Generic crystallographic rigidity

Louis Theran (joint work with Justin Malestein)

Periodic frameworks

• Infinite planar structure

 Periodic with respect to a lattice

• Finite quotient

• Fixed-length bars and universal joints

Periodic motions

- Allowed motions preserve...
- *Lengths* of the bars
- Connectivity
- Periodicity
- but *not necessarily* the specific *lattice*
- Def. from [Borcea-Streinu '10]
- *Rigid* if all motions isometries

Periodic motions

- Allowed motions preserve...
- *Lengths* of the bars
- Connectivity
- Periodicity
- but *not necessarily* the specific *lattice*
- Def. from [Borcea-Streinu '10]
- *Rigid* if all motions isometries

Forced periodicity

 Even with a "flexible lattice" forced periodicity is a strong condition

• Disconnected periodic frameworks/can be rigid, e.g.

Forced periodicity

- Even with a "flexible lattice" forced periodicity is a strong condition
- Disconnected periodic frameworks can be rigid, e.g.

Forced periodicity

- Even with a "flexible lattice" forced periodicity is a strong condition
- Disconnected periodic frameworks can be rigid, e.g.

Not Allowed!

Cone frameworks

- Frameworks that are symmetric with respect to a finite order rotation
- Allowed motions preserve bars and rotational symmetry

Crystal frameworks

- More generally...
- Let Γ_k be a group generated by
 - translations
 - finite order rotation
- with cocompact action
- A Γ_k -framework moves with Γ_k -symmetry

Symmetry groups

- **Z**²
 - translations
- $\mathbf{Z}/k\mathbf{Z}$
 - finite-order rotation
- Γ_k
 - translations
 - order *k*=2,3,4,6 rot.
- **Z**/2**Z**
 - reflection

Generic rigidity

- Which frameworks are rigid?
 - seems intractible
- Which...
 - combinatorial types of frameworks
 - are generically rigid?
- Tractable and useful
 - small perturbations of any frameworks are generic
 - efficiently checkable

Results

- Combinatorially characterize generic 2d rigidity for:
- periodic frameworks
- cone frameworks
- Γ_k crystal frameworks
- reflection frameworks

Some corollaries

- Via combinatorial equivalences:
- Fixed-lattice [Ross '09]
- One period "flat cylinder"
- Partially-fixed lattice
- 2d periodic body-bar frameworks

Lots of related work

- [Borcea-Streinu '10, '11]
- [Guest et al.]
- [Owen & Power]
- [Ross '09-'11]
- [Whiteley '88]

Rest of the talk

- Combinatorial models
 - colored and periodic graphs
 - from subgraphs to subgroups
- How to count the degrees of freedom
 - the "Maxwell direction"
- Detailed statements of results
- Proof strategy
 - cf. Justin's talk later today

Colored graphs

- A Γ -colored graph (G,γ) is a:
- Finite directed graph G
- Assignment of a group element γ_{ij} of Γ to each edge

Colored quotient

- Let G have a free Γ action
- Representative from each vertex orbit
- Representative from each edge orbit
- Determines colors and orientations in the quotient G/Γ

Lifting colored graphs

- Can go in the other direction too
- Fiber over every vertex *i* is
 - $\{\gamma \cdot i : \gamma \text{ in } \Gamma\}$
- Fiber over every edge *ij* is
 - $\{(\gamma \cdot i, (\gamma_{ij} \cdot \gamma) \cdot j)\}$

The map p

- Pick a base vertex b in (G,γ)
- For a closed path P starting and ending at b...
- $\rho(P) = \prod \epsilon_{ij}$,
 - *ij* on P in order
 - $\varepsilon_{ij} = \gamma_{ij}$ if ij traversed forwards
 - $\varepsilon_{ij} = (\gamma_{ij})^{-1}$ otherwise

$$(0,0) + (1,1) - (1,0)$$
=
 $(0,1)$

The map rho

- Easier interpretation in the lift
- Path with trivial rhoimage lifts to a closed walk
- Path with non-trivial
 ρ-image ends at a
 different copy of the
 start
 - "sees" the group action

Subgraph's subgroup

- The map ρ induces a homomorphism
 - $\rho(G,b)$ from $\pi_1(G,b)$ to Γ
- If *G* has more than one connected component:
 - pick a base vertex for each component
 - defines $\rho(G_i, b_i)$

Example

Translation subgroup

- If G is connected define $\Lambda(G,b)$ as translation subgroup of $\rho(G,b)$
- If multiple conn. components
 - $\Lambda(G,b)$ is generated by elements of all generated by $\Lambda(G_i,b_i)$
- Intuition: sees all translations generated by a walk in *some* component

