Opportunity Cost Techniques and Fulfillment Tie-Breaking

Paul Raff

Amazon.com
May 01, 2012

Motivation

- James Q. Wilson, Ph.D.
- Broken Windows Theory
- Focus on the small, reap benefits on the big.

- Randomized experiment ${ }^{1}$ in Lowell, MA resulted in a statistically significant 20% drop in police calls for service.

Motivation

Focusing on an easily-manageable subset of the system can yield enormous benefits for the system as a whole.

United States of America

United States of America

Overview: Amazon’s Systems

(a very small slice)

The Core Problem

Location	Inventory	Cost: Super-saver to Seattle	Cost: Second-day to Seattle
PA	50	4.12	14.12
IN	1	3.87	6.12
SC	12	4.41	15.09
TN	15	4.89	11.51

- Our costs are determined by the order in which orders are placed.
- Necessary at our scale.

The Core Problem

Location	Inventory	Cost: Super-saver to Seattle	Cost: Second-day to Seattle
PA	50	4.12	14.12
IN	1	3.87	6.12
SC	12	4.41	15.09
TN	15	4.89	11.51

- Our costs are determined by the order in which orders are placed.
- Necessary at our scale.
- If second-day order first, then total cost would be $\$ 10.24$.

The Core Problem

Location	Inventory	Cost: Super-saver to Seattle	Cost: Second-day to Seattle
PA	50	4.12	14.12
IN	1	3.87	6.12
SC	12	4.41	15.09
TN	15	4.89	11.51

- Our costs are determined by the order in which orders are placed.
- Necessary at our scale.
- If second-day order first, then total cost would be $\$ 10.24$.
- If super-saver order first, then total cost would be \$15.38.

A Real-Life Example

Location	Inventory	Cost: Order 1 03/20 00:01 PDT	Cost: Order 2 03/20 00:13 PDT
Warehouse 1	1	2.42	2.57
Warehouse 2	>1	2.56	3.87

A Real-Life Example

Location	Inventory	Cost: Order 1 03/20 00:01 PDT	Cost: Order 2 03/20 00:13 PDT
Warehouse 1	1	2.42	2.57
Warehouse 2	>1	2.56	3.87

A Subtle Modification

Location	Inventory	Cost: Order 1 03/20 00:01 PDT	Cost: Order 2 03/20 00:13 PDT
Warehouse 1	1	2.42	2.57
Warehouse 2	>1	2.42	3.87

Possible Solutions

- Have more inventory, or place it better.
- Constantly worked on at Amazon
- More inventory has a cost in itself
- We can never always have perfect inventory placement

Possible Solutions

- Have more inventory, or place it better.
- Constantly worked on at Amazon
- More inventory has a cost in itself
- We can never always have perfect inventory placement
- Fulfill multiple orders at the same time
- Generally infeasible
- Potential customer experience impact - how long do we wait?

Possible Solutions

- Have more inventory, or place it better.
- Constantly worked on at Amazon
- More inventory has a cost in itself
- We can never always have perfect inventory placement
- Fulfill multiple orders at the same time
- Generally infeasible
- Potential customer experience impact - how long do we wait?
- Opportunity cost
- How to define?
- Necessary inputs may be highly volatile or of dubious value

Note on Opportunity Cost

- Our order planning engine plans greedily, and hence sub-optimally.
- By having additional costs added to the solver, we can influence its decision:

FC	Fulfillment Cost	Opportunity Cost	Total Cost
RNO1	$\$ 3.50$	$\$ 1.50$	$\$ 5.00$
LEX1	$\$ 4.00$	$\$ 0.50$	$\$ 4.50$

- Opportunity cost calculates the amount we'd be willing to pay extra.

Note on Opportunity Cost

- Opportunity cost is a cost we will pay now for an expectation of savings in the future.
- Why pay more? A letter costs 46 cents to send, regardless of origin/destination.
- Would it suffice to only deal with tied situations?

Country	\% of Units Involved In Tied Fulfillment Plans	
	Real-life	Optimally
DE	16.04%	36.91%

The Demand Model

Demand materializes sequentially, with the probability of demand coming from region i at any step being $p_{i}, \sum p_{i}=1$.

