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DEBT PORTFOLIO

A debt portfolio on the trading book is a portfolio consisting of the following instruments:

Bond:
Corporate bonds
Agency bonds
Supanational bonds
Provincial/municipal bonds
Banker’s acceptance
Non-domestic sovereign issues
etc.

Single-name credit default swap (CDS)
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CREDIT DEFAULT SWAP

A CDS is an instrument which provides a protection against the risk of a default on a bond
issued by a reference entity

The protection buyer periodically pays premium (CDS spread) of X bps in annual basis until the
maturity or the occurrance of default of the reference entity, whichever is earlier;
If the reference entity defaults, the price of bonds issued by the reference entity collapse. The CDS
contract provides the issurance for the protection buyer:

The protection seller pays the par value of the bond;
The protection buyer delivers the bond.

The use of CDS
Hedge: protect againt the default of the reference entity of a bond;
Speculation: bet on the health of the reference entity, may not hold any bond issued by the reference
entity;
Arbitrage: capital structure arbitrage, etc.
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RISK IN DEBT PORTFOLIO

Risk embedded in positions (bond or CDS) of debt portfolio includes:
Market risk: change of PnL due to systematic risk factors that affect the overall performance of the
financial markets, such as interest rates;
Specific risk: change of PnL to idiosyncratic risk factors which exclude credit events;
Migration/default risk: change of PnL due to the change of the credit rating of a bond or default on
a bond;
Other risk: liquidity risk, counterparty credit risk (OTC trades), etc.

Time horizon for different risks
Market risk and specific risk cover price volatility that would normally occrur over a short period
(e.g. 10 days);
Migration/defulat risk captures migration and default risk over a longer period (e.g. 1 year).

Since Basel 2.5, banks are required to
Develop an Incremental Risk Charge (IRC) model to calculate capitals reserved for
migration/default risk;
Modify the existing risk model to account for both market risk and specific risk.
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TOTAL VAR

A term “total risk” is proposed to cover market risk and specific risk:

Total risk =Market risk + Specific risk.

The value-at-risk (VaR) measure is used to measure total risk;

VaR of a portfolio is defined by

VaRα(L) = inf {l ∈ R : P [L ≤ l] ≥ α} ,

L is the portfolio loss;
α is the predetermined confidence level, for total risk, α = 99%;
VaR can be interpreted as “We are α certain that we will not lose more than VaRα(L) dollars in the
considered time horizon.”
Mathematically, VaR of L with confidence level α is the α-quantile of L:
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DECOMPOSITION OF SPREAD

Denote y and r as a bond’s yield and the corresponding benchmark government bond yield
respectively, and the yield spread is y− r;

Let s be the spread of a CDS;

The day-over-day change of the spread,

z =

{
∆(y− r), for bond
∆s, for CDS

can be decomposed by
z = βz̃ + ε;

z̃: the average spread change of bonds (or CDSs) which are within the same currency/sector/rating
category and have similar tenor;
β: the sensitivity of the spread change of the bond (or the CDS) to the average spread change;
ε: the idiosyncratic spread change (residual), of the bond (or the CDS);
z̃ and ε are assumed to be independent;

The risk due to βz̃ is captured in market risk model;

The specific risk model examine the risk due to residuals ε.



VaR of Debt Portfolios MC DSR Framework Distribution of Residuals

POSITION LOSS

Let P be a position’s daily PnL, then a position’s daily loss due to the idiosyncratic risk factor
can be approximated by

Delta approximation (first-order)

L ≈ − ∂P
∂ε

∣∣∣∣
ε=0
· ε = −δσε̄,

where δ = ∂P
∂ε

∣∣∣
ε=0

, σ is the standard deviation of ε, and ε̄ is the normalized residual;

Closed-form distribution for portfolio loss under certain assumption on the distribution of
residuals;
Linear loss approximation, risk beyond the first order is ignored;

Delta-Gamma approximation (second-order)

