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Part I

Symmetric counts for detecting flexibility in frameworks
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Rigidity

A bar-joint framework (in Rd ) is a pair (G,p), where G is a graph and
p : V (G)→ Rd is an embedding.

Let G be a graph with V (G) = {1, . . . ,n}. The edge function
fG : Rdn → R|E(G)| of G is defined by

fG
(
p1, . . . ,pn

)
=
(
. . . , ‖pi − pj‖2, . . .

)
,

where {i , j} ∈ E(G) and pi ∈ Rd for all i = 1, . . . ,n.

A framework (G,p) is flexible if there exists a differentiable path
x : [0,1]→ Rdn such that x(0) = p and x(t) ∈ f−1

G

(
fG(p)

)
\ f−1

Kn

(
fKn(p)

)
for

all t ∈ (0,1]. Otherwise (G,p) is called rigid.

Figure: A flexible and a rigid framework in 2D
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Infinitesimal rigidity

The Jacobian matrix dfG(p) of fG, evaluated at the point p ∈ Rd|V (G)|, is
(up to a constant) the rigidity matrix

R(G,p) =


...

0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0
...

 {i , j}
i j1 n

We say that u ∈ Rd|V (G)| is an infinitesimal motion of (G,p) if
R(G,p)u = 0, and a trivial infinitesimal motion if it is the derivative of a
motion of congruent frameworks.

(G,p) is called infinitesimally flexible in Rd if there exists a non-trivial
infinitesimal motion. Otherwise, (G,p) is called infinitesimally rigid.
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Rigidity vs. infinitesimal rigidity

Thm. A framework (G,p) in Rd with |V (G)| ≥ d is infinitesimally rigid if
and only if rank

(
R(G,p)

)
= d |V (G)| −

(d+1
2

)
.

Thm. Infinitesimal rigidity implies rigidity.

Def. A point p ∈ Rdn is a regular point of G if

rank
(
R(G,p)

)
≥ rank

(
R(G,q)

)
for all q ∈ Rdn.

Note: if p is ‘generic’, then p is regular.

Thm. (Asimov, Roth, 1978) Let p be a regular point of G. Then (G,p) is
infinitesimally rigid if and only if (G,p) is rigid.

Thm. (Maxwell, 1864) If a graph G is generically d-rigid, then

|E(G)| ≥ d |V (G)| −
(

d + 1
2

)
.
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Symmetry in frameworks

Let (G,p) be a framework with symmetry group S, that is,

x
(
pi
)
= px(i) for all i ∈ V (G) and all x ∈ S.

An infinitesimal motion u of (G,p) is S-symmetric if u is unchanged under
all symmetry operations in S, that is, if

x
(
ui
)
= ux(i) for all i ∈ V (G) and all x ∈ S.

(a) (b) (c)

Figure: (a), (b) Cs-symmetric infinitesimal motions; (c) a non-symmetric infinitesimal
motion.
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The orbit rigidity matrix O(G,p,S)

Let (G,p) be a framework with symmetry group S.

Choose a set of representatives Ov = {1, . . . , k} for the vertex orbits.

Choose a set of representatives Oe for the edge orbits, so that each edge
e ∈ Oe is of the form e = {i , x(j)} for some x ∈ S, where i , j ∈ Ov .

The orbit matrix is of size |Oe| ×
∑k

i=1 ci , where ci = dim
⋂

x∈S:x(pi )=pi
Fx

and Fx = {a ∈ Rd : x(a) = a}.

The row corresponding to an edge {i , x(j)} is of the form

( i j
0 . . . 0 (pi − x(pj))Mi 0 . . . 0 (pj − x−1(pi))Mj 0 . . . 0

)
The row corresponding to an edge {i , x(i)} is of the form

( i
0 . . . 0 (2pi − y(pi)− y−1(pi))Mi 0 . . . 0 0 0 . . . 0

)
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Examples of orbit rigidity matrices

p1
s(p1)

p2 s(p2)
s

(
p1 − p2

) (
p2 − p1

)
2
(
p1 − s(p1)

)
0 0

0 0 2
(
p2 − s(p2)

)
3× 4 matrix

p3

p1 s(p1)

p2

s

(
p1 − p2

) (
p2 − p1

)(0
1

)
0(

p1 − p3
)

0
(
p3 − p1

)(0
1

)
2× 4 matrix
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Properties of the orbit rigidity matrix O(G,p,S)

Thm. (S. and Whiteley, 2010) Let (G,p) be a framework with symmetry
group S. Then
(i) The solutions to O(G,p,S)u = 0 are isomorphic to the space of
S-symmetric infinitesimal motions of (G,p).
(ii) The solutions to ωO(G,p,S) = 0 are isomorphic to the space of
S-symmetric self-stresses of (G,p).

