

A Statistical Approach To Pricing Catastrophic Loss (CAT) Securities

J. David Cummins

University of Pennsylvania

Christopher Lewis

U.S. Office of Federal Housing Enterprise Oversight

Richard D. Phillips

Georgia State University

Number of CAT Losses: 1970-98

Cost of Top 40 CAT Losses: 1970-1998 (Cumulative)

Top 10 CAT Losses: 1970-98

	Loss		
Date	(\$ billions)	Event	Location
Aug-92	18.60	Hurricane Andrew	US
Jan-94	13.76	Northridge Earthquake	US
Sep-91	6.65	Typhoon Mireille	Japan
Jan-90	5.73	Hurricane Daria	Europe
Sep-89	5.52	Hurricane Hugo	US
Oct-87	4.30	Autumn Storm	Europe
Feb-90	3.98	Hurricane Vivian	Europe
Aug-98	3.53	Hurricane Georges	US, Carib.
Jul-88	2.76	Oil Rig Explosion	UK
Jan-95	2.65	Kobe Earthquake	Japan

Source: Swiss Re.

Projected Catastrophes

- \$75 billion Florida hurricane
- \$21 billion Northeast hurricane
- \$72 billion California earthquake
- \$100 billion New Madrid earthquake

Reinsurance Market: Rates on Line & CAT Losses

Failure of Diversification: Types of Events

- High-Frequency, Low-Severity
 - Auto collision
 - Non-CAT homeowners losses
- Low-Frequency, High-Severity
 - Property catastrophes
 - Failure of Law of Large Numbers

- "Holding large amounts of capital to finance infrequent events is not possible in practice."
- Holding capital is costly due to agency costs and other market imperfections
- "Underutilized" capital attracts raiders
- Tax and accounting rules discourage holding "excess" capital

- US Bonds & Stocks \$25 trillion
 \$75 billion < 0.5%
- CATs uncorrelated with other events that move markets (zero-beta securities)
- Markets reveal information -- reduce reinsurance price/quantity cycles

CAT Securities: "Zero-Beta" Assets

- CBOT CAT Option Spreads
- CAT Bonds
- CAT E-Puts
- Federal Excess of Loss (XOL) Reinsurance

CAT Bonds

The Case for a Federal Role

- Catastrophe risks violate independence requirement of an insurable risk
 - Cross sectional vs. inter-temporal diversification
- Constraints on private market solutions
 - Limits on insurer capitalization
 - Tax limitations
 - Accounting limitations
 - Vulnerability to raiders
 - Prohibitive post-loss cost of capital
- Unstable reinsurance markets
- Inadequate capital markets solutions

- Private insurers have difficulty in diversifying large losses across time
 - Once in 100 year event difficult to fund in advance
 - Information asymmetries and other market imperfections raise the cost of capital following a large event (even if the insurer remains solvent)
- Government is the borrower of last resort
 - Can borrow at the risk-free rate
 - Inter-generational financing of large events may be desirable
- Contracts could be priced to break-even or make a profit in expected values ("Crowding Out")

- Government contracts might slow the growth of private market CAT securitization
- Mis-pricing could unfairly penalize taxpayers
- The program might be difficult to kill once an adequate private market develops

- Option spreads are the dominant contractual form
 - CBOT options
 - CAT bonds
 - XOL reinsurance
- The payoff function

$P = Max[0,\delta(L - C)] - Max[0,\delta(L - T)]$

- C = lower strike
- T = upper strike
- δ = coinsurance proportion

The contracts could pay off based on:

- The insurer's own losses (XOL reinsurance, CAT bonds)
- An industry loss index (CBOT options, CAT bonds)
 - National
 - Statewide
 - Sub-state
- A "parametric" index (CAT bonds)
 - Richter scale reading
 - Saffir-Simpson severity class

Contract Details: Federal XOL Contracts

- Underlying (L) = Industry-wide property cat losses
 - As reported by independent statistical agent
- Coverage period 1 calendar year
 - Loss development period 18 months
 - Single event policies
 - » Renewal provision
 - Sold annually
- Authorized purchasers
 - Insurance companies
 - Reinsurers
 - State pools

Contract Details II: Federal XOL Contracts

- Types of contracts and qualifying lines of business
 - Hurricane contract
 - Homeowners, wind policies, commercial multi-peril, fire, allied, farmowners, commercial inland marine
 - Earthquake/volcanic activity contract
 - » Earthquake shake policies, commercial multi-peril, commercial inland marine
- Trigger to be set above current market capacity, e.g.,
 \$25 to \$50 billion spreads

