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Outline* 
• Pricing and measurement of Counterparty Credit Risk (CCR) with Wrong-Way 

Risk (WWR) / Right-Way Risk (RWR) 
o Pricing of CCR: CVA with WWR and Conditional EPE (CEPE) 
o CCR measure:   Conditional Potential Future Exposure (CPFE) with WWR 
o Counterparty Credit Economic Capital (CCEC)-like measure with WWR 

• Unified multifactor Gaussian and Jump-Diffusion default intensity frameworks 
for CVA, CPFE and CCEC with WWR and credit rating transitions 

o New effective calibration procedure for a model problem with Gaussian “white 
noise” default intensity based on Volterra integral equation 

o Monte Carlo based fitting of Gaussian and Jump-Diffusion default intensities 
to arbitrary survival probability term structures 

o A simple approach for consistent joint simulation of defaults and credit rating 
transitions in Gaussian hazard rate model 

• A new “Gamma-factor” copula for improving default correlations in Gaussian 
framework for portfolio Counterparty Credit Economic Capital and BCVA 

                                                           
*  The views expressed in the presentation are of the authors only and not necessarily of the Royal Bank of Canada 
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Pricing and Measurement of Counterparty Credit Risk (CCR) with 
Wrong-Way Risk (WWR) / Right-Way Risk (RWR) 

 

The recent credit crisis has demonstrated the need to capture Wrong-Way Risk (WWR) 
in the Counterparty Credit Risk Management and pricing.  One of the regulatory 
requirements in Basel II and Basel III concerning the counterparty credit risk is the ability 
of financial institutions to capture and manage WWR. 
 

• General Wrong-Way Risk is defined in BIS (2006) as the risk when “the probability 
of default of counterparties is positively correlated with general market risk factors”; or 
in BIS (2010) as the risk “where the exposure increases when the credit quality of the 
counterparty deteriorates”.  A so-called Right-Way Risk (RWR) is opposite to the 
WWR.  RWR represents the case when the exposure to the counterparty is negatively 
correlated with the counterparty’s default probability. 

• Specific Wrong-Way Risk is defined in BIS (2006) as the risk “when the exposure to 
a particular counterparty is positively correlated with the probability of default of the 
counterparty due to the nature of the transactions with the counterparty”.  An example 
of Specific WWR is a put option on the counterparty’s own stock. 

 

Naturally, financial institutions should be rewarded (in terms of CVA, CCR measures and 
counterparty credit capital) for doing Right-Way Risk business, and penalized for doing 
Wrong-Way Risk business. 
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Pricing of the counterparty credit risk, i.e., calculation of the Credit Value Adjustment 
(CVA) and Bilateral CVA (BCVA) should be performed in the risk neutral measure. 
 

The counterparty credit risk measures (for example, Potential Future Exposure (PFE)) are 
usually calculated by Risk Management in the historical measure based on the parameters 
estimated from the historical data.  As usually, change of measure from risk neutral to 
historical can be performed within presented here reduced form framework by the 
corresponding change of drifts in stochastic processes for market variables and hazard 
rates.  Historical parameter estimation for CCR requires very long time series for the risk 
factors, cannot account for possible future economic regime changes, and usually has 
insufficient accuracy, especially in the long-term drift prediction.  On the other hand, 
regulators allow for calculation of the CCR exposures in both risk-neutral measure (i.e., 
based on the market implied data) and historical measure (i.e., based on the historical 
data including the data for stress periods) (see BIS (2010), paragraph 98).  
 

