V : H0(C, f∗V ) = 0,
∀f : C → X genus g maps.

•Denote by E = VD → Mg,k(d,X), D = (g, k; d),
the vector bundle induced by a convex/concave bun-
dle V . Also write V ′

D → Mg,k+1(d,X).
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The Gluing Identity

• Enlarge Mg,k(d,X) to

MD := Mg,k((1, d),P1 × X).

The projection P1 × X → X induces a map

MD
π→ Mg,k(d,X).

Pulling back b(VD) via π, we get a cohomology class
π∗b(VD) on MD.

• C× acts on P1 by the standard rotation. This
induces an C× action on MD. Will do localization
on MD relative to this action.

• Each fixed point in MD comes from gluing pairs
in Mg1,k1+1(d1, X)×Mg2,k2+1(d2, X) at a marked
point x. Here D = D1+D2 where Di = (gi, ki; di).
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• Call this component FD1,D2
, and i : FD1,D2

→
MD inclusion. There are two natural projection
maps

p0 : FD1,D2
→ Mg1,k1+1(d1, X)

p∞ : FD1,D2
→ Mg1,k1+1(d1, X)

Pulling back b(V ′
D1

) via p0, and b(V ′
D2

) via p∞, we

get cohomology classes p∗0b(V
′
D1

) and p∗∞b(V ′
D2

) on
FD1,D2

.

• Theorem(Gluing Identity): On FD1,D2
we have

identity of cohomology classes:

i∗π∗b(VD) = p∗0b(V
′
D1

) p∗∞b(V ′
D2

).

• Next: transfer this identity to some simple man-
ifold...
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Functorial localization

• Given f : A → B, a G-equiv. map of G mani-
folds;

f−1(E) ⊃ F
iF→ A

g ↓ ↓ f

E
jE→ B.

For ω ∈ H∗
G(A), we have identity on E:

j∗Ef∗(ω)

eG(E/B)
= g∗

i∗F (ω)

eG(F/A)
.
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Comparison theorem

• There is a version for stable map moduli:

i : FD1,D2
→ MD

plays the role of iF : F → A. Evaluation map

e : FD1,D2
→ X

evaluating at gluing point plays the role of g : F →
E.

• Fix a projective embedding X ⊂ Pn. Each map
stable (f, C, x1, .., xk) is a degree (d, 1) map into
X × P1 ⊂ Pn × P1:

•Corresponding to this are n+1 polynomials fi(w0, w1),
each vanishing of order di at [ai, bi] ∈ P1.
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• Theorem(Li-Lian-Liu-Yau): The corrrespondence

(f, C, x1, .., xk) 7→ [f0, .., fn]

defines an equivariant morphism ϕ : MD → Nd
where Nd is the projective space of (n + 1)-tuple of
polynomials of degree d.

• The fixed points in Nd are copies of Pn. There
is a similar theorem if we have an embedding X ⊂
Pn1×· · ·×Pnm. Then Nd is replaced by a product
Wd of Nd’s. Label the fixed points by Yd1,d2

, and
inclusion

j : X ⊂ Yd1,d2
→ Wd.

• Putting together a commutative square:

FD1,D2
i→ MD

e ↓ ◦ ↓ ϕ

X
j
→ Wd.
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• Theorem: (Comparison Theorem) For any equiv-
ariant class ω on MD, we have an identity on X :

j∗ϕ∗(ω ∩ LTD)

e(X/Wd)
= e∗

i∗ω ∩ [FD1,D2
]

e(FD1,D2
/MD)

.

Denote the RHS by JD1,D2
ω.

• Theorem: Consider the integral

KD =
∫

LTg,k(d,X) b(VD).

Suppose the integrand has the right degree. Then
∫

X e−H·tJO,Dπ∗b(VD) = (−1)g(2− 2g−d · t)KD.

• Thus the goal is to compute the numbers KD by
first computing the classes JD1,D2

π∗b(VD) on X .
Let’s restrict to g = 0 and k = 0 for simplicity.
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Solving the Gluing Identity

• Gluing Identity =⇒

• Theorem: We have the identity of cohomology
classes on X :

b(V ) · JD1,D2
π∗b(VD)

= JD1,Oπ∗b(VD1
) · JO,D2

π∗b(VD2
).

• For general X , complete classification of solutions
not available.

• Important Fact: the Gluing Identity is functorial;
if V → X is T -equivariant bundle, there is a T -
equivariant version.
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• Definition: A T -manifold X is called a balloon
manifold if

i. XT is finite
ii. (GKM) T -weights on TpX at fixed point p are

pairwise linearly independent.
iii. The moment map is injective on XT .

• Examples: projective toric manifolds, flag mani-
folds.

• For ANY balloon manifold X , the T -equiv. Glu-
ing Identity can be solved completely in terms of
restrictions TX|C and V |C where C ∼= P1 are T -
invariant curves in X .