Hedging with Federal XOL Catastrophe Contracts

Loss ratio w/o XOL contracts

$$\mathbf{R} = \frac{\mathbf{L}_{\mathbf{NA}}}{\mathbf{P}_{\mathbf{A}}} + \frac{\mathbf{L}_{\mathbf{CA}}}{\mathbf{P}_{\mathbf{A}}}$$

Loss ratio with N XOL contracts

$$\mathbf{R} = \frac{\mathbf{L}_{NA}}{\mathbf{P}_{A}} + \frac{\mathbf{L}_{CA}}{\mathbf{P}_{A}} - \frac{\mathbf{N}}{\mathbf{P}_{A}} \times \left[\frac{\mathbf{Max}(\mathbf{L}_{CI} - \mathbf{C}, \mathbf{0})}{1000} - \frac{\mathbf{Max}(\mathbf{L}_{CI} - \mathbf{T}, \mathbf{0})}{1000}\right]$$

Hedging With Federal XOL Options: Hedging Objectives

Cap the loss ratio

Reduce the variance of the loss ratio

- Engineering/actuarial simulation modeling AIR, RMS
- Statistical modeling using realized CAT losses

Pricing Model: The Loss Distribution Function

$$F(L) = \sum_{N=0}^{\infty} p(N)q(L > T | N)S(L | L > T)$$

$$= S(L \mid L > T) \sum_{N=0}^{\infty} p(N)q(L > T \mid N)$$

F(L) = distribution of CAT lossesp(N) = probability of N CATs occur during yearq(L>T|N) = probability that one CAT is > T, given N CATsS(L|L>T) = distribution of CAT loss severity conditional on L>T

Contracts Covering a Single Event: Frequency Distribution

$$let P_{<} = Prob(L < T)$$

$$P_{>} = 1 - P_{<},$$

$$q(L > T | N) = P_{>} + P_{<}P_{>} + P_{<}^{2}P_{>} + ... + P_{<}^{N-1}P_{>}$$

$$= P_{>} \frac{1 - P_{<}^{N}}{1 - P_{<}} = 1 - P_{<}^{N}$$

Taking the expectation over N yields and assuming Poisson arrival rate λ , yields

$$p^* = 1 - e^{-\lambda P_s}$$

Contracts Covering a Single Event: Severity Distribution

Pareto
$$S(L) = \alpha d^{\alpha} L^{-(1+\alpha)}$$

Lognormal
$$S(L) = \frac{1}{L\sigma\sqrt{2\pi}}e^{-\left(\frac{\ln(L)-\mu}{\sigma}\right)^2}$$

Contracts Covering a Single Event: Severity Distribution

Loss Estimates - Historical Data

Database

- Compiled by Property Claims Service (PCS)
- Covers all insured CAT losses since 1949
- CAT = single event losses > \$5M
- Catastrophes included
 - » Hurricanes
 - » Tornadoes
 - » Windstorms
 - » Hail
 - » Fire and Explosions
 - » Riots
 - » Brush fires
 - » Floods

Adjusting Historical Data

- Need to adjust for both
 - Changes in exposure levels
 - Price levels
- Adjustment method 1 PA
 - Exposure State Population Index
 - Price Levels State Construction Cost Index
- Adjustment method 2 VA
 - Exposure and price levels
 - » U.S. Census of Housing, Series HC80-1-A

Property Catastrophe Loss Statistics: Since 1949

Type of			Standard			
Catastrophe	Number	Mean	Deviation	Skewness	Minimum	Maximum
Earthquake	14	\$1,079.9M	\$ 3,313.6M	3.6	\$ 11.9M	\$12,500.0M
Brush Fire	27	228.4M	434.8M	4.4	3.8M	2,296.6M
Flood	14	73.1M	117.5M	2.2	7.0M	356.5M
Hail	53	82.1M	90.2M	2.1	8.0M	443.3M
Hurricanes	57	1,222.7M	2,763.0M	4.8	5.3M	18,391.0M
Ice	1	20.6M	-	-	20.6M	20.6M
Snow	11	102.9M	194.8M	3.1	7.2M	677.6M
Tornado	21	74.6M	116.1M	3.7	3.2M	546.7M
Tropical Storm	8	73.9M	58.9M	1.8	20.0M	204.9M
Volcanic Eruption	1	69.9M	-	-	69.9M	69.9M
Wind	864	96.0M	429.8M	23.5	2.8M	11,746.3M
All Other	66	109.0M	191.9M	3.3	3.8M	983.1M
Total	1137	167.0M	849.1M	14.8	2.8M	18,391.0M