For simplicity of exposition and possibility to compare CVA numbers with the CCR 
measures, we consider all stochastic processes for both CVA and CCR under the risk-
neutral measure.   
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Pricing of CCR: CVA with WWR and Conditional EPE (CEPE) 
We refer to the investor and counterparty by index “0” and “1”.  Let T  be the maturity of 
the portfolio.  We denote by 0τ  and 1τ  the default times of the investor and counterparty, 
and by  the discount factor at time ),( stD t  for maturity s .  Stochastic dynamics of all 
processes is considered in the risk-neutral measure assuming standard no-arbitrage 
conditions.  As we are interested in the default and market factor simulation model, for 
simplicity, we will consider only the case of uncollateralized counterparties. 
The price of credit risk with WWR/RWR is defined by the following quantities: 
• Credit Valuation Adjustment (CVA) 
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The expectations in the above expressions are taken over the joint distribution of the 
correlated market and credit factors.  This allows for modeling WWR/RWR. 
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A default risk measure closely related to CVA is Expected Positive Exposure (EPE). 

In the case of independent market and credit factors, the EPE at time  for the tenor  is 
defined as: 

0t t

(4)   ( ) { } ∫ ++ ==
MX

MMM XdtXgtXNPVtNPVtEPE ))(())(()(E 1t0 0  

where the expectation is taken over the distribution of the market factors MX  only. 
For independent market and credit factors, CVA can be expressed via EPE as: 
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where counterparty’s default probability density  is calculated from the survival 
probability  as .  Survival probability  is usually bootstrapped 
from the CDS spread term structure by a standard procedure (see JP Morgan (2001)). 

)(1 tf
)(1 tS )()( '

11 tStf −= )(1 tS

Standard EPE (4) and the corresponding CVA (5) do not require a joint simulation of the 
market factors and hazard rates, but they do not capture WWR/RWR. 

An extension of the standard EPE (4) that accounts for the WWR is a so-called 
Conditional EPE (CEPE).  CEPE was considered in Redon (2006) in regards to 
modeling of WWR for Sovereign Risk (see also earlier works of Levy (1999) and Finger 
(2000) ).  Merton’s framework was utilized in these papers for modeling CEPE. 
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In the most general case, when the market factors (including the discount factor through 
the interest rate factors) and credit factors are dependent, the CEPE at time  for the 
tenor t  can be defined as the expected exposure conditional on the counterparty’s default: 
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Here, ))(),((1 tXtXg hM
 is a joint PDF of the market factors MX  and credit factors hX , 

and  is a given initial discount factor term structure. ),( 00 ttD
 
The CVA with WWR/RWR (1) can be expressed via CEPE as: 
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We propose the use of the Conditional EPE and the corresponding Effective Conditional 
EPE (that naturally include WWR/RWR) instead of standard EPE and Effective EPE in 
calculation of the Basel III Counterparty Credit Risk capital. This will reward RWR 
business and penalize WWR business. 
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CCR measure: Conditional Potential Future Exposure (CPFE) with WWR 
The most popular risk measure in Financial Industry for estimating the Counterparty 
Credit Risk and monitoring credit limits is Potential Future Exposure (PFE). 

( )tPFEThe Potential Future Exposure profile  is the maximum amount of exposure 
( ) expected to occur on the future date t  with a given degree of statistical 

confidence 
tNPV +

α  (usually, 95%=α ).  In other words, ( )  is a tPFE α -percentile of the 
exposure distribution: 
(8)      ( ) ( )( )tNPVqtPFE += ,: α  

The Maximum (Peak) Potential Future Exposure is the maximum of the ( )tPFE  over 
the life of the portfolio. 

Ex
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The standard PFE (8) requires simulation only of the market factors, but it does not 
capture WWR/RWR. 
Similarly to extension of EPE to Conditional EPE, we propose to extend a standard PFE 
(8) to a new CCR measure that accounts for the WWR/RWR, which we call a 
Conditional PFE (CPFE). 

