Finding small stabilizers for unstable graphs

Laura Sanità
Combinatorics and Optimization Department
University of Waterloo

Joint work with:
A. Bock, K. Chandrasekaran, J. Könemann, B.Peis

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- A matching of a graph $G=(V, E)$ is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

- A vertex $v \in V$ is called essential if there is no matching in G of maximum cardinality that exposes v.

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

- Unstable Graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

- Unstable Graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

- Stable Graph

Matching and Stable Graphs

- G is said to be stable if the set of its inessential vertices forms a stable set.

- Stable Graph

Stabilizers

- A stabilizer for an unstable graph G is a subset $F \subseteq E$ s.t. $G \backslash F$ is stable.

Finding small stabilizers

Finding small stabilizers

- In this talk we focus on the following optimization problem:

Finding small stabilizers

- In this talk we focus on the following optimization problem:

Given an unstable graph G, find a stabilizer of minimum cardinality.

Finding small stabilizers

- In this talk we focus on the following optimization problem:

Given an unstable graph G, find a stabilizer of minimum cardinality.

- A recent motivation to study this problem comes from the theory of network bargaining games

Network Bargaining Games

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M
- If players u and v make a deal, they agree on how to split a unit value

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M
- If players u and v make a deal, they agree on how to split a unit value

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}^{v}: \\
y_{u}+y_{v}=1 \text { for all }\{u v\} \in M \\
y_{u}=0 \text { if } u \text { is exposed by } M
\end{gathered}
$$

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] recently introduced a network bargaining game described by a graph $G=(V, E)$ where
- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour
\rightarrow matching M
- If players u and v make a deal, they agree on how to split a unit value

$$
\begin{gathered}
\rightarrow \text { allocation } y \in \mathbb{R}^{v}: \\
y_{u}+y_{v}=1 \text { for all }\{u v\} \in M \\
y_{u}=0 \text { if } u \text { is exposed by } M .
\end{gathered}
$$

- An outcome for the game is a pair (M, y)

Network Bargaining Games

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate
- A stable outcome (M, y) is balanced if $y_{u}-\alpha_{u}=y_{v}-\alpha_{v}$ for all $\{u v\} \in M$

Network Bargaining Games

- For a given outcome (M, y) player u gets an outside alternative

$$
\alpha_{u}:=\max \left\{1-y_{v}:\{u v\} \in \delta(u) \backslash M\right\}
$$

- If $\alpha_{u}>y_{u} \Rightarrow$ there exists a neighbour v of u with $1-y_{v}>y_{u}$
\rightarrow player u has an incentive to enter in a deal with v !
- An outcome (M, y) is stable if $y_{u}+y_{v} \geq 1$ for all edges $\{u v\} \in E$.
\rightarrow no player has an incentive to deviate
- A stable outcome (M, y) is balanced if $y_{u}-\alpha_{u}=y_{v}-\alpha_{v}$ for all $\{u v\} \in M$
\rightarrow the values are "fairly" split among the players

Network Bargaining Games

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that
a balanced outcome exists

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that
a balanced outcome exists
\Leftrightarrow
a stable one exists

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that
a balanced outcome exists
\Leftrightarrow
a stable one exists
the correspondent graph G is stable.

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that
a balanced outcome exists
\Leftrightarrow
a stable one exists
\Leftrightarrow
the correspondent graph G is stable.

Question: Can we stabilize unstable games through minimal changes in the underlying network?
e.g. by blocking some potential deals?
[Biró, Kern \& Paulusma, 2010, Könemann, Larson \& Steiner, 2012]

Network Bargaining Games

- [Kleinberg \& Tardos STOC'08] proved that
a balanced outcome exists
\Leftrightarrow
a stable one exists
\Leftrightarrow
the correspondent graph G is stable.

Question: Can we stabilize unstable games through minimal changes in the underlying network?
e.g. by blocking some potential deals?
[Biró, Kern \& Paulusma, 2010, Könemann, Larson \& Steiner, 2012]

- The combinatorial question behind it turns out to be exactly how to find small stabilizers for unstable graphs!