Estimating Severity Distributions: Hurricanes and Earthquakes

Distribution	Parameter	PCS-VA	PCS-PA
Lognormal	μ	5.40	4.59
	σ	2.06	2.17
	-LOG(L)	471.67	426.96
Pareto	α	0.33	0.34
	d	12.04	6.85
	-LOG(L)	430.04	470.04
Burr 12	а	0.66	0.80
	b	874.30	95.78
	q	1.99	1.00
	-LOG(L)	502.54	461.54
GB2	а	0.15	0.08
	b	2.91E+08	0.00
	р	10.97	121.91
	q	88.98	50.20
	-LOG(L)	501.44	460.48
Frequency	_	2.20	2.20

Severity of Loss Distribution Functions: PCS-VA Hurricanes and Earthquakes

Severity of Loss Distribution Function Tails: PCS-VA Hurricanes and Earthquakes

Expected Loss for the \$25-\$50B Layer: PCS Historical Data

Losses Inflated By Housing Values:	L	_ognormal	Pareto	Burr 12	GB2
E(L;\$25B,\$50B,\$12.04M)	\$	170.2M	\$ 1,805.8M	\$ 162.4M	\$ 112.0M
PROB[L>\$25 EVENT OCCURS] = P>		1.10%	8.18%	1.00%	0.79%
PROB[L>\$25] = p* (Poisson param = 2.2)		0.024	0.165	0.022	0.017
E(L;\$25B,\$50B,\$12.04M L>\$25B)	\$	15,518.1M	\$ 22,073.6M	\$ 16,194.7M	\$ 14,179.1M
Total E(L): \$25-50B Layer	\$	370.0M	\$ 3,635.7M	\$ 353.3M	\$ 244.2M
Losses Inflated By Population:					
E(L;\$25B,\$50B,\$6.85M)	\$	81.0M	\$ 1,319.5M	\$ 211.0M	\$ 97.1M
PROB[L>\$25 EVENT OCCURS] = P>		0.53%	6.01%	1.13%	0.61%
PROB[L>\$25] = p* (Poisson param = 2.2)		0.012	0.124	0.025	0.013
E(L;\$25B,\$50B,\$6.85M L>\$25B)	\$	15,286.1M	\$ 21,950.1M	\$ 18,617.9M	\$ 15,839.4M
Total E(L): \$25-50B Layer	\$	177.2M	\$ 2,719.1M	\$ 458.5M	\$ 212.1M

Summary Statistics: PCS Reported Losses Vs. RMS Simulated Losses

			Standard		
	Number	Mean	Deviation	Minimum	Maximum
PCS Severity of Losses					
1949-1994, Losses > 12.04M	67	\$1,284.0M	\$2,943.0M	\$12.4M	\$18,391.0M
RMS Severity of Losses					
All Losses	95182	\$736.5M	\$3,790.5M	\$5.0M	\$107,546.3M
RMS Severity of Losses					
Losses > \$12.04M	66138	\$1,048.0M	\$4,493.5M	\$12.1M	\$107,546.3M
PCS Frequency of Losses					
1949-1994, Losses > 12.04M	67	1.54	1.31	0	6
RMS Frequency of Losses					
All Losses	95182	9.52	3.06	0	23
RMS Frequency of Losses					
Losses > \$12.04M	66138	6.67	2.56	0	19

Estimating Severity Distributions: PCS Losses vs. RMS Simulated Losses

Distribution	Parameter	PCS-VA	PCS-PA	RMS - US
Lognormal	μ	5.40	4.59	4.40
	σ	2.06	2.17	2.20
	-LOG(L)	471.67	426.96	6108.24
Pareto	α	0.33	0.34	0.43
	d	12.04	6.85	12.04
	-LOG(L)	430.04	470.04	6653.26
Burr 12	а	0.66	0.80	0.91
	b	874.30	95.78	44.60
	q	1.99	1.00	0.74
	-LOG(L)	502.54	461.54	6609.18
GB2	а	0.15	0.08	0.40
	b	2.91E+08	0.00	23.51
	р	10.97	121.91	3.82
	q	88.98	50.20	2.49
	-LOG(L)	501.44	460.48	6604.77
Frequency		2.20	2.20	6.60