A CPFE(t) profile at time  for the tenor  is a 0t t α -percentile of the exposure distribution 
conditional on the counterparty’s default: 

(9)      ( ) ( )( )tNPVqtCPFE == +
11, ττα  

Calculation of CPFE requires joint simulation of the correlated market and credit factors. 
It is the usual practice of Credit Risk Departments not to include discounting in the PFE 
profile (as in (8) and (9)).  However, to be more consistent with the definition of CVA (1) 
and CEPE (6), we modify the formula (9) for CPFE as†: 

(10)   ( ) ( )( )( )tNPVtDttDqtCPFE == +−
1110

1
00 ),(),(, τττα  

where  is the initial discount factor term structure. ),( 00 ttD
 

                                                           
†Authors thank Terry Demopoulos of RBC QRA for this idea 
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Counterparty Credit Economic Capital (CCEC)-like measure with WWR 
 

A drawback of the Standard PFE and introduced Conditional PFE is absence of the 
counterparty’s credit quality in their definitions.  Current practice of Credit Risk 
Departments is to factor in the counterparty’s credit rating in addition to the PFE profile.  
This approach does not properly relate the full term structure of the counterparty’s default 
probability with the PFE profile.  To the contrary, CVA accounts for the full default 
probability term structure. 
For this reason, we propose to complement the CPFE for each counterparty with a new 
CCR measure - Counterparty Credit Economic Capital (CCEC). The proposed CCEC 
is a quantile of a full counterparty’s credit loss distribution (while CVA is the expected 
value of the discounted counterparty’s credit loss distribution).  CCEC is similar to a 
Portfolio Credit Economic Capital, but it is calculated separately for each counterparty: 

(11)    ( )( )tNPVqCCEC tTtt
+

=∈=
10

,: ],[ τα 1  
 

CCEC (11) includes WWR/RWR for correlated market and credit factors and a full 
default probability term structure of the counterparty.  
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Unified multifactor Gaussian with jumps default intensity framework for 
CVA, CPFE and CCEC with WWR and credit rating transitions 

 

In the reduced form (intensity) framework, time of the counterparty’s default τ  is 
modeled by the first jump of the Cox process (see Lando (1998), Duffie and Singleton 
(1999)).  Equivalently, the default occurs when the integrated default intensity hits for the 
first time the independent exponential random boundary.  Default intensity )(tλ  is 
usually chosen as positive stochastic process (e.g., CIR process or CIR + Exponential 
jumps, see Brigo and Pallavicini (2008)). For positive affine jump- diffusion default 
intensities, the survival probability of the counterparty can be found in a closed form (see 
Duffie and Singleton (1999), Duffie, Pan and Singleton (2000)).  

Gaussian intensity approach was considered in Schönbucher (2003) and other 
publications.  However, negative default intensities lead to non-monotonic integrated 
intensities and cause the lack of affinity and analytical tractability.  Practically, this 
approach was abandoned by researchers.  In this presentation, we consider Monte Carlo 
simulation approach for Gaussian mean-reverting Ornstein-Uhlenbeck (OU) intensity 
with Poisson jumps of arbitrary sign framework with Wrong-Way Risk, develop an 
effective numerical calibration procedure for fitting the drift of )(tλ  into the observed 
CDS spreads, and extend the model by consistent with the hazard rate dynamics simple 
(CreditMetrics-type) simulation of the credit rating transitions for modeling credit 
triggers in the case of collaterized counterparties (see Yi (2011) for credit triggers). 
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Gaussian hazard rate model for one name 
 

Similar to the Hull-White short rate model (see Brigo and Mercurio (2006)), we consider 
an “additive” form of the OU process for possibly negative default intensity )(tλ : 
 

(12)     ],[),()()( 0 TtttXtt h ∈+= ϕλ
 

where )(tϕ  is a deterministic function subject to fitting into the initial term structure of 
the survival probability bootstrapped from the CDS spreads at time zero, and  is a 
homogeneous OU process 

)(tX h

 

(13)      0)(,)()(d 0 =+−= tXdWtXtX hhh σκ
 

Here,  is a standard Wiener process in the risk neutral measure that can be 
correlated with market variables in the case of Wrong/Right-Way Risk (e.g., with Hull-
White interest rates and log-normal FX rates in Amin and Jarrow (1991), equity indices, 
commodity prices; etc.) and default intensities of other names. 