Region 1, Region 1	0.64	0.64	Region 1: 2 units Region 2: 0 units
Region 1, Region 2	0.16	0.32	Region 1: 1 unit Region 2: 1 unit
Region 2, Region 1	0.16	0.04	Region 1: 0 units Region 2: 2 units
Region 2, Region 2	0.04	0.04	

A Note on Optimality

Finding the optimal solution for known demand and a given inventory level is not easy:

$$
\begin{aligned}
& \operatorname{opt}\left(\left\{d_{1}, d_{2}, \ldots\right\} \mid \mathcal{J}\right) \\
& \quad=\min _{F C i}\left(c_{d_{1}, i}+\operatorname{opt}\left(\left\{d_{2}, \ldots\right\} \mid \mathcal{J}-e_{i}\right)\right)
\end{aligned}
$$

Additionally, in a lot of cases it's not practical.

Simple Example (no ties)

Situation:

Order Type	Probability	Cost: Warehouse 1	Cost: Warehouse 2
Standard	50%	1	2
Express	50%	3	5

10,000 simulations of 20 orders, starting with inventory

	Warehouse 1	Warehouse 2
Inventory	15	5

Simple Example (no ties)

- On average, optimal saves \$5 over greedy.

Typical Workaround

If we are dealing with orders greedily, then we will choose the warehouse that minimizes the following:
opportunity cost, or cost-to-go

$$
c_{d, i}+f(\square)
$$

where ■ can be a variety of things: inventory levels, past demand, forecasted demand, future expected inbound arrivals, ...

Core Principle

- If we encounter an order that has tied fulfillment plans, we want to choose the option that has the lowest future expected cost.
- How do we calculate lowest future expected cost?

Single-SKU Demand Model

- Regions $R_{1}, R_{2}, \ldots, R_{n}$
- Demand probabilities p_{1}, \ldots, p_{n} with $\sum p_{i}=1$
- Warehouses $W_{1}, W_{2}, \ldots, W_{m}$
- Cost matrix showing the cost of fulfilling demand from W_{i} to region R_{j}

Order Type	Probability	Cost: Warehouse 1	Cost: Warehouse 2
Super Saver	50%	1	2
Express	50%	3	5

Simplest Recursion

- Two warehouses, two regions

Region	Probability	Cost: Warehouse 1	Cost: Warehouse 2	
R_{1}	p_{1}	c_{11}	$<$	c_{12}
R_{2}	p_{2}	c_{21}	$>$	c_{22}

$\operatorname{cost}(0, b)=p_{1} c_{12} b+p_{2} c_{22} b$
$\operatorname{cost}(a, 0)=p_{1} c_{11} a+p_{2} c_{21} a$
$\operatorname{cost}(a, b)=$

$$
p_{1}\left(c_{11}+\operatorname{cost}(a-1, b)\right)
$$

$$
+\quad p_{2}\left(c_{22}+\operatorname{cost}(a, b-1)\right)
$$

What About Ties?

Region	Probability	Cost: Warehouse 1		Cost: Warehouse 2
R_{1}	p_{1}	c_{11}	$<$	c_{12}
R_{2}	p_{2}	c_{21}	$>$	c_{22}
R_{3}	p_{3}	c_{31}	$=$	c_{32}

$$
\begin{array}{ccc}
\operatorname{cost}(a, b)=+ & p_{1}\left(c_{11}+\operatorname{cost}(a-1, b)\right) \\
p_{2}\left(c_{22}+\operatorname{cost}(a, b-1)\right) \\
+ & p_{3}\left(c_{31}+?\right)
\end{array}
$$

What About Ties?

Region	Probability	Cost: Warehouse 1		Cost: Warehouse 2
R_{1}	p_{1}	c_{11}	$<$	c_{12}
R_{2}	p_{2}	c_{21}	$>$	c_{22}
R_{3}	p_{3}	c_{31}	$=$	c_{32}

$\operatorname{cost}(a, b)$

$$
=\begin{gathered}
\\
+ \\
p_{1}\left(c_{11}+\operatorname{cost}(a-1, b)\right) \\
+\quad p_{2}\left(c_{22}+\operatorname{cost}(a, b-1)\right) \\
c_{31}+\min \binom{\operatorname{cost}(a-1, b)}{\operatorname{cost}(a, b-1)}
\end{gathered}
$$

What About 3 Warehouses?

$W_{1}<W_{2}<W_{3}$	$W_{1}=W_{2}<W_{3}$		
$W_{1}<W_{3}<W_{2}$	$W_{3}<W_{1}=W_{2}$		
$W_{2}<W_{1}<W_{3}$	$W_{1}=W_{3}<W_{2}$		
$W_{2}<W_{3}<W_{1}$	$W_{2}<W_{1}=W_{3}$		
$W_{3}<W_{1}<W_{2}$	$W_{2}=W_{3}<W_{1}$		
$W_{3}<W_{2}<W_{1}$	$W_{1}<W_{2}<W_{3}$		

What About 4 Warehouses?