Periodic realizations

- To specify a
 realization G(p,L)of
 a periodic
 framework need
 - coordinates p for each vertex of the colored quotient
 - a vector for each generator of the lattice, given by a matrix L

Counting d.o.f.s

- Maxwell heuristic looks like
 - #eqns ≤ #vars #(triv. motions)
- For finite frameworks in the plane this is
 - $m' \le 2n' 3$
- Since...
 - #edges = #equations
 - #vertices = #variables
 - #(triv. motions) = 3

Periodic d.o.f.s

- The number of variables a subgraph influences depends on its ρ-image
- For *n'* vertices
 - 2*n*' if trivial rhoimage
 - 2n' + 2 if one indep. translation
 - 2*n*' + 4 if two indep. translations

Periodic d.o.f.s

- Now count trivial motions
- Pin down one connected component:
 - 3 triv. d.o.f.
- Every other c.c. translates freely
 - 2(c 1) triv. d.o.f.
- Necessary to look at connected components

colored-Laman graphs

- A colored graph is colored-Laman if:
 - m = 2n + 1
 - For all subgraphs
 - $m' \le 2(n' + r') 3 2(c' 1)$

Theorem

A generic periodic framework is minimally rigid

if and only if

The associated colored graph is colored-Laman.

Remarks

- Almost all realizations are generic
- If a realization is not generic, a small perturbation of the *points* only is generic
 - colored graph is the same for the perturbation

Other groups

- For other groups we can follow a general "recipe" to count d.o.f.s
- We define several spaces for subgroups
 - Representation space
 - Teichmüller space
 - Centralizer
- The dimensions of these will play the role of the "# ."

Spaces for subgroups

- Representation
 space: reps.
 extending to a rep
 of Γ
- Teichmuller space: Rep(Γ')/Euc(2)
- Centralizer:
 isometries
 commuting with a
 representation

- To give coordinates, can just specify translation vectors
- (assume the origin is a rotation center)

Dimensions

- For a colored graph (G,γ)
 - with connected components G_i
- $teich(G) = dim(Teich(\Lambda(G)))$
- cent(G_i) = dim(Cent($\rho(G_i, b_i)$))
- All these quantities are:
 - well-defined
 - independent of representations and base vertices

Γ-Laman graphs

- A colored graph G with colors from a group Γ is Γ -Laman if
 - $m = 2n + \dim(\operatorname{Teich}(\Lambda(\Gamma)))$
 - For all subgraphs,
 - $m' \le 2n' + \operatorname{teich}(G) \Sigma \operatorname{cent}(G_i)$
- Slight refinement of the periodic colored Laman counts

Example: cone

- Reps. are all defined by the rotation center
 - all eqv. by Euc(2)
- $teich(\Gamma') = 0$
- $cent(\Gamma') =$
 - 3 if trivial
 - 1 o.w.

Example: Γ₂

Example: Γ₂

- Two indep translations:
 - $teich(G') = \{0,1,3\}$
- Centralizer has more possibilities:
 - 3 if trivial image
 - 2 if only translations
 - 1 if only rotations
 - 0 if translations and rotations

- So for *minimal* rigidty with *n* vertices need
 - 2n + 3 edges

Symmetry groups

- **Z**²
 - translations
- $\mathbf{Z}/k\mathbf{Z}$
 - finite-order rotation
- Γ_k
 - translations
 - order k=2,3,4,6 rotation
- **Z**/2**Z**
 - reflection

Theorem

Laman

• For groups Γ from the prev. slide, A generic Γ -framework is minimally rigid

*if and only if*The associated colored graph is Γ-

Proof overview

- We use a "direction network method" for the difficult direction
- Assign directions instead of lengths to the edges
- Characterize when these directions are realizable by non-zero distinct points
 - iff the graph Γ-Laman
 - corresponds to infinitesimal rigidity

Summary

- Studied generic rigidity with forced symmetry in 2d
 - "Flexible" representation space
- Combinatorial (Laman-type)
 theorems for a number of groups
- New matroidal families of colored graphs
- Direction network theorems

Sublattice question

- Which (\mathbf{Z}^2) colored-Laman graphs (G, γ) have the property that
 - For every sub-lattice, the finite cover of (G,γ) gives a colored-Laman spanning graph
 - Are the induced frameworks always rigid if we start with a generic framework?

Example

Questions/Extensions?

- Similar result for more groups?
 - All crystallographic groups
 - PSL(2,**R**) (i.e., hyperbolic surfaces)
- Can we extend more of 2d rigidity to the symmetric setting?
- Body-bar in higher dimensions?

Questions/Extensions?

- Can we extend more (k, ℓ) -sparse graph theory to colored graphs?
 - more sparsity parameters?
 - "matroidal range" can be pretty large
 - inductive constructions?
 - faster (than linear algebra) algorithms