• There is a linear algorithm to compute all equiv-
ariant classes JD1,D2

π∗b(VD), hence all intersection
numbers KD, in terms of these data.
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• Example: X : toric manifold
D1, .., DN : T -invariant divisors
V = ⊕iLi, c1(Li) ≥ 0 and c1(X) = c1(V ).
b(V ) = e(V )

Φ(T ) =
∑

KDed·T .

B(t) = e−H·t ∑

d

∏

i

〈c1(Li),d〉
∏

k=0
(c1(Li) − k)

×
∏

〈Da,d〉<0
∏

−〈Da,d〉−1
k=0 (Da + k)

∏

〈Da,d〉≥0
∏

〈Da,d〉
k=1 (Da − k)

ed·t.

• Computing generating function Φ(t) = ∑ Kde
dt.

There are explicitly computable functions f (t), g(t),
such that

∫

X



efB(t) − e−H·Te(V )


 = 2Φ −
∑

Ti
∂Φ

∂Ti

where T = t + g(t) (mirror transformation).
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Mirror History

• PHASE I:

• Gepner, Lerche-Vafa-Warner, Dixon (mid 80):
idea of mirror conformal field theories.

•Greene-Plesser, Candelas-Lynker-Schimrigk, Klemm,...(87-
89): mirror CYs in weight projective spaces.

• Candelas-de la Ossa-Green-Parkes (90): use mir-
ror CYs to give enumerative predictions for quintics.

• Libgober-Teiteilboim, Morrison, Batyrev, Klemm
et al, Candelas et al, Berglund et al, Hosono et
al, ...(91-93): enumerative predictions for many ex-
amples of weighted projective complete intersection
CYs.

• Batyrev, Borisov (91-93): mirror CYs in toric
varieties.

• Hosono-Lian-Yau (94): propose genus 0 mirror
formula for general toric CY complete intersections.

• Bershadsky-Cecotti-Ooguri-Vafa (95): higher genus
formula.
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• PHASE II:

•Vafa, Witten, Kontsevich, Ruan-Tian: math. foun-
dation of quantum cohomology and intersection num-
bers.

• Ellingsrud-Stromme, Kontsevich (94): apply di-
rectly Atiyah-Bott to genus-0 Euler class of Cande-
las et al for P4.

• Givental, Bini-de Concini-Polito-Procesi, Pand-
haripande, (96-98): apply Atiyah-Bott and quan-
tum cohomology theory to genus-0 Euler class for
Pn.

• Lian-Liu-Yau (97): develop functorial localization
to any multiplicative char. classes, and new genus-0
formulas for Pn.

• Klemm, Katz, Mayr, Vafa,..(97): B-model local
mirror symmetry.

• Lian-Liu-Yau (97): math. foundation for A-model
local mirror symmetry.

• PHASE III:
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• Li-Tian, Behrend-Fantachi,... (97): foundation
for virtual fundamental cycles.

• Graber-Pandaripande (97): Virtual localization.

• Li-Tian (98): symplectic and algebraic quantum
cohomology theories are equivalent.

• Lian-Liu-Yau (98-99): apply functorial localiza-
tion to any multiplicative classes for any projective
manifold, at higher genus.

• Lian-C.H.Liu-Yau (99): reconstruct multiplica-
tive classes for hypersurfaces of general type with-
out mirror formula.

• Most recently: functorial localization of Lian-Liu-
Yau becomes a popular technique. Eg. Bertram,
Lee, ... cf. Gathmann.
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Conjectures

• Let Y be a CY 3-fold. Then the virtual class
LT0,0(d, Y ) is a zero dimensional cycle. Let Kd ∈
Q be the degree of this cycle, and define the “in-
stanton numbers” nd by the formula

Kd =
∑

k|d
nd/k.

• Conjecture 1: the nd are all integers.

• When Y is a toric complete intersection, then the
nd should be divisible by the “multidegrees” of Y .

• Example: when Y is the quintic 3-fold, the nd are
divisible by 53 (Clemens). Verified by Lian-Yau for
5 6 |d.

• Near the “large radius limit”, the periods of the
mirror manifold X should be of the form, in local
coordinates

ω0 = 1 + O(z), ωi = ω0log zi + O(z), · · ·

The mirror map z 7→ q has power series

qi := exp(
ωi

ω0
) = zi + O(z2).
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• Conjecture 2: The expansions of the qi have inte-
gral coefficients.

• This has been verified by Lian-Yau for hypersur-
faces X in toric varieties with H2(X,Z) = Z.

• When X is a toric complete intersections, the se-

ries q
1/hi
i should also have integer expansion, where

hi are “multidegrees” of Y .

• Example: when X is the mirror quintic, h = 5,
this has been observed by Vafa et al.
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