Df. The configuration p of a framework (G,p) with symmetry group S is
S-regular if the rank of O(G,p,S) is maximal.
Note: Choosing ‘generic positions’ for the vertices in Ov yields an
S-regular configuration.

Thm. (S., 2009) If p is S-regular and (G,p) has an S-symmetric
infinitesimal flex, then there also exists a finite flex of (G,p) which
preserves the symmetry of (G,p) throughout the path.

Bernd Schulze (Fields Institute) Counts for predicting symmetric motions Oct. 2011 10 / 36



Properties of the orbit rigidity matrix O(G,p,S)

Thm. (S. and Whiteley, 2010) Let (G,p) be a framework with symmetry
group S. Then
(i) The solutions to O(G,p,S)u = 0 are isomorphic to the space of
S-symmetric infinitesimal motions of (G,p).
(ii) The solutions to ωO(G,p,S) = 0 are isomorphic to the space of
S-symmetric self-stresses of (G,p).

Df. The configuration p of a framework (G,p) with symmetry group S is
S-regular if the rank of O(G,p,S) is maximal.

Note: Choosing ‘generic positions’ for the vertices in Ov yields an
S-regular configuration.

Thm. (S., 2009) If p is S-regular and (G,p) has an S-symmetric
infinitesimal flex, then there also exists a finite flex of (G,p) which
preserves the symmetry of (G,p) throughout the path.

Bernd Schulze (Fields Institute) Counts for predicting symmetric motions Oct. 2011 10 / 36



Properties of the orbit rigidity matrix O(G,p,S)

Thm. (S. and Whiteley, 2010) Let (G,p) be a framework with symmetry
group S. Then
(i) The solutions to O(G,p,S)u = 0 are isomorphic to the space of
S-symmetric infinitesimal motions of (G,p).
(ii) The solutions to ωO(G,p,S) = 0 are isomorphic to the space of
S-symmetric self-stresses of (G,p).

Df. The configuration p of a framework (G,p) with symmetry group S is
S-regular if the rank of O(G,p,S) is maximal.
Note: Choosing ‘generic positions’ for the vertices in Ov yields an
S-regular configuration.

Thm. (S., 2009) If p is S-regular and (G,p) has an S-symmetric
infinitesimal flex, then there also exists a finite flex of (G,p) which
preserves the symmetry of (G,p) throughout the path.

Bernd Schulze (Fields Institute) Counts for predicting symmetric motions Oct. 2011 10 / 36



Properties of the orbit rigidity matrix O(G,p,S)

Thm. (S. and Whiteley, 2010) Let (G,p) be a framework with symmetry
group S. Then
(i) The solutions to O(G,p,S)u = 0 are isomorphic to the space of
S-symmetric infinitesimal motions of (G,p).
(ii) The solutions to ωO(G,p,S) = 0 are isomorphic to the space of
S-symmetric self-stresses of (G,p).

Df. The configuration p of a framework (G,p) with symmetry group S is
S-regular if the rank of O(G,p,S) is maximal.
Note: Choosing ‘generic positions’ for the vertices in Ov yields an
S-regular configuration.

Thm. (S., 2009) If p is S-regular and (G,p) has an S-symmetric
infinitesimal flex, then there also exists a finite flex of (G,p) which
preserves the symmetry of (G,p) throughout the path.

Bernd Schulze (Fields Institute) Counts for predicting symmetric motions Oct. 2011 10 / 36



Symmetric versions of Maxwell’s theorem

Let (G,p) be a framework with symmetry group S.

Let c =
∑k

i=1 ci be the number of columns of O(G,p,S);

Let r be the number of rows of O(G,p,S) (r is the number of edge orbits);

Let m be the dimension of the space of S-symmetric trivial infinitesimal
motions.

Thm. (S. and Whiteley, 2010) S-regular realizations of G have no
symmetry-preserving finite flex only if

r ≥ c −m.

