Finding small stabilizers for unstable graphs

Laura Sanità

Combinatorics and Optimization Department

University of Waterloo

Joint work with:

A. Bock, K. Chandrasekaran, J. Könemann, B.Peis

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called inessential if there exists a matching in G of maximum cardinality that exposes v.

• A matching of a graph G = (V, E) is a subset $M \subseteq E$ such that each $v \in V$ is incident into at most one edge of M

• A vertex $v \in V$ is called essential if there is no matching in G of maximum cardinality that exposes v.

• G is said to be stable if the set of its inessential vertices forms a stable set.

• G is said to be stable if the set of its inessential vertices forms a stable set.

• Unstable Graph

• G is said to be stable if the set of its inessential vertices forms a stable set.

• Unstable Graph

• G is said to be stable if the set of its inessential vertices forms a stable set.

• G is said to be stable if the set of its inessential vertices forms a stable set.

• Stable Graph

• G is said to be stable if the set of its inessential vertices forms a stable set.

• Stable Graph

Stabilizers

• A stabilizer for an unstable graph G is a subset $F \subseteq E$ s.t. $G \setminus F$ is stable.

• In this talk we focus on the following optimization problem:

• In this talk we focus on the following optimization problem:

Given an unstable graph G, find a stabilizer of minimum cardinality.

• In this talk we focus on the following optimization problem:

Given an unstable graph G, find a stabilizer of minimum cardinality.

• A recent motivation to study this problem comes from the theory of network bargaining games

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching *M*

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• [Kleinberg & Tardos STOC'08] recently introduced a *network bargaining* game described by a graph G = (V, E) where

- Vertices represent players
- Edges represent potential deals between players
- Players can enter in a deal with at most one neighbour

 \rightarrow matching M

• If players u and v make a deal, they agree on how to split a unit value

• An outcome for the game is a pair (M, y)

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$ \rightarrow player u has an incentive to enter in a deal with v!

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$ \rightarrow player u has an incentive to enter in a deal with v!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$ \rightarrow player u has an incentive to enter in a deal with v!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

 \rightarrow no player has an incentive to deviate

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$ \rightarrow player u has an incentive to enter in a deal with v!

• An outcome (M, y) is stable if $y_u + y_v \ge 1$ for all edges $\{uv\} \in E$.

 \rightarrow no player has an incentive to deviate

• A stable outcome (M, y) is balanced if $y_u - \alpha_u = y_v - \alpha_v$ for all $\{uv\} \in M$

• For a given outcome (M, y) player u gets an outside alternative

$$\alpha_u := \max\{1 - y_v : \{uv\} \in \delta(u) \setminus M\}$$

• If $\alpha_u > y_u \Rightarrow$ there exists a neighbour v of u with $1 - y_v > y_u$ \rightarrow player u has an incentive to enter in a deal with v!

An outcome (M, y) is stable if y_u + y_v ≥ 1 for all edges {uv} ∈ E.
→ no player has an incentive to deviate

A stable outcome (M, y) is balanced if y_u − α_u = y_v − α_v for all {uv} ∈ M
→ the values are "fairly" split among the players

• [Kleinberg & Tardos STOC'08] proved that

• [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists
• [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists \Leftrightarrow a stable one exists

• [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists \Leftrightarrow a stable one exists \Leftrightarrow the correspondent graph *G* is stable.

• [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists \Leftrightarrow a stable one exists \Leftrightarrow the correspondent graph *G* is stable.

Question: Can we stabilize unstable games through minimal changes in the underlying network? e.g. by *blocking* some potential deals? [Biró, Kern & Paulusma, 2010, Könemann, Larson & Steiner, 2012]

• [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists \Leftrightarrow a stable one exists \Leftrightarrow the correspondent graph *G* is stable.

Question: Can we stabilize unstable games through minimal changes in the underlying network? e.g. by *blocking* some potential deals? [Biró, Kern & Paulusma, 2010, Könemann, Larson & Steiner, 2012]

• The combinatorial question behind it turns out to be exactly how to find small stabilizers for unstable graphs!