)(tW

We define the Gaussian integrated stochastic intensity  and its maximum  as: )(tΛ )(tM
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If the default intensity was a positive stochastic process, then the counterparty’s survival 
(default) probability )(tS  ( )(tP ) would be expressed by a well-known Lando’s formula: 

{ })(
0

)(1)( t
t etPtS Λ−=−= Ε  (15)     

In the case of non-positive intensity (e.g., Gaussian), the survival probability is expressed 
via  { }  rather than )(t)(max)( stM Λ= Λ  (Jeanblanc et. al. (2009), p. 420): 
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where  is a density of  at time ),( ytfM )(tM t .   
 

Default Time τ = (inf t: Λ(t)=ε) for OU Intensity λ(t)
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Fig. 1. Paths of OU and Integrated OU intensity hitting the exponential barrier 
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In our methodology for modeling WWR, we will strictly use Lando’s approach, i.e., 
directly simulate the default times as hitting times of the exponential barrier y  by )(tΛ .  
We will use the following connection between the default and hitting time densities. 

Lemma 1.  Let  be the hitting time of the boundary  by yT 0>y )(tΛ  and  be 
its density.  Under some regularity conditions, the default time density  

),( ytf
yT

(17)       )()()( '' tStPtfd −==

is given by the Laplace transform evaluated at 1 of the hitting time density  with 
respect to the barrier level 

),( ytf
yT

y : 
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y

d ∫
+∞
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0
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Unfortunately, a closed analytical formula for the hitting time density for the non-
Markovian Integrated OU process is unknown.  A solution of such problem is even 
unknown in the case of an arbitrary drift )(tϕ  for much simpler (Markovian) drifted 
Wiener process!   
Therefore, there is a need for developing an effective numerical method for calculation of 
the drift )(tϕ  in default intensity from the initial term structure of CDS spreads. 
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A model problem with “white noise” default intensity 
 

As illustration of the problem, let us consider a model Cox process with a drifted “white 
noise” default intensity )()( tdWt t ϕλ += ,  i.e. 
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As we see later, the behavior for small time t  of the Integrated OU intensity (14) and the 
corresponding function )(tϕ  is very different from the behavior of Wiener integrated 
intensity (19) and its drift )(tϕ . However, for large t , both integrated intensities have 
variances proportional to t , and the shapes of both drifts )(tϕ  are similar.  

tt ν=Φ )(If  is linear, the hitting time density is given by the Bachelier-Lévy formula: 
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From Lemma 1, the corresponding default time density  is: )(tfd
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This density can also be directly calculated from the well-known CDF of the maximum 
of a Wiener process with linear drift (see, for example, Jeanblanc et. al. (2009)). 
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In general case, when the survival probability term structure  is given from the 
market (i.e., the default time density )(tf  is known), the corresponding non-linear 
function )(tΦ  can be found by the following effective numerical method. 

)(tS

d

Proposition 1. The function )(tΦ  solves the following Volterra-type equation: 
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Proof: A Volterra integral equation for the hitting time density of a non-linear boundary 
)(ta  by a Gaussian Markovian stochastic process was derived in Durbin (1985). 

Specifically, given the value 0>y  of the exponential random variable ε , the hitting time 
density  of the boundary ),( ytf

yT )()( tyta Φ−=  by the driftless Wiener process  is 
the solution of the following Volterra integral equation: 

)(tW
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From Lemma 1, by taking the Laplace transform with respect to y  of the both sides of 
this equation (23), one obtains the required equation (22). 

■ 
The Volterra integral equation (22) gives a very effective numerical algorithm for finding 
the drift  from a given default time density )(  by the discretization method with 
sequential solution of the corresponding non-linear equation for 

)(tΦ tfd

)( itΦ  given the 
previously found values )(...,),(),( 110 −ΦΦΦ ittt . 
 