Rem. This count is particularly easy if S acts freely on the vertices and
edges of G since then c = dk .

Rem. It can be tricky to find m.
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Example 1: quadrilaterals with mirror symmetry

p1
s(p1)

p2 s(p2)
s

c = 2 · 2 = 4

r = 3

m = 1

r= 3 =c− m

p3

p1 s(p1)

p2

s

c = 2 + 2 · 1 = 4

r = 2

m = 1

r= 2 < 3 =c− m
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Example 2: the Bricard octahedra

p2

p3p4
p1

p5 p6

c = 3 · 3 = 9
r = 6
m = 2

r= 6 < 7 =c− m

p2

p3
p4p1

p5 p6

c = 2 · 3 + 2 · 2 = 10
r = 6
m = 3

r= 6 < 7 =c− m
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A general result for C2

Thm. Let G be a graph with |E(G)| = 3|V (G)| − 6 and let C2 = {Id ,C2} be the
half-turn symmetry group in 3-space.

If jC2 = bC2 = 0 (i.e., no vertices and no edges fixed by C2), then C2-regular
realizations of G have a symmetry-preserving finite flex.

Proof. We have c = 3 |V (G)|
2 r = |E(G)|

2 m = 2

c −m = 3
|V (G)|

2
− 2

r = 3
|V (G)|

2
− 3

Thus, r < c −m. �
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Further results and extensions

Extensions to higher dimensions and other groups

Orbit rigidity matrix allows easy transfer of (finite) flexibility between
metrics:
Symmetric infinitesimal flexes and finite flexes (at S-regular points) can
be transferred from frameworks in Ed to coned frameworks in Ed+1 and to
frameworks in Sd , Hd , and Md (using symmetric coning).
[S. and Whiteley: Coning, symmetry and spherical frameworks,
arXiv:1108.2174, 2011]

Combined orbit matrices for periodic frameworks with additional
symmetries allow detection of finite flexes which preserve the entire
crystallographic group.
In particular: Inversion symmetry in 3-space gives 4 degrees of freedom
in a generically minimally rigid graph on the flexible torus!
[Ross, S., and Whiteley: Finite motions from periodic frameworks with
added symmetry, IJSS 48, 1711-1729, 2011]
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Part II

Applications to protein flexibility
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Symmetry in molecules

The well developed theory of generic rigidity of frameworks allows for
basic predictions of flexibility of molecules

Observation: molecules often exhibit rotational symmetries:
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Body-bar frameworks

Molecular flexibility can be studied via the theory of rigid body-bar
frameworks in 3-space

A body-bar framework in 3D

A body-bar framework consists of ‘rigid bodies’ in the given dimension,
attached by bars with rotatable vertex attachments
The underlying combinatorial structure is a multi-graph
A body-bar framework can be modeled as a bar-joint framework by
replacing each body with an isostatic bar-joint framework
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The underlying combinatorial structure is a multi-graph
A body-bar framework can be modeled as a bar-joint framework by
replacing each body with an isostatic bar-joint framework
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Necessary and sufficient conditions for rigidity

Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph
G = (B,E) is infinitesimally rigid (and rigid) for generic selections of the
lines of the bars if and only if there is a subset of bars E∗ such that:

(i) |E∗| = 6|B| − 6;
(ii) |E ′| ≤ 6|B′| − 6 for all subgraphs induced by subsets E ′ of E∗.

Note: For generic selections of the lines of the bars, infinitesimal rigidity
is equivalent to continuous (finite) rigidity;

Algorithmically, Tay’s counts lead to a greedy algorithm called the pebble
game, which has a running time of O(|B||E |).
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Application: Flexibility of molecular frameworks

Tay’s counts (and the corresponding pebble game algorithms) also
characterize generically rigid body-hinge frameworks (Tay, Whiteley,
1985) and even generically rigid molecular frameworks (Katoh, Tanigawa,
2010).

Body-bar framework Body-hinge framework

Molecular framework
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Example

Cyclohexane:

|B| = 6
|E | = 6× 5 = 30

|E | = 6|B| − 6 = 30 X |E ′| ≤ 6|B′| − 6 X (via pebble game e.g.)