L ≈ −
(

∂P
∂ε

∣∣∣∣
ε=0
· ε + 1

2
∂2P
∂ε2

∣∣∣∣
ε=0
· ε2
)
= −δσε̄− 1

2
γσ2 ε̄2,

where γ = ∂2P
∂ε2

∣∣∣
ε=0

;

No closed-form distribution for portfolio loss, Monte Carlo simulation is needed;
Second order approximation, more accruate.
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ESTIMATION OF DELTA AND GAMMA

Most risk engines are capable to provide sensitivity of positions to shocks applied to credit
spreads;

Risk number, csPVmj , j = 1, . . . , J: the position PnL if an absolute shock of mj bp is applied to the
credit spread;

δ and γ can be estimated by linear squares regression:
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ESTIMATION OF DELTA AND GAMMA (CONT’D)

δ in Delta approximation can be estimated by:

min
δ

J

∑
j=1

(
csPVmj − δmj

)2

Solution is

δ = (X′X)−1X′Y =
∑J

j=1 mjcsPVmj

∑J
j=1 m2

j

,

where X = [m1, · · · , mJ ]
′

and Y =
[
csPVm1 , · · · , csPVmJ

]′
;

δ and γ in Delta-Gamma approximation can be estimated by:

min
δ,γ

J

∑
j=1

(
csPVmj −

(
δmj +

1
2

γm2
j

))2

Solution is [
δ
γ

]
= (X′X)−1X′Y,

where X =


m1

1
2 m1

...
...

mJ
1
2 mJ

 , and Y =


csPVm1

...
csPVmJ

 .
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POSITION MAPPING IN DEBT PORTFOLIO

Positions in a debt portfolio have
Different issuer/reference entity;
Different tenor/maturity;

Positions with different issuer/reference entitys have different marginal residual
distribution;

Positions with same issuer/reference entity but different tenor/maturity may have a very
different marginal residual distribution as well;

However, it is not practical to model every position’s marginal residual distrubution:
Missing data;
Too computatinally intense;
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POSITION MAPPING IN DEBT PORTFOLIO (CONT’D)

Tenors/maturities can be mapped to “proxy tenors”

Position tenor Proxy tenor
[0yr, 1yr) 1yr
[1yr, 3yr) 2yr
[4yr, 9yr) 5yr

[9yr, 15yr) 10yr
[15yr, +∞) 20yr

Positions are grouped into categories Kn,m,j, n = 1, . . . , N, m = 1, . . . , 5 and j = 1, 2, where

Kn,m,1 = {k| position k is a bond with the mth proxy tenor and the nth issuer },
Kn,m,2 = {k| position k is a CDS with the mth proxy tenor and the nth reference entity}.

Positions within the same subset share a common residual.
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PORTFOLIO SR LOSS

The h-day portfolio loss is computed by

Delta approximation:

L ≈ −
N

∑
n=1

5

∑
m=1

2

∑
j=1

(√
hδ̃n,m,j

)
ε̄n,m,j

where δ̃n,m,j = ∑k∈Kn,m,j
δkσk;

Delta-Gamma approximation

L ≈−
N

∑
n=1

5

∑
m=1

2

∑
j=1

((√
hδ̃n,m,j

)
ε̄n,m,j +

1
2
(
hγ̃n,m,j

)
ε̄2

n,m,j

)

where γ̃n,m,j = ∑k∈Kn,m,j
γkσ2

k .
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PORTFOLIO TOTAL VAR

The total VaR with the confidence level α is defined by

VaRα (LTR) := inf {q ∈ R : P [LTR ≤ q] ≥ α} ;

The total portfolio loss can be approximated by the summation of the loss calculated in the
market risk model and the SR loss:

LTR ≈ LMR + LSR;

A scenario-based market risk model usually generates I scenario losses:

L(1)MR, . . . ,L(I)MR;

Assuming that shocks on residuals are independent with shocks on other market risk
factors, LMR are independent with LSR. Hence,