Thm: For a minimum stabilizer F of G we have

 $\nu(G \setminus F) = \nu(G)$

Thm: For a minimum stabilizer F of G we have

 $\nu(G \setminus F) = \nu(G)$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

Thm: For a minimum stabilizer F of G we have

 $\nu(G \setminus F) = \nu(G)$

• Network Bargaining Interpretation: there is always a way to stabilize the game that

blocks min number of potential deals, and

Thm: For a minimum stabilizer F of G we have

```
\nu(G \setminus F) = \nu(G)
```

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: For a minimum stabilizer F of G we have

```
\nu(G \setminus F) = \nu(G)
```

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to approximate within any factor better than 2.

Thm: For a minimum stabilizer F of G we have

```
\nu(G \setminus F) = \nu(G)
```

• Network Bargaining Interpretation: there is always a way to stabilize the game that

- blocks min number of potential deals, and
- does not decrease the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to approximate within any factor better than 2.

Thm: There is a 4ω -approximation algorithm for general graphs, where ω is the sparsity of the graph.

• Stable graphs be characterized in terms of *fractional matchings and covers*.

• Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P): $\max\{\mathbf{1}^{T}x : x(\delta(v)) \leq 1 \ \forall v \in V, \ x \geq 0\} \qquad (P)$

• Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$\max\{\mathbf{1}^{ au}x:x(\delta(m{v}))\leq 1\ orallm{v}\inm{V},\ x\geq 0\}$$
 (P)

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$\min\{\mathbf{1}^T y: y_u + y_v \ge \mathbf{1} \forall \{uv\} \in E, y \ge \mathbf{0}\} \qquad (D)$$

• Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$\max\{\mathbf{1}^{ au}x:x(\delta(m{v}))\leq 1\ orallm{v}\inm{V},\ x\geq 0\}$$
 (P)

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$\min\{\mathbf{1}^T y: y_u + y_v \ge 1 \ \forall \{uv\} \in E, \ y \ge 0\}$$
 (D)

• By duality: size of a fractional matching \leq size of a fractional vertex cover

• Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector $x \in \mathbb{R}^{E}$ is a fractional matching if it is a feasible solution to (P):

$$\max\{\mathbf{1}^{ au}x:x(\delta(m{v}))\leq 1\ orallm{v}\inm{V},\ x\geq 0\}$$
 (P)

Def. a vector $y \in \mathbb{R}^{V}$ is called a fractional vertex cover if it is a feasible solution to the dual (D) of (P):

$$\min\{\mathbf{1}^T y: y_u + y_v \ge 1 \ \forall \{uv\} \in E, \ y \ge 0\}$$
 (D)

• By duality: size of a fractional matching \leq size of a fractional vertex cover Moreover, optimum value of (P) equals optimum value of (D)

Proposition: G is stable if and only if the *cardinality of a maximum matching* $\nu(G)$ of G is equal to optimum value $\nu_f(G)$ of (P) and (D).

Proposition: *G* is stable if and only if the *cardinality of a maximum matching* $\nu(G)$ of *G* is equal to optimum value $\nu_f(G)$ of (P) and (D).

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

Proposition: G is stable if and only if the *cardinality of a maximum matching* $\nu(G)$ of G is equal to optimum value $\nu_f(G)$ of (P) and (D).

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

• In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y.

Proposition: G is stable if and only if the *cardinality of a maximum matching* $\nu(G)$ of G is equal to optimum value $\nu_f(G)$ of (P) and (D).

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

• In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y.

• Note: such y does not necessarily have integer coordinates!

Proposition: G is stable if and only if the *cardinality of a maximum matching* $\nu(G)$ of G is equal to optimum value $\nu_f(G)$ of (P) and (D).

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank'87])

• In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y.

- Note: such y does not necessarily have integer coordinates!
- A graph where the cardinality of a maximum matching ν(G) equals min size of an integral vertex cover is called a König-Egervary graph

• As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

• As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

• All these classes are widely studied

• As we showed

Stable graphs \supset König-Egervary graphs \supset Bipartite graphs.

• All these classes are widely studied but almost no algorithmic results are known for making a graph stable!

Thm: For a minimum stabilizer F of G we have

 $\nu(G \setminus F) = \nu(G)$

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M)$

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M)$

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower

• If it contains an edge from $F \rightarrow$ we could switch along an *M*-alternating path
Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower

• If it contains an edge from F
ightarrow we could switch along an M-alternating path

Contradiction!