Our Main Results

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to approximate within any factor better than 2 .

Our Main Results

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

- Network Bargaining Interpretation: there is always a way to stabilize the game that
- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to approximate within any factor better than 2 .

Thm: There is a 4ω-approximation algorithm for general graphs, where ω is the sparsity of the graph.

Stable Graphs via LP

Stable Graphs via LP

- Stable graphs be characterized in terms of fractional matchings and covers.

Stable Graphs via LP

- Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$
\begin{equation*}
\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} \tag{P}
\end{equation*}
$$

Stable Graphs via LP

- Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$
\begin{equation*}
\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} \tag{P}
\end{equation*}
$$

Def. a vector $y \in \mathbb{R}^{v}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$
\begin{equation*}
\min \left\{\mathbf{1}^{T} y: y_{u}+y_{v} \geq 1 \forall\{u v\} \in E, y \geq 0\right\} \tag{D}
\end{equation*}
$$

Stable Graphs via LP

- Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$
\begin{equation*}
\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} \tag{P}
\end{equation*}
$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$
\begin{equation*}
\min \left\{\mathbf{1}^{\top} y: y_{u}+y_{v} \geq 1 \forall\{u v\} \in E, y \geq 0\right\} \tag{D}
\end{equation*}
$$

- By duality: size of a fractional matching \leq size of a fractional vertex cover

Stable Graphs via LP

- Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$
\begin{equation*}
\max \left\{\mathbf{1}^{T} x: x(\delta(v)) \leq 1 \forall v \in V, x \geq 0\right\} \tag{P}
\end{equation*}
$$

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$
\begin{equation*}
\min \left\{\mathbf{1}^{\top} y: y_{u}+y_{v} \geq 1 \forall\{u v\} \in E, y \geq 0\right\} \tag{D}
\end{equation*}
$$

- By duality: size of a fractional matching \leq size of a fractional vertex cover Moreover, optimum value of (P) equals optimum value of (D)

Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching $\nu(G)$ of G is equal to optimum value $\nu_{f}(G)$ of (P) and (D).

Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching $\nu(G)$ of G is equal to optimum value $\nu_{f}(G)$ of (P) and (D).
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching $\nu(G)$ of G is equal to optimum value $\nu_{f}(G)$ of (P) and (D).
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if cardinality of a max matching $=\min$ size of a fractional vertex cover y.

Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching $\nu(G)$ of G is equal to optimum value $\nu_{f}(G)$ of (P) and (D).
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates!

Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching $\nu(G)$ of G is equal to optimum value $\nu_{f}(G)$ of (P) and (D).
(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

- In other words, G is stable if and only if
cardinality of a max matching $=\min$ size of a fractional vertex cover y.
- Note: such y does not necessarily have integer coordinates!
- A graph where the cardinality of a maximum matching $\nu(G)$ equals min size of an integral vertex cover is called a König-Egervary graph

Stable Graphs via LP

Stable Graphs via LP

- As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

Stable Graphs via LP

- As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

- All these classes are widely studied

Stable Graphs via LP

- As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

- All these classes are widely studied but almost no algorithmic results are known for making a graph stable!

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M)$

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M)$

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: - Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: - Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower
- If it contains an edge from $F \rightarrow$ we could switch along an M-alternating path

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: - Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower
- If it contains an edge from $F \rightarrow$ we could switch along an M-alternating path
- Contradiction!

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower disjoint from F

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower disjoint from F
- $M \backslash F$ is not maximum in $G \backslash F$

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: • Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower disjoint from F
- $M \backslash F$ is not maximum in $G \backslash F \rightarrow$ find a ($M \backslash F$)-augmenting path

Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have

$$
\nu(G \backslash F)=\nu(G)
$$

Proof: - Let M be a max matching with $|F \cap M|$ minimum.