Fitting Severity Distributions: PCS-VA Losses Vs. RMS Simulated Losses

Fitting Severity Distributions Tails: PCS-VA Losses Vs. RMS Simulated Losses

Total Expected Loss for \$25-\$50B Layers: PCS Losses Vs. RMS Simulated Losses

Losses Inflated By Housing Values:	En	npirical	Lc	ognormal	Pareto	Burr 12	GB2
E(L;\$25B,\$50B,\$12.04M)			\$	170.2M	\$ 1,805.8M	\$ 162.4M	\$ 112.0M
PROB[L>\$25 EVENT OCCURS] = P>				1.10%	8.18%	1.00%	0.79%
PROB[L>\$25] = p* (Poisson param = 2.2)				0.024	0.165	0.022	0.017
E(L;\$25B,\$50B,\$12.04M L>\$25B)				\$15.52B	\$22.07B	\$16.19B	\$14.18B
Total E(L): \$25-50B Layer			\$	370.0M	\$ 3,635.7M	\$ 353.3M	\$ 244.2M
Losses Simulated by RMS							
E(L;\$25B,\$50B,\$6.85M)	\$	82.0M	\$	69.7M	\$ 792.3M	\$ 279.2M	\$ 159.1M
PROB[L>\$25 EVENT OCCURS] = P>		0.70%		0.46%	3.73%	1.43%	0.89%
PROB[L>\$25] = p* (Poisson param = 6.7)		0.045		0.030	0.218	0.090	0.057
E(L;\$25B,\$50B,\$6.85M L>\$25B)	\$	11.71B		\$15.27B	\$21.25B	\$19.48B	\$17.85B
Total E(L): \$25-50B Layer	\$!	528.8M	\$	453.4M	\$ 4,635.5M	\$ 1,758.2M	\$ 1,019.7M

	Historical				
Region	Frequency	Lognormal	Pareto	Burr12	GB2
PCS - VA	2.2	\$ 370.0M	\$ 3,635.7M	\$ 353.3M	\$ 244.2M
PCS - PA	2.2	\$ 177.2M	\$ 2,719.1M	\$ 458.5M	\$ 212.1M
RMS - US	2.2	\$ 152.6M	\$ 1,673.5M	\$ 604.6M	\$ 346.6M
RMS - CA	0.217	\$ 87.0M	\$ 500.6M	\$ 80.7M	\$ 56.9M
RMS - FL	0.378	\$ 4.7M	\$ 102.3M	\$ 53.5M	\$ 69.0M
PCS - SE	0.844	\$ 219.3M	\$ 1,331.0M	\$ 103.0M	\$ 70.9M
RMS - SE	0.844	\$ 206.8M	\$ 1,526.2M	\$ 249.6M	\$ 187.7M

Severity Distribution Assumption

	Frequency	Lognormal	Pareto	Burr12	GB2
PCS - VA	6.7	\$ 1,083.7M	\$ 9,209.2M	\$ 1,037.1M	\$ 720.1M
PCS - PA	6.7	\$ 525.5M	\$ 7,188.6M	\$ 1,341.9M	\$ 627.7M
RMS - US	6.7	\$ 453.4M	\$ 4,635.5M	\$ 1,758.2M	\$ 1,019.7M
RMS - CA	3.6	\$ 44.6M	\$ 950.5M	\$ 502.2M	\$ 645.1M
RMS - FL	0.83	\$ 331.6M	\$ 1,861.3M	\$ 307.9M	\$ 217.3M
PCS - SE	1.35	\$ 349.4M	\$ 2,090.0M	\$ 164.5M	\$ 113.2M
RMS - SE	1.35	\$ 330.3M	\$ 2,395.2M	\$ 398.4M	\$ 299.9M

Average Prices and Rates on Line: Federal XOL Contracts

AVERAGE PRICE

Severity Distribution Assumption

Region	Lognormal	Pareto	Burr12	GB2
PCS - VA	\$ 726.8M	\$ 6,422.5M	\$ 695.2M	\$ 482.1M
PCS - PA	\$ 351.3M	\$ 4,953.8M	\$ 900.2M	\$ 419.9M
RMS - US	\$ 303.0M	\$ 3,154.5M	\$1,181.4M	\$ 683.1M
RMS - CA	\$ 65.8M	\$ 725.6M	\$ 291.5M	\$ 351.0M
RMS - FL	\$ 168.2M	\$ 981.8M	\$ 180.7M	\$ 143.1M
PCS - SE	\$ 284.4M	\$ 1,710.5M	\$ 133.8M	\$ 92.0M
RMS - SE	\$ 268.6M	\$ 1,960.7M	\$ 324.0M	\$ 243.8M

AVERAGE RATE ON LINE

Region	Lognormal	Pareto	Burr12	GB2
PCS - VA	2.91%	25.69%	2.78%	1.93%
PCS - PA	1.41%	19.82%	3.60%	1.68%
RMS - US	1.21%	12.62%	4.73%	2.73%
RMS - CA	0.26%	2.90%	1.17%	1.40%
RMS - FL	0.67%	3.93%	0.72%	0.57%
PCS - SE	1.14%	6.84%	0.54%	0.37%
RMS - SE	1.07%	7.84%	1.30%	0.98%

- Problem: Market incompleteness
 difficult to hedge jump risk
- Solutions
 - Asset pricing model with unsystematic jump risk (Merton 1976)
 - Option pricing with assumption about investor preferences (e.g., Chang 1995)

Is CAT Risk Really Zero-Beta?