P [LTR ≤ q] = P [LMR + LSR ≤ q]
= E [P [LMR + LSR ≤ q| LMR]]

≈ 1
I

I

∑
i=1

P
[
LSR ≤ q−L(i)MR

]
;

Rest of the problem: model the distribution of residuals to calculate

P
[
LSR ≤ q−L(i)MR

]
.
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EXISTING DISTRIBUTIONS

In practice, normalized residuals ε̄ are usually modeled by the multi-variate student’s t
distribution with DoF ν;

If the Delta approximation is applied:
The portfolio SR loss, LSR, is a linear combination of random varibles subject to multi-variate
student’s t distribution;
Consequently,

√
ν

ν−2
LSR√

hσP
is a uni-variate student t distribution with the same degree of freedom ν;

σP =
√

h
√

δ̃
T

ρδ̃ is the h-day portfolio SR PnL volatility;
ρ is the correlation matrix of ε̄;

The probability P
(
LSR ≤ q−L(i)

MR

)
can be computed analytically:

P
(
LSR ≤ q−L(i)

MR

)
= tν


√

ν
ν−2 ·

(
q−L(i)

MR

)
√

hσP

 ;

No closed-form solution for the Delta-Gamma approximation.
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EXISTING DISTRIBUTIONS (CONT’D)

The marginal student’s t distribution may not be close to the distribution of some
bond/CDS residuals:
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EMPIRICAL DISTRIBUTION

Given historical data of normalized residuals, ε̄
(1)
n,m,j, . . . , ε̄

(U)
n,m,j, we can compute the empirical

CDF for ε̄n,m,j:

F̃n,m,j(x) =
1
U

U

∑
u=1

I{
ε̄
(u)
n,m,j≤x

},

where IA is an indicator variable

IA =

{
1, if A is true,
0, otherwise.

We could use the empirical distribution implied by ε̄
(1)
n,m,j, . . . , ε̄

(U)
n,m,j as the marginal

distribution of ε̄n,m,j, BUT

The empirical distribution is not continuous, which is not desirable from the aspect of sampling;
Sampling from an empirical distribution implied by U unique observations generates at most U
unique samples.
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KERNEL DENSITY ESTIMATION

Given a series of observations x(1), . . . , x(U), the kernel density estimator can be used to
estimate the unknown density:

f̂h(x) =
1

Uh

U

∑
u=1

K

(
x− x(u)

h

)
;

K(·) is the kernel function, which determines the shape of the density;
h is the bandwidth or smoothing constant, which determines the smoothness of the density.
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NORMAL KERNAL DISTRIBUTION (NK)

Normal kernel:
K(x) = φ(x) =

1√
2π

e−x2/2;

Normal kernel CDF estimator for the marginal distribution of normalized residuals:

F̂n,m,j(x) =
1

Uh

U

∑
u=1

Φ

 x− ε̄
(i)
n,m,j

h

 ,

where Φ(·) is the CDF of the standard normal distribution;
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BANDWIDTH SELECTION

The bandwidth h determines the quality of the estimation
Larger bandwidth: less variance but more bias;
Smaller bandwidth: less bias but more variance;

The bandwidth h determines the smoothness of the density:
Larger bandwidth: smoother density estimation;
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A rule of thumb for normal kernel: “Silverman’s rule of thumb”

h =

(
4σ̂5

3U

)1/5

≈ 1.06σ̂U−1/5,

where σ̂ is the sample standard deviation.
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PARETO DISTRIBUTION

The normal kernel with the bandwidth by Silverman’s rule of thumb usually generates
Well-suited estimates for densities in the middle portion of the distribution;
Under-smoothed, high variance tails;

To better estimate the tails of the distribution, the generalized Pareto (GP) distribution can
be used to model the distribution of exceedances of residuals over pre-determined
thresholds;
The density of the GP distribution with shape parameter ξ, scale parameter σ and location
parameter µ, is

g ( x| ξ, σ, µ) =


1
σ

(
1 + ξ(x−µ)