- Consider $G^{\prime}:=G \backslash(F \backslash M) \rightarrow$ There is a M-flower disjoint from F
- $M \backslash F$ is not maximum in $G \backslash F \rightarrow$ find a $(M \backslash F)$-augmenting path
- \rightarrow implies existence of an even M-alternating path in G (Contradiction!)

How do we find F^{*} ?

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G Easy Assumption: Suppose such matching M is given
- We call $F \subseteq E$ an M-stabilizer if
- F is a stabilizer

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

- We call $F \subseteq E$ an M-stabilizer if
- F is a stabilizer
- $|F \cap M|=\emptyset$.

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

- We call $F \subseteq E$ an M-stabilizer if
- F is a stabilizer
- $|F \cap M|=\emptyset$.
- Let us focus on the M-stabilizer problem, that is finding an M-stabilizer of minimum cardinality

How do we find F^{*} ?

- Previous theorem implies $G \backslash F^{*}$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

- We call $F \subseteq E$ an M-stabilizer if
- F is a stabilizer
- $|F \cap M|=\emptyset$.
- Let us focus on the M-stabilizer problem, that is finding an M-stabilizer of minimum cardinality
- How difficult is it?

When M is given

When M is given

Thm: The M-stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

When M is given

Thm: The M-stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture. Furthermore, the M-stabilizer problem admits a 2-approximation algorithm.

When M is given

Thm: The M-stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture. Furthermore, the M-stabilizer problem admits a 2-approximation algorithm.

- Approximation result is LP-based.

$$
\begin{array}{ll}
\min & \sum \quad z_{u v} \\
\text { s.t. } & y_{u}+y_{v}=1 \quad \forall\{u, v\} \in M \\
& y_{u}+y_{v}+z_{u v} \geq 1 \quad \forall\{u, v\} \in E \backslash M \text { and } u, v \text { matched } \\
& y_{v}+z_{u v} \geq 1 \quad \forall\{u, v\} \in E \backslash M \text { and } u \text { unmatched } \\
& y \geq 0 \\
& z \geq 0 \text { integer }
\end{array}
$$

When M is given

Thm: The M-stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture. Furthermore, the M-stabilizer problem admits a 2-approximation algorithm.

- Approximation result is LP-based.

$$
\begin{array}{ll}
\min & \sum \quad z_{u v} \\
\text { s.t. } & y_{u}+y_{v}=1 \quad \forall\{u, v\} \in M \\
& y_{u}+y_{v}+z_{u v} \geq 1 \quad \forall\{u, v\} \in E \backslash M \text { and } u, v \text { matched } \\
& y_{v}+z_{u v} \geq 1 \quad \forall\{u, v\} \in E \backslash M \text { and } u \text { unmatched } \\
& y \geq 0 \\
& z \geq 0
\end{array}
$$

- Main observation: There always exists an optimal solution to the above LP that is half integral!

When M is NOT given

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!
- Take an arbitrary max matching.

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!
- Take an arbitrary max matching. How bad can this choice be?

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!
- Take an arbitrary max matching. How bad can this choice be?
- Unfortunately, for max matchings M and M^{\prime}, a min M-stabilizer and a min M^{\prime}-stabilizer can have a huge difference in size!

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!
- Take an arbitrary max matching. How bad can this choice be?
- Unfortunately, for max matchings M and M^{\prime}, a min M-stabilizer and a min M^{\prime}-stabilizer can have a huge difference in size!
- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

When M is NOT given

Thm: The stabilizer problem is NP-hard, and no $(2-\varepsilon)$-approximation exists for any $\varepsilon>0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \backslash F$!
- Take an arbitrary max matching. How bad can this choice be?
- Unfortunately, for max matchings M and M^{\prime}, a min M-stabilizer and a min M^{\prime}-stabilizer can have a huge difference in size!
- A graph G is called ω-sparse if $\forall S \subseteq V,|E(S)| \leq \omega|S|$.

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

Approximation Algorithm

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$.