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower disjoint from *F*

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower disjoint from *F*

• $M \setminus F$ is not maximum in $G \setminus F$

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \to$ There is a *M*-flower disjoint from *F*

• $M \setminus F$ is not maximum in $G \setminus F \rightarrow$ find a $(M \setminus F)$ -augmenting path

Thm: For a minimum stabilizer F of G we have

$$\nu(G \setminus F) = \nu(G)$$

Proof: • Let *M* be a max matching with $|F \cap M|$ minimum.

• Consider $G' := G \setminus (F \setminus M) \rightarrow$ There is a *M*-flower disjoint from *F*

• $M \setminus F$ is not maximum in $G \setminus F \rightarrow$ find a $(M \setminus F)$ -augmenting path

• \rightarrow implies existence of an even *M*-alternating path in *G* (Contradiction!)

 \bullet Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

• Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

• Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

- We call $F \subseteq E$ an *M*-stabilizer if
 - ► F is a stabilizer

• Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

Easy Assumption: Suppose such matching M is given

- We call $F \subseteq E$ an *M*-stabilizer if
 - ► F is a stabilizer
 - $\blacktriangleright |F \cap M| = \emptyset.$

• Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

Easy Assumption: Suppose such matching *M* is given

- We call $F \subseteq E$ an *M*-stabilizer if
 - ► F is a stabilizer
 - $\blacktriangleright |F \cap M| = \emptyset.$

• Let us focus on the M-stabilizer problem, that is finding an M-stabilizer of minimum cardinality

• Previous theorem implies $G \setminus F^*$ contains a maximum matching M of G

Easy Assumption: Suppose such matching *M* is given

- We call $F \subseteq E$ an *M*-stabilizer if
 - ► F is a stabilizer
 - $\blacktriangleright |F \cap M| = \emptyset.$

• Let us focus on the M-stabilizer problem, that is finding an M-stabilizer of minimum cardinality

• How difficult is it?

Thm: The *M*-stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture. Furthermore, the *M*-stabilizer problem admits a 2-approximation algorithm.

Thm: The *M*-stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture. Furthermore, the *M*-stabilizer problem admits a 2-approximation algorithm.

• Approximation result is LP-based.

$$\begin{array}{ll} \min & \sum_{\{uv\}\in E\setminus M} z_{uv} \\ \text{s.t.} & y_u + y_v = 1 \quad \forall \{u,v\} \in M \\ & y_u + y_v + z_{uv} \geq 1 \quad \forall \{u,v\} \in E\setminus M \text{ and } u, v \text{ matched} \\ & y_v + z_{uv} \geq 1 \quad \forall \{u,v\} \in E\setminus M \text{ and } u \text{ unmatched} \\ & y \geq 0 \\ & z \geq 0 \text{ integer} \end{array}$$

Thm: The *M*-stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture. Furthermore, the *M*-stabilizer problem admits a 2-approximation algorithm.

• Approximation result is LP-based.

$$\begin{array}{ll} \min & \sum_{\{uv\} \in E \setminus M} z_{uv} \\ \text{s.t.} & y_u + y_v = 1 \quad \forall \{u, v\} \in M \\ & y_u + y_v + z_{uv} \geq 1 \quad \forall \{u, v\} \in E \setminus M \text{ and } u, v \text{ matched} \\ & y_v + z_{uv} \geq 1 \quad \forall \{u, v\} \in E \setminus M \text{ and } u \text{ unmatched} \\ & y \geq 0 \\ & z \geq 0 \end{array}$$

• Main observation: There always exists an optimal solution to the above LP that is half integral!

Thm: The stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture.

• What about approximation?

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F$!

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F$!
- Take an arbitrary max matching.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F!$
- Take an arbitrary max matching. How bad can this choice be?

Thm: The stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F$!
- Take an arbitrary max matching. How bad can this choice be?

• Unfortunately, for max matchings M and M', a min M-stabilizer and a min M'-stabilizer can have a huge difference in size!

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F$!
- Take an arbitrary max matching. How bad can this choice be?
- Unfortunately, for max matchings M and M', a min M-stabilizer and a min M'-stabilizer can have a huge difference in size!
- A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm: The stabilizer problem is NP-hard, and no $(2 - \varepsilon)$ -approximation exists for any $\varepsilon > 0$ assuming the Unique Games Conjecture.

