Generic

 crystallographic rigidityLouis Theran
(joint work with Justin Malestein)

Periodic frameworks

- Infinite planar structure
- Periodic with respect to a lattice
- Finite quotient
- Fixed-length bars and universal joints

Periodic motions

- Allowed motions preserve...
- Lengths of the bars
- Connectivity
- Periodicity
- but not necessarily the specific lattice
- Def. from [BorceaStreinu '10]

- Rigid if all motions isometries

Periodic motions

- Allowed motions preserve...
- Lengths of the bars
- Connectivity
- Periodicity
- but not necessarily the specific lattice
- Def. from [BorceaStreinu '10]
- Rigid if all motions isometries

Forced periodicity

- Even with a "flexible lattice" forced periodicity is a strong condition
- Disconnected periodic frameworks can be rigid, e.g.

Forced periodicity

- Even with a "flexible lattice" forced periodicity is a strong condition
- Disconnected periodic frameworks can be rigid, e.g.

Forced periodicity

- Even with a "flexible lattice" forced periodicity is a strong condition
- Disconnected periodic frameworks can be rigid, e.g.

Not Allowed!

Cone frameworks

- Frameworks that are symmetric with respect to a finite order rotation
- Allowed motions preserve bars and rotational symmetry

Crystal frameworks

- More generally...
- Let Γ_{k} be a group generated by
- translations
- finite order rotation
- with cocompact action
- A Γ_{k}-framework moves with $\Gamma_{k}-$ symmetry

Symmetry groups

- Z^{2}
- translations
- Z/kZ
- finite-order rotation
- Γ_{k}
- translations
- order $k=2,3,4,6$ rot.
- Z/2Z

- reflection

Generic rigidity

- Which frameworks are rigid?
- seems intractible
- Which...
- combinatorial types of frameworks
- are generically rigid?
- Tractable and useful
- small perturbations of any frameworks are generic
- efficiently checkable

Results

- Combinatorially characterize generic 2d rigidity for:
- periodic frameworks
- cone frameworks
- Γ_{k} crystal frameworks
- reflection frameworks

Some corollaries

- Via combinatorial equivalences:
- Fixed-lattice [Ross '09]
- One period "flat cylinder"
- Partially-fixed lattice
- 2d periodic body-bar frameworks

Lots of related work

- [Borcea-Streinu '10, '11]
- [Guest et al.]
- [Owen \& Power]
- [Ross '09-'11]
- [Whiteley '88]

Rest of the talk

- Combinatorial models
- colored and periodic graphs
- from subgraphs to subgroups
- How to count the degrees of freedom
- the "Maxwell direction"
- Detailed statements of results
- Proof strategy
- cf. Justin's talk later today

Colored graphs

- A Γ-colored graph (G, γ) is a:
- Finite directed graph G
- Assignment of a group element $\gamma_{i j}$ of Γ to each edge

Colored quotient

- Let G have a free Γ action
- Representative from each vertex orbit
- Representative from each edge orbit

- Determines colors and orientations in the quotient G / Γ

Lifting colored graphs

- Can go in the other direction too
- Fiber over every vertex i is
- $\{\gamma \cdot i: \gamma$ in $\Gamma\}$

- Fiber over every edge $i j$ is
- $\left\{\left(\gamma \cdot i,\left(\gamma_{i j} \cdot \gamma\right) \cdot j\right)\right\}$

The map ρ

- Pick a base vertex b in (G, γ)
- For a closed path P starting and ending at b...
- $\rho(P)=\Pi \varepsilon_{i j}$,
- ij on P in order
- $\varepsilon_{i j}=\gamma_{i j}$ if $i j$ traversed

$$
\begin{gathered}
(0,0)+(I, I)-(I, 0) \\
= \\
(0, l)
\end{gathered}
$$

- $\varepsilon_{i j}=\left(\gamma_{i j}\right)^{-1}$ otherwise

The map rho

- Easier interpretation in the lift
- Path with trivial rhoimage lifts to a closed walk
- Path with non-trivial ρ-image ends at a different copy of the start

- "sees" the group action

Subgraph's subgroup

- The map ρ induces a homomorphism
- $\rho(G, b)$ from $\pi_{1}(G, b)$ to Γ
- If G has more than one connected component:
- pick a base vertex for each component
- defines $\rho\left(G_{i}, b_{i}\right)$

Example

Translation subgroup

- If G is connected define $\Lambda(G, b)$ as translation subgroup of $\rho(G, b)$
- If multiple conn. components
- $\Lambda(G, b)$ is generated by elements of all generated by $\Lambda\left(G_{i}, b_{i}\right)$
- Intuition: sees all translations generated by a walk in some component

Periodic realizations

- To specify a realization $G(\mathbf{p}, \mathrm{~L})$ of a periodic framework need
- coordinates \mathbf{p} for each vertex of the colored quotient
- a vector for each generator of the lattice, given by a
 matrix L

Counting d.o.f.s

- Maxwell heuristic looks like
- \#eqns \leq \#vars - \#(triv. motions)
- For finite frameworks in the plane this is
- m' $\leq 2 n^{\prime}-3$
- Since...
- \#edges = \#equations
- \#vertices = \#variables
- \#(triv. motions) = 3

Periodic d.o.f.s

- The number of variables a subgraph influences depends on its ρ-image
- For n ' vertices
- $2 n^{\prime}$ if trivial rhoimage
- $2 n^{\prime}+2$ if one indep. translation
- $2 n^{\prime}+4$ if two indep.
translations

Periodic d.o.f.s

- Now count trivial motions
- Pin down one connected component:
- 3 triv. d.o.f.