σ

)−(1+1/ξ)
for x ≥ µ when ξ > 0, or for µ ≤ x ≤ µ− σ/ξ when ξ < 0,

1
σ e−

x−µ
σ for x ≥ µ when ξ = 0,

0 otherwise,

ξ: shape parameter;
σ: scale parameter;
µ: location parameter;

The CDF of GP distribution is

G ( x| ξ, σ, µ) ==


1−

(
1 + ξ(x−µ)

σ

)−1/ξ
for x ≥ µ when ξ > 0, or for µ ≤ x ≤ µ− σ/ξ when ξ < 0,

1− e−
x−µ

σ for x ≥ µ when ξ = 0,
0 for x < µ,
1 otherwise.
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PARETO DISTRIBUTION (CONT’D)

Capable to fit a wide variety of fat-tailed data
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PARETO TAILS

Upper tail:
Select an upper tail threshold ὰ, e.g. ὰ = 90%;
Calculate the ὰ quantile of the normal kernel distribution, Q̀n,m,j;

Calculate upper exceedances, ὶ
(i)
n,m,j, by :

ὶ
(i)
n,m,j = ε̄

(i)
n,m,j − Q̀n,m,j, for i ∈ S̀n,m,j =

{
i
∣∣∣ε̄(i)n,m,j > Q̀n,m,j

}
;

Choose a proper GP distribution, GP
(
ξ̀n,m,j, σ̀n,m,j, 0

)
, to fit ὶ

(i)
n,m,j by the maximum likelihood

estimation (MLE): (
ξ̀n,m,j, σ̀n,m,j

)
:= arg max

ξ,σ
∑

i∈S̀n,m,j

ln g
(

ὶ
(i)
n,m,j

∣∣∣ ξ, σ, 0
)

;

The optimization problem can be solved by Nelder–Mead method;

Lower tail:
Select a lower tail threshold ά , e.g. ά = 10%;
Calculate the ά quantile of the normal kernel distribution, Q́n,m,j;

Calculate lower exceedances, ί
(i)
n,m,j, by:

ί
(i)
n,m,j = Q́n,m,j − ε̄

(i)
n,m,j, for i ∈ Śn,m,j =

{
i
∣∣∣ε̄(i)n,m,j < Q́n,m,j

}
;

Choose a proper GP distribution, GP
(
ξ́n,m,j, σ́n,m,j, 0

)
, to fit ί

(i)
n,m,j by MLE:(

ξ́n,m,j, σ́n,m,j
)

:= arg max
ξ,σ

∑
i∈Śn,m,j

ln g
(

ί
(i)
n,m,j

∣∣∣ ξ, σ, 0
)

.
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NORMAL KERNEL DISTRIBUTION WITH PARETO TAILS (NKPT)

Combining the normal kernel distribution and the Pareto tails enable us to model the
distribution of residuals by the following semi-parametric model:

ε̄n,m,j =
(
Q́n,m,j −Y

)
· I{X∈(−∞,Q́n,m,j)}

+X · I{X∈[Q́n,m,j ,Q̀n,m,j]}
+
(
Q̀n,m,j +Z

)
· I{X∈(Q̀n,m,j ,+∞)},

X , Y and Z are mutually independent;
X is subject to the normal kernel distribution with CDF F̂n,m,j(x);
Y follows GP distribution with CDF G

(
x
∣∣ξ́n,m,j, σ́n,m,j, 0

)
;

Z follows GP distribution with CDF G
(
x
∣∣ξ̀n,m,j, σ̀n,m,j, 0

)
.