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4 \omega$ s.t.

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4 \omega$ s.t.

- $G \backslash L$ has a matching of size $\nu(G)$
- $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4 \omega$ s.t.

- $G \backslash L$ has a matching of size $\nu(G)$
- $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4 \omega$ s.t.

- $G \backslash L$ has a matching of size $\nu(G)$
- $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
- does not decrease the value of a max matching

Approximation Algorithm

- Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_{f}(G)>\nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4 \omega$ s.t.

- $G \backslash L$ has a matching of size $\nu(G)$
- $\nu_{f}(G \backslash L) \leq \nu_{f}(G)-\frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
- does not decrease the value of a max matching
- but reduces the minimum size of a fractional vertex cover.

Proof of the Lemma

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^{*} s.t.
(i) Edges e : $x_{e}^{*}=\frac{1}{2}$ form odd cycles C_{1}, \ldots, C_{q} with $q=2\left|\nu_{f}(G)-\nu(G)\right|$
(ii) Let $\bar{M}:=\left\{e \in E: x_{e}^{*}=1\right\}$ and M_{i} be a maximum matching in C_{i}. Then $M^{\prime}=\bar{M} \cup M_{1} \cup \ldots, \cup M_{q}$ is a maximum matching in G

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^{*} s.t.
(i) Edges $e: x_{e}^{*}=\frac{1}{2}$ form odd cycles C_{1}, \ldots, C_{q} with $q=2\left|\nu_{f}(G)-\nu(G)\right|$
(ii) Let $\bar{M}:=\left\{e \in E: x_{e}^{*}=1\right\}$ and M_{i} be a maximum matching in C_{i}. Then $M^{\prime}=\bar{M} \cup M_{1} \cup \ldots, \cup M_{q}$ is a maximum matching in G

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^{*} s.t.
(i) Edges e : $x_{e}^{*}=\frac{1}{2}$ form odd cycles C_{1}, \ldots, C_{q} with $q=2\left|\nu_{f}(G)-\nu(G)\right|$
(ii) Let $\bar{M}:=\left\{e \in E: x_{e}^{*}=1\right\}$ and M_{i} be a maximum matching in C_{i}. Then $M^{\prime}=\bar{M} \cup M_{1} \cup \ldots, \cup M_{q}$ is a maximum matching in G

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^{*} s.t.
(i) Edges $e: x_{e}^{*}=\frac{1}{2}$ form odd cycles C_{1}, \ldots, C_{q} with $q=2\left|\nu_{f}(G)-\nu(G)\right|$
(ii) Let $\bar{M}:=\left\{e \in E: x_{e}^{*}=1\right\}$ and M_{i} be a maximum matching in C_{i}. Then $M^{\prime}=\bar{M} \cup M_{1} \cup \ldots, \cup M_{q}$ is a maximum matching in G

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^{*} s.t.
(i) Edges e : $x_{e}^{*}=\frac{1}{2}$ form odd cycles C_{1}, \ldots, C_{q} with $q=2\left|\nu_{f}(G)-\nu(G)\right|$
(ii) Let $\bar{M}:=\left\{e \in E: x_{e}^{*}=1\right\}$ and M_{i} be a maximum matching in C_{i}. Then $M^{\prime}=\bar{M} \cup M_{1} \cup \ldots, \cup M_{q}$ is a maximum matching in G

Proof of the Lemma

Proof of the Lemma

- Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying

Proof of the Lemma

- Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying
(a) $y_{u}=\frac{1}{2}$
(b) $L:=\left\{\{u, w\} \in E: y_{w}=\frac{1}{2}\right\}$ satisfies $|L| \leq 4 \omega$
(c) $\nu(G \backslash L)=\nu(G)$

Proof of the Lemma

- Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying
(a) $y_{u}=\frac{1}{2}$
(b) $L:=\left\{\{u, w\} \in E: y_{w}=\frac{1}{2}\right\}$ satisfies $|L| \leq 4 \omega$
(c) $\nu(G \backslash L)=\nu(G)$
- Then, we just remove L and set $y_{u}:=0$!