Testing results for this numerical method and direct Monte Carlo simulation of the 
default times are presented in Fig. 2 for the following testing default time density 
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)112.0,671.0,682.0( === αβν  and linear-drift default time density (20). 
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Calibration of Φ(t) for White-Noise Intensity
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Fig. 2. Example of calibration of )(tΦ  for “white noise” intensity model fromVolterra 

integral equation and its verification by Monte Carlo simulation of hitting times. 
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Monte Carlo based calibration for OU default intensity 
)(tΦThere is no known integral equation for function  for Integrated OU process (14) 

(things are complicated by the fact that Integrated OU process is not a Markovian 
process).  We develop a Monte-Carlo based fitting procedure using the idea of sequential 
calculation of the values of )(tΦ  similar to solution of the Volterra integral equation. 
 

We assume the survival probability  is calculated from the observed CDS spreads 
using a standard bootstrap method (see JP Morgan (2001)). We also assume the mean 
reversion speed 

)(tS

κ  and volatility σ  for the OU hazard rate process (14) are known. We 
simulate a significant number N of paths for the integrated OU state variable  with 
fine time steps. Assuming piece-wise linear 

)(tIh

)(tΦ , we sequentially calculate )( itΦ  from 
non-linear equations using the previously found values )(...,),(),( 110 −ΦΦΦ ittt  directly 
from the sampling mean in the Lando’s formula for the survival probability: 
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The advantage of Gaussian framework is the highest performance for joint simulation of 
the Wiener, OU and Integrated OU processes in closed form for significant number of 
paths required for achieving the sufficient accuracy (see Glasserman (2003)). 
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We present in Fig. 3 two examples for Monte Carlo based fitting of )(tΦ  into the piece-
wise constant initial hazard rate term structures :  first for flat hazard rates, and 
second for actual hazard rates of the BB and A rated companies.  The calculated 

)(0 th
)(tϕ  is 

compared with the approximate Duffie-Singleton drift of the form 
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that corresponds to the affine survival probability formula if one replaces the maximum 
of the Integrated OU intensity by the Gaussian Integrated OU intensity itself. 

Calibration of Function φ(t) for Gaussian 
Hazard Rate Model
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Fig. 3.Calibration of )(tΦ  using Monte Carlo method 
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Monte Carlo simulation of EPE and CPFE profiles with WWR 
 

For calculation of CVA, CPFE and CCEC with WWR, we use brute force joint Monte 
Carlo simulation of the correlated Gaussian integrated default intensities and relevant to 
the counterparty’s portfolio market variables (e.g., Hull-White interest rates) with explicit 
calculation of the default times as hitting times of the exponential random boundary by 
Integrated OU intensities and revaluation of the portfolio MtM at the default time. 
 

Example 1.1. Stock price distributions conditional on default and classical example 
of Specific WWR transaction – put option on the counterparty’s own stock 

 PDF of Stock Price Distribution at 5 years
with WWR, RWR and Zero Correlation 
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ρ=0 ρ=-0.9 WWR Ratio
CPFE 95% $38.26 $41.52 1.09
CCEC 95% $18.34 $25.23 1.38
CCEC 99% $31.78 $36.45 1.15
Unilateral CVA $2.72 $4.05 1.49
Bilateral CVA (BCVA) $2.53 $3.78 1.49  

Table 1. CPFE, CCEC, CVA and BCVA for the 5-year put option (LGD=60%) 
 

Example 1.2. CPFE/CEPE for RWR transaction –Call Calendar Spread on 
counterparty’s stock - 5-yr. long call strike $130 and 56-mo. short call strike $126 

PFE Profiles for Call Calendar Spread 
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For this RWR transaction, the proposed Economic Capital-like measure – CCEC makes 
more sense than PFE, because the peak exposure is achieved during a very short period, 
which corresponds to a very low probability of default. 
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Example 2. CPFE/EPE profiles with the corresponding PDF/CDF of the conditional 
credit loss distribution and CVA/CCEC values with WWR/RWR  

for the 10-year payer interest rate swap 

PFE & EPE Profiles for 10-year Payer IR Swap
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Note. “Undiscounted” PFE is based on distribution of (t)MtM+ , “Forward measure” 

