
A routing problem raised by
self-service bicycle sharing

systems

Frédéric Meunier – CERMICS, Ecole des Ponts, Paris, France

Talk partially based on join works with Daniel Chemla and
Roberto Wolfler Calvo.

Bikes repositioning

• Essential task when operating self-service bike sharing
systems (like Bixi): repositioning of the bikes at the end of
the night.

• Morning rush.
• City divided into zones: a zone = a truck.

Assumption
• The bikes do not move.
• Current allocation: xv bikes on each station v .
• Target: yv bikes on each station v .

→ Bring the system at the target state with a truck

Formalization: routing problem on graph

Input : graph G = (V ,E);
d ∈ RE

+ a distance;
x ∈ ZV

+ initial allocation;
y ∈ ZV

+ target allocation; with
∑

v∈V xv =
∑

v∈V yv
truck capacity K .

Task Find the sequence of visited stations and the bike
displacements bringing the system from the state x to the state
y .

Objective Minimize traveled distance.

Bikes are allowed to be unloaded, and reloaded later

Preemption is allowed.

An example

2 2 2

K = 3

0

3 3

0

0 0

0 0 0

If it were not allowed

2 2 2

K = 3

0

3 3

0

0 0

0 0 0

10 moves

Allowed: it’s better

2 2 2

K = 3

0

3 3

0

0 0

0 0 0

8 moves

It is an hard problem

• NP-hard problem, even if truck capacity K = 1
• special cases: TSP, bipartite TSP, 2-partition, split delivery,

...

Similar problems have already been studied

1-PDTSP – one-commodity pickup and delivery problem –,
almost our problem, but requires Hamiltonian cycle.
[Hernandez-Pérez and Salazar-Gonzáles, 2004]

Swapping Problem, almost our problem, but requires all
supplies and demands to be unitary (xv , yv ∈ {0,1}), (and
several types of commodities allowed). [Annily and Hassin
(1992)]

Questions that will be addressed

Practical question
• How to solve practical instances ?

Theoretical questions
• Approximation algorithms ?
• Polynomial cases ?

How to solve practical instances ?

A combinatorial encoding of the optimal solutions

[Chemla, M., Wolfler 2012]
Polynomial algorithm that finds the best loading and unloading
operations for a given sequence of vertices visited by the truck.

Best loading and unloading operations :

x ′ and y ′ such that

• x ′(V) = y ′(V)

• x ′
v ≤ xv and y ′

v ≤ yv for all v ∈ V
• maximizing x ′(V).

it solves also

• x′(V) = y′(V)

• x′
v = xv for all v ∈ V

• minimizing
∑

v∈V |yv − y′
v |.

1 2 10 0

0 0 3 1 0

x =

y =

The polynomial encoding is possible via max flow

Stations: 1,2,3.
Sequence: 1→ 2→ 3→ 1→ 3→ 1→ 2

1

1′

1′′

2

2′

3

3′

s

t

≤ x1 ≤ x2
≤ x3

≤ y1
≤ y2

≤ y3

≤ K ≤ K

≤ K

≤ K

≤ K

≤ K

A local search

We can limit the exploration to sequences of vertices,
regardless of the number of bikes carried by the truck.

Local changes
• 2-OPT
• vertex deletion
• vertex addition
• ...

Iterating local changes→ local search

Note that the local search is able to deal with non-feasible
solutions.

A lower bound via linear optimization

min
∑

u,v∈V

duv zuv

s.c.
∑
u∈V

zuv =
∑
w∈V

zvw v ∈ V

∑
u∈X , v /∈X

zuv ≥
⌈ |x(X)− y(X)|

K

⌉
X ⊆ V \ {0}

zuv ∈ Z+ u, v ∈ V

Solved by branch-and-cut.

It is only a lower bound

(0, 0)

(0, 1)

(x, y) = (2, 0) (0, 2)

(1, 0)

K = 2

which can be optimal without being able to check it

[Chemla, M., Wolfler 2012]
Deciding whether a feasible solution of the linear program is a
feasible solution for our problem is NP-complete.

If the solution is given by the number of times each edge is
used, we cannot check in polynomial time whether it is a
feasible solution.

since it contains 2-partition as a special case

s

m

m

0
(2m; 0) (0; 0) (0; 1)

1

0

(0; 0)

m

m

(1; 2m)v′

0

v

0

u u′

m+ 1

b1
b2

br
. . .

0 0. . .

r − 2 arcs

Whole algorithm: local search initialized by
branch-and-cut

• compute a (non-necessary feasible) sequence by solving
the linear program (branch-and-cut) transformed into an
Eulerian circuit

• apply tabu search

PC AMD Athlon 5600+ clocked at 2.8 GHz, with 16 MB RAM. CPLEX for the linear program.

Computational results for local search and
branch-and-cut

Instance n K UB Time LB Gap %
n20A 20 10 4702 7 4702.00 0.00
n20C 20 10 6013 14 6012.00 0.02
n20B 20 10 4769 8 4769.00 0.00
n20A 20 30 3583 4 3583.00 0.00
n20E 20 30 4556 5 4299.00 5.98
n20F 20 30 4108 5 4108.00 0.00
n40E 40 10 6424 2253 6424.00 0.00
n40F 40 10 7095 10509 6760.00 4.96
n40J 40 10 6268 10067 6267.00 0.02
n40A 40 30 4949 178 4949.00 0.00
n40C 40 30 4692 450 4644.00 1.03
n40B 40 30 5110 301 5110.00 0.00
n60H 60 10 8208 11328 7707.44 6.49
n60B 60 10 8723 11312 7508.53 16.17
n60A 60 10 8010 11349 7276.80 10.08
n60G 60 30 6360 1264 6360.00 0.00
n60I 60 30 6766 8234 6390.00 5.88
n60H 60 30 6081 1835 5992.00 1.49

Results for instances with a mean of 10 bikes per station.