- 75 different possibilities!
- With 50 warehouses, there are $1,995,015,910,118,319,790,635,433,747,742,913,123,711,612,309,013,079,035,980,385,090,523,556,363$ possibilities ${ }^{\dagger}$!
- In practice, Amazon.com observed ~250K different scenarios in its NA network.

Common Topologies

Common Topologies

In Practice

Region	Probability	Cost: Warehouse 1	Cost: Warehouse 2
R_{1}	40%	1	2
R_{2}	40%	3	1
R_{3}	20%	2	2
		\downarrow	
R_{1}	40%	0	1
R_{2}	40%	2	0
R_{3}	20%	0	0

In Practice

Region	Probability	Cost: Warehouse 1	Cost: Warehouse 2
R_{1}	40%	0	1
$\boldsymbol{R}_{\mathbf{2}}$	$\mathbf{2 0} \%$	$\mathbf{1}$	$\mathbf{0}$
$\boldsymbol{R}_{\mathbf{3}}$	$\mathbf{2 0} \%$	$\mathbf{3}$	$\mathbf{0}$
R_{4}	20%	0	0
		\downarrow	
R_{1}	40%	0	1
$\boldsymbol{R}_{\mathbf{2}}$	$\mathbf{4 0} \%$	$\mathbf{2}$	$\mathbf{0}$
R_{3}	20%	0	0

Region	Probability	Cost: Warehouse 1	Cost: Warehouse 2
R_{1}	40%	0	1
R_{2}	40%	2	0
R_{3}	20%	0	0

20	8.00	7.40	6.80	6.20	5.61	5.02	46	3.92	3.42	2.97	2.58	2.25	1.99	1.79	1.65	1.56	1.51	1.48	1.48	1.49	51
19	. 60	7.00	6.40	5.80	5.21	4.63	4.08	3.56	3.08	2.67	2.32	2.03	1.82	1.66	1.56	1.50	1.47	1.47	1.48	1.50	. 54
18	7.20	6.60	6.00	5.41	4.82	4.25	3.71	3.21	2.77	2.39	2.08	1.85	1.67	1.56	1.49	1.46	1.45	1.46	1.49	1.54	61
17	6.80	6.20	5.60	5.01	4.43	3.87	3.35	2.88	2.47	2.14	1.88	1.69	1.56	1.48	1.45	1.44	1.45	1.48	1.53	1.61	1.72
16	. 40	5.80	5.20	4.61	4.04	3.50	3.00	2.56	2.20	1.91	1.70	1.56	1.47	1.43	1.42	. 43	1.46	1.52	1.61	1.73	. 89
15	. 00	5.40	4.80	4.22	3.66	3.13	2.67	2.27	1.96	1.72	1.56	1.47	1.42	1.40	1.42	1.45	1.51	1.60	1.74	1.91	13
14	. 60	5.00	4.41	3.83	3.28	2.79	2.36	2.01	1.75	1.57	1.46	1.40	1.38	1.40	1.43	1.50	1.60	1.74	1.93	2.17	45
13	20	4.60	4.01	3.44	2.92	2.46	2.07	1.78	1.57	1.45	1.38	1.36	1.37	1.41	1.49	1.60	1.75	1.96	2.22	2.52	2.88
12	80	4.20	3.62	3.06	2.57	2.15	1.82	1.58	1.44	1.36	1.34	1.35	1.39	1.47	1.59	1.77	1.99	2.27	2.60	2.99	3.42
11	40	3.80	3.23	2.70	2.24	1.87	1.60	1.43	1.34	1.31	1.32	1.37	1.46	1.59	1.78	2.02	2.32	2.68	3.10	3.56	4.08
10	00	3.41	2.84	2.34	1.93	1.62	1.42	1.31	1.28	1.29	1.34	1.44	1.59	1.79	2.06	2.39	2.78	3.22	3.72	4.26	4.85
9	. 60	3.01	2.47	2.01	1.65	1.42	1.29	1.24	1.26	1.31	1.42	1.58	1.81	2.10	2.46	2.88	3.36	3.89	4.46	5.08	5.73
8	3.20	2.62	2.11	1.70	1.42	1.26	1.20	1.21	1.27	1.39	1.58	1.83	2.15	2.54	3.00	3.51	4.07	4.68	5.33	6.00	6.71
7	2.80	2.24	1.76	1.42	1.23	1.15	1.16	1.23	1.36	1.57	1.85	2.21	2.64	3.13	3.68	4.28	4.92	5.59	6.30	7.02	7.76
6	2.40	1.86	1.45	1.20	1.10	1.10	1.18	1.33	1.56	1.88	2.28	2.75	3.28	3.87	4.50	5.18	5.88	6.60	7.35	8.11	8.88
5	2.00	1.50	1.17	1.03	1.03	1.11	1.29	1.55	1.91	2.36	2.87	3.45	4.08	4.75	5.46	6.18	6.93	7.69	8.47	9.25	10.03
4	1.60	1.16	0.96	0.94	1.03	1.23	1.55	1.96	2.45	3.02	3.65	4.32	5.03	5.76	6.51	7.28	8.05	8.84	9.62	10.42	11.2
3	1.20	0.87	0.82	0.93	1.17	1.54	2.01	2.57	3.20	3.88	4.59	5.33	6.09	6.86	7.64	8.43	9.22	10.01	10.81	11.60	2.4
2	0.80	0.66	0.78	1.09	1.54	2.09	2.72	3.41	4.14	4.89	5.66	6.44	7.22	8.01	8.81	9.61	10.40	11.20	12.00	12.8	13.6
1	0.40	0.56	0.98	1.55	2.21	2.92	3.67	4.44	5.23	6.02	6.81	7.61	8.40	9.20	10.00	10.80	11.60	12.40	13.20	14.00	14.80
0	0.00	0.80	1.60	2.40	3.20	4.00	4.80	5.60	6.40	7.20	8.00	8.80	9.60	10.40	11.20	12.00	12.80	13.60	14.40	15.20	16.00
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Region	Probability	Cost: Warehouse 1	Cost: Warehouse 2
R_{1}	40%	0	1
R_{2}	40%	10	0
R_{3}	20%	0	0