- What about approximation?
- From previous discussion, the difficulty lies in understanding which matching "survives" in $G \setminus F$!
- Take an arbitrary max matching. How bad can this choice be?
- Unfortunately, for max matchings M and M', a min M-stabilizer and a min M'-stabilizer can have a huge difference in size!
- A graph G is called ω -sparse if $\forall S \subseteq V$, $|E(S)| \leq \omega |S|$.

Thm: There is a 4ω -approximation algorithm for finding a minimum stabilizer.

• Our algorithm relies on the following Lemma.

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$.

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4\omega$ s.t.

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4\omega$ s.t.

- $G \setminus L$ has a matching of size $\nu(G)$
- ► $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \leq 4\omega$ s.t.

- $G \setminus L$ has a matching of size $\nu(G)$
- ► $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.

• In other words, we can find a small subset of edges to remove from G that

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \le 4\omega$ s.t.

- $G \setminus L$ has a matching of size $\nu(G)$
- ► $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.

• In other words, we can find a small subset of edges to remove from G that

does not decrease the value of a max matching

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with $\nu_f(G) > \nu(G)$. We can find $L \subseteq E$ with $|L| \le 4\omega$ s.t.

- $G \setminus L$ has a matching of size $\nu(G)$
- ► $\nu_f(G \setminus L) \leq \nu_f(G) \frac{1}{2}$.
- In other words, we can find a small subset of edges to remove from G that
 - does not decrease the value of a max matching
 - but reduces the minimum size of a fractional vertex cover.

Proof of the Lemma

Proof of the Lemma

Thm [Balas '81, Uhry '75]: One can find a half integral fractional matching x^* s.t.

- (i) Edges $e: x_e^* = \frac{1}{2}$ form odd cycles C_1, \ldots, C_q with $q = 2|\nu_f(G) \nu(G)|$
- (ii) Let $\overline{M} := \{e \in E : x_e^* = 1\}$ and M_i be a maximum matching in C_i . Then $M' = \overline{M} \cup M_1 \cup \ldots, \cup M_q$ is a maximum matching in G
- (i) Edges $e: x_e^* = \frac{1}{2}$ form odd cycles C_1, \ldots, C_q with $q = 2|\nu_f(G) \nu(G)|$
- (ii) Let $\overline{M} := \{e \in E : x_e^* = 1\}$ and M_i be a maximum matching in C_i . Then $M' = \overline{M} \cup M_1 \cup \ldots, \cup M_q$ is a maximum matching in G

- (i) Edges $e: x_e^* = \frac{1}{2}$ form odd cycles C_1, \ldots, C_q with $q = 2|\nu_f(G) \nu(G)|$
- (ii) Let $\overline{M} := \{e \in E : x_e^* = 1\}$ and M_i be a maximum matching in C_i . Then $M' = \overline{M} \cup M_1 \cup \ldots, \cup M_q$ is a maximum matching in G

- (i) Edges $e: x_e^* = \frac{1}{2}$ form odd cycles C_1, \ldots, C_q with $q = 2|\nu_f(G) \nu(G)|$
- (ii) Let $\overline{M} := \{e \in E : x_e^* = 1\}$ and M_i be a maximum matching in C_i . Then $M' = \overline{M} \cup M_1 \cup \ldots, \cup M_q$ is a maximum matching in G

- (i) Edges $e: x_e^* = \frac{1}{2}$ form odd cycles C_1, \ldots, C_q with $q = 2|\nu_f(G) \nu(G)|$
- (ii) Let $\overline{M} := \{e \in E : x_e^* = 1\}$ and M_i be a maximum matching in C_i . Then $M' = \overline{M} \cup M_1 \cup \ldots, \cup M_q$ is a maximum matching in G

• Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying

• Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying

(a)
$$y_u = \frac{1}{2}$$

(b) $L := \{\{u, w\} \in E : y_w = \frac{1}{2}\}$ satisfies $|L| \le 4\omega$
(c) $\nu(G \setminus L) = \nu(G)$

• Relying on complementary slackness, we find a half-integral y and show that there is a node u satisfying

(a)
$$y_u = \frac{1}{2}$$

(b) $L := \{\{u, w\} \in E : y_w = \frac{1}{2}\}$ satisfies $|L| \le 4\omega$
(c) $\nu(G \setminus L) = \nu(G)$

• Then, we just remove L and set $y_u := 0!$

• We identify a set of nodes H with y-value equals $\frac{1}{2}$.