Computational results for local search and
branch-and-cut

Instance n K UB Time LB Gap %
n20B 20 10 9883 71 9883.00 0.00
n20C 20 10 14040 137 14039.00 0.01
n20D 20 10 14925 247 14925.00 0.00
n20B 20 30 4769 16 4769.00 0.00
n20C 20 30 6013 23 6012.00 0.02
n20D 20 30 5989 16 5989.00 0.00
n40E 40 10 13159 1786 13159.00 0.00
n40F 40 10 15410 11309 14456.90 6.59
n40I 40 10 14849 2531 14849.00 0.00
n40E 40 30 6424 1024 6424.00 0.00
n40F 40 30 7240 10239 6571.83 10.17
n40I 40 30 6901 2144 6901.00 0.00
n60F 60 10 17696 11414 16925.71 4.55
n60A 60 10 18755 11075 15789.56 18.78
n60J 60 10 17462 11136 15774.62 10.70
n60H 60 30 8120 11334 7608.96 6.72
n60C 60 30 9818 11227 8313.06 18.10
n60J 60 30 8407 11357 7642.33 10.01

Results for instances with a mean of 30 bikes per station.

0 1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

(10; 17)

(10; 9)

(10; 15)

(10; 14)
(10; 7)

(10; 8)

(10; 3)

(10; 9)

(10; 6)
(10; 16)

(10; 6)

(10; 13)

(10; 6)

(10; 11)

(10; 18)

(10; 1)

(10; 10)

(10; 14)

(10; 14)

(10; 3)

1

2

6

0
1

10

7

2

5

9

8

0

7

3

5

1

0

7

4
8

1

Figure: An optimal solution for an instance with n = 20, K = 10 et
1

20 x(V) = 10

0 1

2

3

4
5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

(30; 51)

(30; 27)

(30; 45)

(30; 42)
(30; 21)

(30; 24)

(30; 9)

(30; 27)

(30; 18)
(30; 48)

(30; 18)

(30; 39)

(30; 18)

(30; 33)

(30; 54)

(30; 3)

(30; 30)

(30; 42)

(30; 42)

(30; 9)

1

Figure: An optimal solution for an instance with n = 20, K = 10 et
1

20 x(V) = 30

Approximation algorithm ?

A 9.5-approximation algorithm

[M. et al., 2011]
There is a 9.5-approximation algorithm.

Generalization of Chalasani-Motwani algorithm for the
Swapping Problem with only one type of objects
(i.e. our problem with xv + yv ≤ 1 for all v).

An example of input

+2

+2 +3

−1

−3

−4

−1

A
B

C D

E

F

G

H
I

+11

−9

bike excess
bike default

The steps of the algorithm are...

• Perfect “b-matching” M of minimal cost between excess
vertices and default vertices

• Tour Cex passing through all excess vertices
• Tour Cdef passing through all default vertices
• Split these tours in subpaths with excess or default a

multiple of K bikes
• Transfer bikes via M from excess subpaths to default

subpaths

Perfect b-matching between excess vertices and
default vertices

+2

+2

+3

−1

−3

−4

−1

A

B

C

D

E

F

G

H

I

+11

−9

1

1

2

2

1

8

3

M

Tour on the excess vertices and tour on the default
vertices

+2

+2

−1

−1

A

C

D

G

I

B”

B”’

B’

H’

H”

+1

+1

+2

+1

E’

E”

F’
F”

−2

−1−2
−2

+9

−9

Cex
Cdef

K = 3

Subpaths of multiple K bikes

+2

+2

−1

−1

A

C

D

G

I

B”

B”’

B’

H’

H”

+1

+1

+2

+1

E’

E”

F’
F”

−2

−1−2
−2

P ex
1

P ex
2

P ex
3

P ex
4

P def
1

P def
2

P def
3

P def
4

+9

−9

K = 3

Everything put together

P ex
1

P ex
2

P ex
3

P ex
4

P def
1

P def
2

P def
3

P def
4

We obtain a 9.5-approximation algorithm

SOL ≤ 2Cex + 2Cdef + 2/K Mo + Cex

≤ 4.5OPT + 3OPT + 2OPT
= 9.5OPT

via Christofidès heuristics and König’s theorem (colouring
version).

Polynomial cases ?

A polynomial case: tree

[M. et al., 2011]
Polynomial time solvable if G is a tree.

In addition, for each e ∈ E

truck uses edge e ' 2
⌈

x(Ue)− y(Ue)

K

⌉

e

Ue

Ue

x(Ue) > y(Ue)
x(Ue) < y(Ue)

A greedy algorithm

If there are stations which have not reached their target state,
repeat

1. compute Q1,Q2, . . . ,Qs connected components of G \ {v}
v current position of the truck

2. If there is a Qi with bikes in excess
• choose such a Qi ,
• unload all bikes of the truck,
• enter Qi .

3. Otherwise
• choose a Qi with an unbalanced vertex
• load bikes from v till the truck carries min(K , y(Qi)− x̃(Qi))

bikes,
• enter Qi .

(in case of a tie, choose Qi without depot)

Other polynomial case ?
An exact algorithm ?

Polynomial encoding of solutions ?

Open question 1. Polynomially solvable if G is a cycle ?

Open question 2. Existence of an efficient exact algorithm ?

Open question 3. Polynomial encoding of optimal solutions ?
• K = 1, two stations u and v , n bikes on u, all bikes have to

be carried from u to v .

• size of the input: ' log2(n)• optimal solution = uvuvuvuv... of length 2n.

Thank you