20	8.00	7.40	6.80	6.20	5.62	5.05	4.50	4.01	3.57	3.20	2.92	2.71	2.57	2.50	2.47	2.48	2.52	2.60	2.74	2.96	3.26
19	7.60	7.00	6.40	5.81	5.22	4.66	4.14	3.68	3.28	2.96	2.73	2.57	2.48	2.45	2.46	2.50	2.58	2.73	2.95	3.27	3.71
18	7.20	6.60	6.00	5.41	4.84	4.29	3.79	3.36	3.01	2.75	2.57	2.46	2.42	2.43	2.47	2.55	2.71	2.95	3.29	3.76	4.36
17	6.80	6.20	5.60	5.02	4.45	3.93	3.46	3.08	2.78	2.57	2.45	2.39	2.40	2.43	2.52	2.69	2.94	3.31	3.80	4.46	5.28
16	6.40	5.80	5.21	4.63	4.08	3.58	3.15	2.82	2.58	2.43	2.37	2.36	2.40	2.49	2.66	2.93	3.32	3.85	4.55	5.43	6.51
15	6.00	5.40	4.81	4.24	3.71	3.25	2.87	2.60	2.42	2.34	2.32	2.36	2.45	2.63	2.92	3.33	3.91	4.66	5.60	6.75	8.13
14	5.60	5.00	4.42	3.86	3.36	2.94	2.62	2.41	2.30	2.28	2.31	2.41	2.60	2.90	3.35	3.96	4.77	5.78	7.01	8.48	10.1
13	5.20	4.60	4.02	3.49	3.02	2.66	2.41	2.27	2.23	2.26	2.36	2.55	2.88	3.36	4.02	4.88	5.97	7.30	8.87	10.68	2.7
12	4.80	4.21	3.64	3.13	2.71	2.42	2.24	2.18	2.20	2.30	2.51	2.85	3.36	4.07	5.01	6.18	7.61	9.29	11.22	13.41	5.8
11	4.40	3.81	3.26	2.79	2.44	2.22	2.13	2.14	2.24	2.45	2.81	3.36	4.13	5.14	6.41	7.94	9.75	11.81	14.13	16.68	19.4
10	4.00	3.42	2.89	2.48	2.20	2.07	2.07	2.16	2.38	2.76	3.36	4.19	5.28	6.65	8.31	10.24	12.45	14.91	17.60	20.51	23.6
9	3.60	3.03	2.54	2.20	2.02	1.99	2.07	2.29	2.70	3.34	4.25	5.44	6.92	8.71	10.79	13.15	15.76	18.60	21.64	24.86	28.2
8	3.20	2.65	2.22	1.97	1.90	1.97	2.19	2.63	3.32	4.30	5.60	7.22	9.15	11.39	13.91	16.68	19.67	22.86	26.21	29.69	33.2
7	2.80	2.28	1.93	1.80	1.85	2.07	2.53	3.28	4.36	5.78	7.55	9.65	12.06	14.75	17.69	20.84	24.16	27.64	31.23	34.91	38.6
6	2.40	1.93	1.70	1.71	1.92	2.41	3.22	4.41	5.97	7.91	10.20	12.80	15.68	18.79	22.09	25.56	29.15	32.84	36.61	40.4	4.3
5	2.00	1.62	1.55	1.74	2.24	3.13	4.45	6.18	8.32	10.82	13.63	16.70	19.99	23.46	27.05	30.76	34.54	38.38	42.27	46.19	50.1
4	1.60	1.36	1.50	2.02	3.00	4.47	6.41	8.79	11.52	14.56	17.84	21.31	24.93	28.65	32.45	36.31	40.21	44.15	48.10	52.0	56.0
3	1.20	1.21	1.70	2.79	4.47	6.68	9.33	12.34	15.63	19.12	22.77	26.52	30.35	34.23	38.16	42.10	46.07	50.04	54.03	58.02	62.0
2	0.80	1.22	2.45	4.42	6.99	9.99	13.31	16.86	20.56	24.36	28.23	32.15	36.09	40.06	44.04	48.02	52.02	56.01	60.01	64.00	68.0
1	0.40	1.84	4.30	7.38	10.83	14.50	18.30	22.18	26.11	30.06	34.04	38.02	42.01	46.01	50.01	54.00	58.00	62.00	66.00	70.00	74.0
0	0.00	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00	60.00	64.00	68.00	72.00	76.00	80.00
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