PFE is based on distribution of [ ](t)MtMD(t) t),D(t -1
0

+⋅
D(t)

, where  is the initial 
discount factor term structure and  is a simulated stochastic discount factor. 
“Forward measure” PFE is more consistent with CVA formula. 

t),D(t0
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Example 3. CPFE/EPE profiles with the corresponding CDF of the conditional 
credit loss distribution and CCEC values with WWR/RWR  

for the 10-year USD/EUR cross currency basis swap 
 

CDF of Loss Distributions for 
10-year XCcy Basis Swap 
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UCVA=$0.74 (ρ=0), WWR CVA=$1.18 (ρ=0.9), RWR CVA=$0.32 (ρ=-0.9)  
(for LGD=100%) 
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Consistent Simulation of Defaults and Credit Rating  
Transitions in Gaussian Hazard Rate Model 

 

The considered path-wise Monte Carlo simulation framework allows for implementation 
of full collateral logic with thresholds for collateralized counterparties (see Brigo et. al. 
(2011), Gregory (2010), Pykhtin and Zhu (2007) ). However, the majority of agreements 
with collaterized counterparties include credit triggers that depend on credit rating 
transitions. A default intensity framework determines only default times. Therefore, there 
is a need for consistent extension of the hazard rate framework by credit rating transition 
modeling. One of such approaches was considered in Lando (1998). However, that model 
includes a full matrix of stochastic intensities for defaults and credit rating transitions, 
and it is too complicated for calibration and practical use. On the other hand, practitioners 
widely use a simple CreditMetrics™ approach based on the Markov transition matrix 
model of Jarrow, Lando and Turnbull (1997). 
 

A presented Gaussian hazard rate framework allows for a simple reasonable extension 
that consistently combines the OU default intensity model with the CreditMetrics™ 
credit rating transition approach. 
 

Assume, the annual credit rating transition/default matrix  is given. A proposed joint 
OU default intensity/credit rating transition model is as follows: 

A

• Because the default times in our model are fully determined by the default intensity, 
we recalculate a reduced credit rating transition matrix A~  conditional on no-default 
from the initial full transition/default matrix A  
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• We pre-calculate a sequence of the corresponding roots of the conditional on  
no-default credit rating transition matrix iA~  for each time step itΔ  using, for example, 
Markov generator approach (see Israel (2000)) and convert the transition probabilities 
into the normal quantiles 

• In the original CreditMetrics™ method, a standard normal random variable 
(interpreted as “asset return”) is generated for each time step and compared with the 
normal quantiles. A default or credit rating transition occurs when this normal random 
variable falls into the corresponding bucket. In our approach, we jointly simulate the 
Gaussian default intensity and negatively correlated with it “asset” Wiener process: 

(27)      ξρρ

σκ

dWdWdW

dWtXtX
ha

hhh

21

)()(d

−+=

+−=
 

(  and  are independent Wiener processes; the correlation hW ξW ρ  should be close to 
-1, because the credit spread returns are strongly negatively correlated with the asset 
returns) 

• If default did not occur for a given time step itΔ  (i.e., the integrated default intensity 
)(tI h  did not hit the exponential barrier), then the standard normal “asset return” 

variable i
a

i tW ΔΔ  is compared with the quantiles of the conditional on no-default 

credit rating transition matrix iA~  and the corresponding credit rating is assigned 
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Multifactor Gaussian and Jump-Diffusion frameworks 
 

• Gaussian framework allows for easy and efficient implementation of multifactor 
models with thousands of correlated counterparties and market factors.  

• In practice, all correlations between counterparty credit spreads are not available. A 
standard industry practice is to rely on the CAPM-like regression approach: each 
counterparty credit spread is regressed on a set of credit indices and market factors 
contributing to the Wrong-Way Risk for this counterparty. Gaussian framework is 
ideal for regressions. 