The CDF of the NKPT distribution is a piecewise function:

Fn,m,j(x) =


ά
(
1−G

(
Q́n,m,j − x

∣∣ξ́n,m,j, σ́n,m,j, 0
))

, x ∈
(
−∞, Q́n,m,j

)
,

F̂n,m,j(x), x ∈
[
Q́n,m,j, Q̀n,m,j

]
,

ὰ + (1− ὰ)G
(
x− Q̀n,m,j

∣∣ξ̀n,m,j, σ̀n,m,j, 0
)

, x ∈
(
Q̀n,m,j,+∞

)
.
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COMPARISON OF MARGINAL DISTRIBUTIONS
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COMPARISON OF MARGINAL DISTRIBUTIONS (CONT’D)
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JOINT DISTRIBUTION: COPULA

Copula is usually used to construct the joint distribution from marginal distributions;

A copula is defined as a distribution on the unit cube [0, 1]N :

C (u1, u2, . . . , uN) = P [U1 ≤ u1,U2 ≤ u2, . . . ,UN ≤ uN ] ;

E.g. given a correlation matrix ρ, the student’s t copula with 4 DoF can be written as

Cρ
t4
(u1, u2, . . . , uN) = tρ

4

(
t−1
4 (u1) , t−1

4 (u2) , . . . , t−1
4 (uN)

)
;

Consider a random vector [X1,X2, . . . ,XN ]
′

with continuous marginal distribution Fi:
Transform Xi to Yi by

Yi = t−1
4 (Fi (Xi)) ,

Assume [Y1,Y2, . . . ,YN ]
′

follows a multi-variate T4 distribution with the correlation matrix ρ, then

the joint distribution of [X1,X2, . . . ,XN ]
′

can be written as

P [X1 ≤ x1,X2 ≤ x2, . . . ,XN ≤ xN ] = Cρ
t4
(F1 (x1) , F2 (x2) , . . . , FN (xN)) ;

The marginal distribution of Xi is preserved while defining a correlation structure of

[X1,X2, . . . ,XN ]
′

via the correlation structure of [Y1,Y2, . . . ,YN ]
′

.
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STUDENT’S T COPULA NKPT

Normalized residuals, ε̄n,m,j, are modeled by

ε̄n,m,j = F−1
n,m,j

(
t4
(
ωn,m,j

))
The marginal distribution of ε̄n,m,j is the NKPT distribution with CDF Fn,m,j(x);
A student’s t copula with 4 DoF is used for the joint distribution:

The intermediate random vector ω follows a multi-vairate T4 distribution with a correlation matrix $;
$ is the correlation matrix of normalized residuals ε̄.

No analytical solution for the distribution of the portfolio SR loss;

Instead, MC simulation is needed to calcalute P
(
LSR ≤ q−L(i)MR

)
;
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MC DSR WITH STUDENT’S T COPULA NKPT

Sample ω from the multi-vairate T4 distribution with the correlation matrix $:
ω(1), . . . , ω(K);

Calculate ε̄(1), . . . , ε̄(K) by ε̄
(k)
n,m,j = F−1

n,m,j

(
t4

(
ω

(k)
n,m,j

))
;

Compute portfolio SR losses by Delta approximation

L(k)SR = −
N

∑
n=1

5

∑
m=1

2

∑
j=1

(√
hδ̃n,m,j

)
ε̄
(k)
n,m,j,

or Delta-Gamma approximation

L(k)SR = −
N

∑
n=1

5

∑
m=1

2

∑
j=1

((√
hδ̃n,m,j

)
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Approximate P
(
LSR ≤ q−L(i)MR

)
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P
(
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)
≈ 1

K

K

∑
k=1

I{
L(k)SR≤q−L(i)MR

}.



VaR of Debt Portfolios MC DSR Framework Distribution of Residuals

TESTING RESULTS: 99% TR VAR

Model Delta Delta-Gamma
T4 15,230,674.10 15,053,488.33

Copula NK 15,733,387.31 15,565,004.61
Copula NKPT 15,809,243.83 15,516,868.54

Assumption of mutli-variate student’s t distribution underestimates the risk (about half
million for the testing portfolio);

Compared with the Delta approximation, the Delta-Gamma approximation lowers the VaR
number.
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