In Practice

$\left.$| Inventory | | $\mathbf{3}$
 Region | Probability |
| :---: | :---: | :---: | :---: | | Cost: |
| :---: |
Warehouse 1	\quad	Cost:		
Warehouse 2	\right\rvert\,	R_{1}	40%	0
:---:	:---:	:---:		
R_{2}	40%	10		
R_{3}	20%	0		

	6	2.40	1.93	1.70	1.71	1.92	2.41	3.22
	5	2.00	1.62	1.55	1.74	2.24	3.13	4.45
	4	1.60	1.36	1.50	2.02	3.00	4.47	6.41
	3	1.20	1.21	1.70	2.79	4.47	6.68	9.33
	2	0.80	1.22	2.45	4.42	6.99	9.99	13.31
	1	0.40	1.84	4.30	7.38	10.83	14.50	18.30
	0	0.00	4.00	8.00	12.00	16.00	20.00	24.00
		0	1	2	3	4	5	6
		Inventory in FC 1						

What Does It Mean?

- We don't want to be left with inventory only in Warehouse 1.

20	8.00	7.40	6.80	6.20	5.62	5.05	4.50	4.01	3.57	3.20	2.92	2.71	2.57	2.50	2.47	2.48	2.52	2.60	2.74	2.96	3.26
19	7.60	7.00	6.40	5.81	5.22	4.66	4.14	3.68	3.28	2.96	2.73	2.57	2.48	2.45	2.46	2.50	2.58	2.73	2.95	3.27	3.71
18	7.20	6.60	6.00	5.41	4.84	4.29	3.79	3.36	3.01	2.75	2.57	2.46	2.42	2.43	2.47	2.55	2.71	2.95	3.29	3.76	4.36
17	6.80	6.20	5.60	5.02	4.45	3.93	3.46	3.08	2.78	2.57	2.45	2.39	2.40	2.43	2.52	2.69	2.94	3.31	3.80	4.46	5.28
16	6.40	5.80	5.21	4.63	4.08	3.58	3.15	2.82	2.58	2.43	2.37	2.36	2.40	2.49	2.66	2.93	3.32	3.85	4.55	5.43	6.51
15	6.00	5.40	4.81	4.24	3.71	3.25	2.87	2.60	2.42	2.34	2.32	2.36	2.45	2.63	2.92	3.33	3.91	4.66	5.60	6.75	8.13
14	5.60	5.00	4.42	3.86	3.36	2.94	2.62	2.41	2.30	2.28	2.31	2.41	2.60	2.90	3.35	3.96	4.77	5.78	7.01	8.48	10.18
13	5.20	4.60	4.02	3.49	3.02	2.66	2.41	2.27	2.23	2.26	2.36	2.55	2.88	3.36	4.02	4.88	5.97	7.30	8.87	10.68	12.74
12	4.80	4.21	3.64	3.13	2.71	2.42	2.24	2.18	2.20	2.30	2.51	2.85	3.36	4.07	5.01	6.18	7.61	9.29	11.22	13.41	15.82
11	4.40	3.81	3.26	2.79	2.44	2.22	2.13	2.14	2.24	2.45	2.81	3.36	4.13	5.14	6.41	7.94	9.75	11.81	14.13	16.68	19.45
10	4.00	3.42	2.89	2.48	2.20	2.07	2.07	2.16	2.38	2.76	3.36	4.19	5.28	6.65	8.31	10.24	12.45	14.91	17.60	20.51	23.60
9	3.60	3.03	2.54	2.20	2.02	1.99	2.07	2.29	2.70	3.34	4.25	5.44	6.92	8.71	10.79	13.15	15.76	18.60	21.64	24.86	28.23
8	3.20	2.65	2.22	1.97	1.90	1.97	2.19	2.63	3.32	4.30	5.60	7.22	9.15	11.39	13.91	16.68	19.67	22.86	26.21	29.69	33.28