• Proposed Gaussian default intensity framework is easily extendable to jump-diffusion 
model with no restriction on the sign of jumps (to the contrary, the affine jump 
diffusion framework requires positive jumps and positive diffusion processes, e.g., 
Brigo, Pallavicini and Papatheodorou (2011) use square-root jump-diffusion process 
with positive exponential jumps). In addition to Wiener processes, independent 
compound Poisson (or Lévy jump) processes  are introduced and default intensity 

 of the counterparty  is modeled as: 
iJ

h
iX i

(28)   ∑∑ ++−=
k

kki
j

jjii
h
ii

h
i dJbdWatXtX ,,)()(d σκ  

where coefficients  define the correlation between counterparties. kiji ba ,, ,
The Monte Carlo based fitting procedure for )(tΦ  stays the same, because integrated 
intensity is a continuous function of t  and the roots for equation (25) can be found. 
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Comparison of Gaussian and Kou jump models 
As an example of jump default intensity model with no restriction on the sign of jumps, 
we consider mean reversion hazard rate and logarithm of the FX rate driven by linear 
combination of independent compound Poisson processes with double-exponential jump 
size distributions, i.e. so-called Kou (2002) model.  The coefficients with respect to 
common compound Poisson processes define the FX/default intensity correlations and 
result in WWR/RWR.  The compensator for the FX rate in Kou model is known, and the 
drift )(t  in the default intensity (25) is calculated from the CDS spreads by the Monte-
Carlo based fitting procedure described earlier in the presentation (see Fig 4).  It is well 
known that jumps have short-term impact compared to diffusions (e.g., Lando (2004)). 

Φ

 

Function φ(t) for Gaussian and Jump
Default Intensity Models
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Fig. 4. Calibration of )(tΦ  for jump model using Monte Carlo method 
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Figure 5 illustrates more significant Wrong/Right-Way Risk for jump model compared to 
Gaussian OU default intensity model (for short one-year horizon, where impact of jumps 
is significant). 
 

One-year PDF for FX Rate
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Fig. 5. Conditional FX Rate distributions for Gaussian and Kou default intensities 
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Figure 6 also confirms larger Wrong-Way Risk for jump model compared to Gaussian 
OU default intensity model for shorter horizons. 
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Fig. 6. WWR for Gaussian and Kou default intensities 
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The use of new “Gamma-Factor Copula” (GFC) for improving default 
correlations in the Portfolio Credit Economic Capital 

 

• It is well documented in credit risk literature that traditional Gaussian correlations 
between hazard rate processes are not able to generate sufficient default correlations 
for Portfolio credit risk modeling. The application of copulas to relate marginal default 
probabilities of different names is considered as alternative approach to diffusion 
correlations. In general, there are three alternative approaches for modeling dependent 
defaults: 

o Correlated default intensity processes with independent exponential thresholds 
o Dependent exponential thresholds with independent intensity processes 
o Correlated default intensity processes with dependent exponential threshold 

Our preference is the third approach. Everyday correlations between credit spreads of 
the counterparties are observed in the market. 

tGaussian copula and Student-  copula with 0>ν degrees of freedom are the most 
popular choices for a copula. However, the corresponding correlated multivariate 
Gaussian and t distributions are defined on a whole space, while a desired multivariate 
exponential distribution is defined on the positive −n dimensional octant, i.e., these non-
linear copula transformations are not natural for the problem at hand. Gaussian copula has 
zero tail-dependence (see McNeil(2005), p. 211) and poorly models extreme low-
probability joint defaults observed in the market during credit. Though a t -copula does 
have tail-dependence, it requires a very low number of degrees of freedom and high 
correlation coefficients to provide sufficient tail-dependence  
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But, because a multivariate t  distribution is a normal-mixture distribution by the 
common -distributed variance, the components of a 2