- CATs to date are zero beta *but*
 - We have not observed a \$100 billion event
 - Could cause a solvency crisis in insurance markets
 - Could be spillovers to other parts of the economy, e.g., Federal or private borrowing could raise interest rates, etc.

Prices: Selected CAT Bond Issues

	Transaction	Spread	Prob of 1 st		Expected	Prem to	
Date	Sponsor	Premium	\$ of Loss	E[L L>0]	Loss	E[Loss]	Risk
Mar-00	SCOR	14.00%	5.47%	59.23%	3.24%	4.32	EQ, Wind
Mar-00	Lehman Re	4.50%	1.13%	64.60%	0.73%	6.16	EQ, Wind
Nov-99	American Re	5.40%	0.78%	80.77%	0.63%	8.57	EQ, HC
Nov-99	Gerling	4.50%	1.00%	75.00%	0.75%	6.00	EQ
Jun-99	USAA	3.66%	0.76%	57.89%	0.44%	8.32	НС
Jul-99	Sorema	4.50%	0.84%	53.57%	0.45%	10.00	EQ, HC
Jul-98	Yasuda	3.70%	1.00%	94.00%	0.94%	3.94	НС
Mar-99	Kemper	4.50%	0.62%	96.77%	0.60%	7.50	EQ
May-99	Oriental Land	3.10%	0.64%	66.04%	0.42%	7.35	EQ
Feb-99	St. Paul/ F&G Re	8.25%	5.25%	54.10%	2.84%	2.90	Agg CAT
Dec-98	Centre Solutions	4.17%	1.20%	64.17%	0.77%	5.42	HQ
Dec-98	Allianz	8.22%	6.40%	56.41%	3.61%	2.28	Wind,Hail
Aug-98	X.L./MidOcean Re	5.90%	1.50%	70.00%	1.05%	5.62	Mult CAT
Jul-98	St. Paul/ F&G Re	4.44%	1.21%	42.98%	0.52%	8.54	Agg CAT
Jun-98	USAA	4.16%	0.87%	65.52%	0.57%	7.30	НС
Mar-98	Centre Solutions	3.67%	1.53%	54.25%	0.83%	4.42	НС
Dec-97	Tokio Marine & Fire	2.09%	1.02%	34.71%	0.35%	5.90	EQ
Jul-97	USAA	5.76%	1.00%	62.00%	0.62%	9.29	НС
Aug-97	Swiss Re	2.55%	1.00%	45.60%	0.46%	5.59	EQ
Aug-97	Swiss Re	2.80%	1.00%	46.00%	0.46%	6.09	EQ
Aug-97	Swiss Re	4.75%	1.00%	76.00%	0.76%	6.25	EQ
<u>Aug-97</u>	Swiss Re	6.25%	2.40%	100.00%	2.40%	2.60	EQ
Source: Goldman Sachs & Co.			Premium/E[Loss] Average = 9.00; Median = 6.77.				

- Lack of liquidity few issues/limited secondary market
- Investor unfamiliarity with CAT securities
- Parameter uncertainty

Conclusions

- CAT securities can be priced using statistical modeling and/or engineering/actuarial simulation
- Prices remain high due to illiquidity, investor unfamiliarity, and parameter uncertainty
- Significant potential for development of world-wide market

Insurance Linked Securities: The Future – I

- Extension to other types of insurance
 - Liability insurance
 - Health insurance
 - Life insurance and annuities
 - Automobile insurance

Insurance Linked Securities: The Future – II

- Increasing geographical diversification
 - US states and regions
 - Asian countries and regions
 - European countries and regions
 - Australia
- Added liquidity will undercut the reinsurance price cycle & stabilize markets

Insurance Linked Securities: The Future – III

Reinsurers

- Perform underwriting function
- Manage basis risk
- Bear less risk directly
- Convergence of reinsurance & investment banking
- Continued role for OTC contracts

Insurance Linked Securities: The Future – IV

- Moving towards a public market
 - Increasing standardization
 - Better indices
 - Reducing regulatory barriers
 - Educating insurers and investors
- "Corporate" CAT derivatives industrial firms bypass insurers & go direct to capital markets