- Every other c.c. translates freely
- 2(c-1) triv. d.o.f.
- Necessary to look at connected components

colored-Laman graphs

- A colored graph is colored-Laman if:
- m = 2n + 1
- For all subgraphs
- m' $\leq 2\left(n^{\prime}+r^{\prime}\right)-3-2\left(c^{\prime}-1\right)$

Theorem

A generic periodic framework is minimally rigid if and only if
The associated colored graph is colored-Laman.

Remarks

- Almost all realizations are generic
- If a realization is not generic, a small perturbation of the points only is generic
- colored graph is the same for the perturbation

Other groups

- For other groups we can follow a general "recipe" to count d.o.f.s
- We define several spaces for subgroups
- Representation space
- Teichmüller space
- Centralizer
- The dimensions of these will play the role of the "\# ."

Spaces for subgroups

- Representation space: reps. extending to a rep of Γ
- Teichmuller space: $\operatorname{Rep}\left(\Gamma^{\prime}\right) / \operatorname{Euc}(2)$
- Centralizer. isometries commuting with a representation
- To give coordinates, can just specify translation vectors
- (assume the origin is a rotation center)

Dimensions

- For a colored graph (G, γ)
- with connected components G_{i}
- $\operatorname{teich}(G)=\operatorname{dim}(\operatorname{Teich}(\Lambda(G)))$
- $\operatorname{cent}\left(G_{i}\right)=\operatorname{dim}\left(\operatorname{Cent}\left(\rho\left(G_{i}, b_{i}\right)\right)\right)$
- All these quantities are:
- well-defined
- independent of representations and base vertices

Γ-Laman graphs

- A colored graph G with colors from a group Γ is Γ-Laman if
- $m=2 n+\operatorname{dim}(\operatorname{Teich}(\Lambda(\Gamma)))$
- For all subgraphs,
- m’ $\leq 2 n^{\prime}+\operatorname{teich}(G)-\Sigma \operatorname{cent}\left(G_{i}\right)$
- Slight refinement of the periodic colored Laman counts

Example: cone

- Reps. are all defined by the rotation center
- all eqv. by Euc(2)
- $\operatorname{teich}\left(\Gamma^{\prime}\right)=0$
- $\operatorname{cent}\left(\Gamma^{\prime}\right)=$
- 3 if trivial
- l o.w.

Example: Γ_{2}

Example: Γ_{2}

- Two indep translations:
- $\operatorname{teich}\left(G^{\prime}\right)=\{0,1,3\}$
- Centralizer has more possibilities:
- 3 if trivial image
- 2 if only translations
- 1 if only rotations
- 0 if translations and rotations

Symmetry groups

- Z^{2}
- translations
- Z/kZ
- finite-order rotation
- Γ_{k}
- translations
- order $k=2,3,4,6$ rotation
- Z/2Z

- reflection

Theorem

- For groups Γ from the prev. slide, A generic Γ-framework is minimally rigid
if and only if

The associated colored graph is Γ Laman

Proof overview

- We use a "direction network method" for the difficult direction
- Assign directions instead of lengths to the edges
- Characterize when these directions are realizable by non-zero distinct points
- iff the graph Γ-Laman
- corresponds to infinitesimal rigidity

Summary

- Studied generic rigidity with forced symmetry in 2d
- "Flexible" representation space
- Combinatorial (Laman-type) theorems for a number of groups
- New matroidal families of colored graphs
- Direction network theorems

Sublattice question

- Which (\mathbf{Z}^{2}) colored-Laman graphs (G, γ) have the property that
- For every sub-lattice, the finite cover of (G, γ) gives a coloredLaman spanning graph
- Are the induced frameworks always rigid if we start with a generic framework?

Example

Questions/Extensions?

- Similar result for more groups?
- All crystallographic groups
- $\operatorname{PSL}(2, R)$ (i.e., hyperbolic surfaces)
- Can we extend more of 2d rigidity to the symmetric setting?
- Body-bar in higher dimensions?

Questions/Extensions?

- Can we extend more (k, ℓ)-sparse graph theory to colored graphs?
- more sparsity parameters?
- "matroidal range" can be pretty large
- inductive constructions?
- faster (than linear algebra) algorithms