Proof of the Lemma

Proof of the Lemma

- We identify a set of nodes H with y-value equals $\frac{1}{2}$.

Proof of the Lemma

- We identify a set of nodes H with y-value equals $\frac{1}{2}$. Mark inessential nodes.

Proof of the Lemma

- We identify a set of nodes H with y-value equals $\frac{1}{2}$. Mark inessential nodes.

Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

- For $i=1, \ldots, 2\left(\nu_{f}(G)-\nu(G)\right)$ do:
(i) Apply previous Lemma.
(ii) If G has become stable, STOP.

Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

- For $i=1, \ldots, 2\left(\nu_{f}(G)-\nu(G)\right)$ do:
(i) Apply previous Lemma.
(ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.

Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

- For $i=1, \ldots, 2\left(\nu_{f}(G)-\nu(G)\right)$ do:
(i) Apply previous Lemma.
(ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.
- We remove at most $4 \omega \cdot 2\left(\nu_{f}(G)-\nu(G)\right)$

Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

- For $i=1, \ldots, 2\left(\nu_{f}(G)-\nu(G)\right)$ do:
(i) Apply previous Lemma.
(ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.
- We remove at most $4 \omega \cdot 2\left(\nu_{f}(G)-\nu(G)\right)$
- It remains to observe that $2\left(\nu_{f}(G)-\nu(G)\right)$ is a lower bound on the size of a min stabilizer!

A lower bound

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in $B . k:=\#$ of exposed nodes in non-singleton components of B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in $B . k:=\#$ of exposed nodes in non-singleton components of B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in $B . k:=\#$ of exposed nodes in non-singleton components of B.

A lower bound

- Consider the Edmonds-Gallai decomposition [B,C,D] of G

- Compute a max matching M in G that exposes the fewest inessential singletons in $B . k:=\#$ of exposed nodes in non-singleton components of B.

Thm [Pulleyblank '87]: $k=2\left(\nu_{f}(G)-\nu(G)\right)$

A lower bound

- Let F^{*} be a minimum stabilizer.

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M.

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M. Let M^{*} be max matching in $G \backslash F^{*}$.

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M. Let M^{*} be max matching in $G \backslash F^{*}$.

Key observation: $\forall i$, there is at least one $v_{i} \in H_{i}$ that is essential in $G \backslash F^{*}$

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M. Let M^{*} be max matching in $G \backslash F^{*}$.

Key observation: $\forall i$, there is at least one $v_{i} \in H_{i}$ that is essential in $G \backslash F^{*}$...and w.l.o.g. we can assume each v_{i} is M-exposed!

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M. Let M^{*} be max matching in $G \backslash F^{*}$.

Key observation: $\forall i$, there is at least one $v_{i} \in H_{i}$ that is essential in $G \backslash F^{*}$...and w.l.o.g. we can assume each v_{i} is M-exposed!

A lower bound

- Let F^{*} be a minimum stabilizer.

Claim: $k \leq\left|F^{*}\right|$

- Let H_{1}, \ldots, H_{k} be the k components in B defined by M. Let M^{*} be max matching in $G \backslash F^{*}$.

Key observation: $\forall i$, there is at least one $v_{i} \in H_{i}$ that is essential in $G \backslash F^{*}$...and w.l.o.g. we can assume each v_{i} is M-exposed!

Final Remarks

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$.

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k \frac{d}{2}$.

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k \frac{d}{2}$.
- ... what about factor critical graphs?

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k \frac{d}{2}$.
- ... what about factor critical graphs?
- Good formulations?

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k \frac{d}{2}$.
- ... what about factor critical graphs?
- Good formulations?
- Generalized settings?

Final Remarks

- Main open question: Is a $O(1)$-approximation possible?
- For d-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k \frac{d}{2}$.
- ... what about factor critical graphs?
- Good formulations?
- Generalized settings?

> Thank you!