7	2.80	2.28	1.93	1.80	1.85	2.07	2.53	3.28	4.36	5.78	7.55	9.65	12.06	14.75	17.69	20.84	24.16	27.64	31.23	34.91	38.68
6	2.40	1.93	1.70	1.71	1.92	2.41	3.22	4.41	5.97	7.91	10.20	12.80	15.68	18.79	22.09	25.56	29.15	32.84	36.61	40.44	44.32
5	2.00	1.62	1.55	1.74	2.24	3.13	4.45	6.18	8.32	10.82	13.63	16.70	19.99	23.46	27.05	30.76	34.54	38.38	42.27	46.19	50.13
4	1.60	1.36	1.50	2.02	3.00	4.47	6.41	8.79	11.52	14.56	17.84	21.31	24.93	28.65	32.45	36.31	40.21	44.15	48.10	52.07	56.05
3	1.20	1.21	1.70	2.79	4.47	6.68	9.33	12.34	15.63	19.12	22.77	26.52	30.35	34.23	38.16	42.10	46.07	50.04	54.03	58.02	62.01
2	0.80	1.22	2.45	4.42	6.99	9.99	13.31	16.86	20.56	24.36	28.23	32.15	36.09	40.06	44.04	48.02	52.02	56.01	60.01	64.00	68.00
1	0.40	1.84	4.30	7.38	10.83	14.50	18.30	22.18	26.11	30.06	34.04	38.02	42.01	46.01	50.01	54.00	58.00	62.00	66.00	70.00	74.00
0	0.00	4.00	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00	60.00	64.00	68.00	72.00	76.00	80.00
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Simple Example (with ties)

Order Type	Probability	Cost: Warehouse 1	Cost: Warehouse 2
Super Saver	40%	1	2
Express	40%	3	5
Standard	20%	3	3
	Initial inventory: (15,5)		

Simple Example (with ties)

Scenario	Optimal	Tie-breaking	Greedy
Average Fulfillment Cost	45.29	47.26	49.97

Simple Example (with ties)

Order Type	Probability	Cost: Warehouse 1	Cost: Warehouse 2
Super Saver	$\frac{100-x}{2} \%$	1	2
Express	$\frac{100-x}{2} \%$	3	5
Standard	$x \%$	3	3
	Initial Inventory: (15,5)		

Tie-Breaking Proportion over Varying Proportions of Tied Orders

Optimality Gap over Varying Proportions of Tied Orders (relative)

Results

- Via Amazon's supply chain simulator:
- DE: covered 22\% of optimality gap
- JP: covered 60\% of optimality gap
- 75% of savings via split-shipment reduction
- Results validated via controlled experiment in production.

Future Steps

- Model modifications
- Primary addition: pending arrival of purchase orders
- Initial experiments indicated very little improvement even with perfect knowledge of PO arrivals
- Back-door to opportunity cost
- Applications to other areas of supply chain