νχ t -distributed vector are 
dependent even for zero correlation coefficients. This means a t -copula is unable to 
model highly correlated exponential thresholds with tail-dependence for a group of 
required names and simultaneously independent exponential thresholds for another group 
of required names. 
We propose a new construction natural for correlated exponential random variables 
through the decomposition of the exponential random variables into the sums of some 
independent Gamma random variables (“Gamma-factors").We call the copula that is 
implicitly defined by this construction a “Gamma-factor" copula. Let mξξξ ,,, 21 K  
denote  independent gamma random variables m [ ]1,0),1,(~ ∈Γ ααξi , with the same 
scaling parameter 1 and probability density functions 
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The entries of the  load matrix  are either zero or one. Within these  Gamma 
factors, there are common factors (i.e., the corresponding columns of the matrix A 

mn×
n−

A m
m
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have more than one entries equal to 1) and n idiosyncratic factors with all zero entries 
except one equal to 1 in the corresponding columns of the matrix A . The example of 
matrix A  is shown in Table 2 . The common Gamma random variables can be associated 
with certain economic factors such as sectors, industries, regions, credit ratings, etc.  This 
idea is similar to Moody's Analytics Global Correlation Factor and CreditMetrics™ 
approaches for modeling asset correlations using some global and idiosyncratic factors. 
 

 Market Ind.A Ind.B Ind.C Cntry 1 Cntry 2 Idio1 Idio2 Idio3 Idio4
Name1 1 0 1 0 1 0 1 0 0 0 
Name2 1 1 0 0 1 0 0 1 0 0 
Name3 1 0 0 1 0 1 0 0 1 0 
Name4 1 0 1 0 0 1 0 0 0 1 

Table 2. Example of Gamma-Factor Copula load matrix  A
Let us consider two names for calculation of the default correlation. Let  be three 

independent gamma random variables – common gamma-factor , and two 
idiosyncratic gamma-factors )1,1(~

21,,ˆ ξξξ

)1,α(~ξ̂ Γ

1 αξ −Γ , )1,1(~2 αξ −Γ , all with the same scaling 
parameter 1=β , where the “dependency” parameter [ ]1,0∈α .  The correlated 
exponential random thresholds 1Υ  and 2Υ  for two given names are defined as 
(30)      2211

ˆ,ˆ ξξξξ +=Υ+=Υ
When 0=α ,  and  are independent; when 1Υ 2Υ 1=α  they become perfectly correlated. 
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  Bivariate exponential distribution     Bivariate copula 
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The impact of the Gaussian correlation and parameter α  of Gamma-Factor Copula on 

the default correlation term structures for two counterparties ‡ 
                                                           
‡  Authors thank Chuang Yi, formerly of RBC Risk Methodology, for performing this Monte Carlo investigation 
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Comparison of impact on Bilateral CVA of the 
Gamma-Factor Copula and Gaussian default intensity correlation 

 

We compare the impact of the Gaussian correlation 1,0 λλρ  between the investor’s (BAC) 
and counterparty’s (F) default intensities and the “dependency” parameter α  of the GFC 
on the Bilateral CVA of a 10-year Interest Rate Swap with notional $100. Market data is 
as of Oct. 20, 2011, the Hull-White risk-neutral parameters for the USD interest rate were 
calibrated by a standard procedure, mean-reversion parameters and volatilities of the 
hazard rates were estimated from the historical data, recovery rates are 40%.  
 
 

BCVA
α\ρ 0.0 0.5 1.0

0.0 $1.15 $1.13 $1.12
0.5 $1.10 $1.08 $1.05
1.0 $1.01 $0.97 $0.90

              

Relative Impact w.r.t. α=0, ρ=0
α\ρ 0.0 0.5 1.0

0.0 100% 99% 97%
0.5 95% 94% 92%
1.0 88% 85% 78%  

 

(CVA = $1.77,  DVA = $0.48) 
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