• We identify a set of nodes H with y-value equals $\frac{1}{2}$. Mark inessential nodes.

• We identify a set of nodes H with y-value equals $\frac{1}{2}$. Mark inessential nodes.

- For $i = 1, ..., 2(\nu_f(G) \nu(G))$ do:
 - (i) Apply previous Lemma.
- (ii) If G has become stable, STOP.

- For $i = 1, ..., 2(\nu_f(G) \nu(G))$ do:
 - (i) Apply previous Lemma.
- (ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.

- For $i = 1, ..., 2(\nu_f(G) \nu(G))$ do:
 - (i) Apply previous Lemma.
- (ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.
- We remove at most $4\omega \cdot 2(\nu_f(G) \nu(G))$

Thm: There is a 4ω -approximation algorithm for finding a minimum stabilizer.

- For $i = 1, ..., 2(\nu_f(G) \nu(G))$ do:
 - (i) Apply previous Lemma.
- (ii) If G has become stable, STOP.
- At the end of the Algorithm, we have a stable graph.
- We remove at most $4\omega \cdot 2(\nu_f(G) \nu(G))$

• It remains to observe that $2(\nu_f(G) - \nu(G))$ is a lower bound on the size of a min stabilizer!

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B. k := # of exposed nodes in non-singleton components of B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B. k := # of exposed nodes in non-singleton components of B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B. k := # of exposed nodes in non-singleton components of B.

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

• Compute a max matching M in G that exposes the fewest inessential singletons in B. k := # of exposed nodes in non-singleton components of B. Thm [Pulleyblank '87]: $k = 2(\nu_f(G) - \nu(G))$

• Let F^* be a minimum stabilizer.

• Let F^* be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let F^* be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M.

• Let F^* be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M. Let M^* be max matching in $G \setminus F^*$.

• Let *F*^{*} be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M. Let M^* be max matching in $G \setminus F^*$.

Key observation: $\forall i$, there is at least one $v_i \in H_i$ that is essential in $G \setminus F^*$

• Let *F*^{*} be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M. Let M^* be max matching in $G \setminus F^*$.

Key observation: $\forall i$, there is at least one $v_i \in H_i$ that is essential in $G \setminus F^*$...and w.l.o.g. we can assume each v_i is *M*-exposed!

• Let F* be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M. Let M^* be max matching in $G \setminus F^*$.

Key observation: $\forall i$, there is at least one $v_i \in H_i$ that is essential in $G \setminus F^*$...and w.l.o.g. we can assume each v_i is *M*-exposed!

• Let F* be a minimum stabilizer.

Claim: $k \leq |F^*|$

• Let H_1, \ldots, H_k be the k components in B defined by M. Let M^* be max matching in $G \setminus F^*$.

Key observation: $\forall i$, there is at least one $v_i \in H_i$ that is essential in $G \setminus F^*$...and w.l.o.g. we can assume each v_i is *M*-exposed!

Final Remarks
• Main open question: Is a O(1)-approximation possible?

- Main open question: Is a O(1)-approximation possible?
- For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$.

- Main open question: Is a O(1)-approximation possible?
- For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k\frac{d}{2}$.

- Main open question: Is a O(1)-approximation possible?
- For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k\frac{d}{2}$.
- ... what about factor critical graphs?

• Main open question: Is a O(1)-approximation possible?

• For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k\frac{d}{2}$.

• ... what about factor critical graphs?

• Good formulations?

• Main open question: Is a O(1)-approximation possible?

• For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k\frac{d}{2}$.

- ... what about factor critical graphs?
- Good formulations?
- Generalized settings?

• Main open question: Is a O(1)-approximation possible?

• For *d*-regular graphs, our algorithm yields a solution of value $k \cdot d$. We get a 2-approximation algorithm by straightening the lower bound to $k\frac{d}{2}$.

• ... what about factor critical graphs?

• Good formulations?

• Generalized settings?

Thank you!