Conclusion: Cyclohexane is generically rigid (in fact, isostatic).
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Symmetry can lead to added flexibility

Two basic conformations of cyclohexane:

Three-fold symmetry Half-turn symmetry
Rigid Flexible

We can detect this via our symmetric Maxwell counts (under the assumption
that the ‘Symmetric Molecular Conjecture’ holds)!
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Symmetric counts for the ‘boat’

Cyclohexane (boat conformation - C2 symmetry)

C2

|B| = 6; |E | = 6× 5 = 30

|B0| = 3; |E0| = 3× 5 = 15

2-dim. space of trivial symmetry-preserving motions

|E0| = 15 < 16 = 6|B0|−2

Conclusion: There exists a symmetry-preserving finite motion!
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Symmetric Tay’s theorem for the group C2

Theorem: A body-bar framework in 3D (with multi-graph G = (B,E))
which has C2 symmetry, has no body and no bar ‘fixed’ by the half-turn,
and is generic modulo the C2 symmetry, has only trivial
symmetry-preserving motions only if there is a subset of bars E∗0 such
that:

(i) |E∗0 | = 6|B0| − 2;
(ii) |E ′0| ≤ 6|B′0| − 2 for all subsets E ′0 of E∗0 .

This is a necessary condition for C2-rigidity!
Failure to satisfy these counts guarantees the existence of a
C2-symmetric infinitesimal flex, and for C2-regular realizations also the
existence of a symmetry-preserving finite flex.

Note: If G = (B,E) satisfies |E | = 6|B| −6, then we have |E0| = 6|B0| −3.
Thus, we detect a finite flex which preserves the C2 symmetry!
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Another example

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars
C2

|B| = 8; |E | = 4× 5 + 4× 5 + 4 = 44

|E | = 44 > 42 = 6|B| − 6 - overbraced

|B0| = 4; |E0| = 2× 5 + 2× 5 + 2 = 22

|E0| = 22 = 6|B0|−2 - still no motion

Each 4-fold ring: |E0| = 10 = 6|B0| − 2

Each 4-fold ring is overbraced by 2, so we may select only 18 bars
from each ring to make the subset E∗. This gives the count

|E∗| = 18 + 18 + 4 = 40 < 42 = 6|B| − 6.

Conclusion: We detect a finite motion which is not detected by the
symmetric counts. To test for rigidity we need both of the criteria!
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Symmetric pebble game for the group C2

Algorithm: Given a body-bar multi-graph G = (B,E) with C2 symmetry (e.g.,
a dimer), apply the following sequence of steps:

(1) Apply the 6|B| − 6 pebble game to the entire framework. If this step
returns a maximal set of edges E∗ with |E∗| < 6|B| − 6, then the
framework is flexible;
(for efficiency, apply it to one protein (storing that), then copy the pebble
placements to the second protein, and proceed with the pebble game on
the bridging bars);

(2) Start from the 6|B| − 6 output on one copy of the protein (which
represents all orbits of vertices and a subset of orbits of edges). With this
pebbling preserved, test only the edge orbits between the two proteins,
using the 6|B0| − 2 pebble game. If this produces a maximal set E∗0 of
edges with |E∗0 | < 6|B0| − 2, then the dimer is flexible.
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Further remarks on the flexibility of dimers with C2

symmetry

We might anticipate that a dimer pair which is initially predicted to be
flexible, moves along the path and stabilizes with an additional hydrogen
bond. This would lead to a redundantly rigid structure (which is
conjectured to be a ‘stable’ molecule), because

|E | = 2|E0| = 2(6|B0| − 2) > 6|B| − 6

On the other hand, the dimer could be stably trapped in 2-fold symmetric
configurations with one degree of freedom to function.

Allostery (shape change at a distance) frequently occurs in dimers with
C2 symmetry.
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The symmetry group D2
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Added flexibility due to D2 symmetry

Theorem: A body-bar framework in 3D (with multi-graph G = (B,E))
which has D2 symmetry, has no body and no bar ‘fixed’ by any of the
half-turns, and is generic modulo the D2 symmetry, has only trivial
symmetry-preserving motions only if there is a subset of bars E∗0 such
that:

(i) |E∗0 | = 6|B0|;
(ii) |E ′0| ≤ 6|B′0| for all subsets E ′0 of E∗0 .

Note: If G = (B,E) satisfies |E | = 6|B| − 4 (i.e., G is over-constrained by
2), then we have |E0| = 6|B0| − 1. Thus, we detect a finite flex which
preserves the D2 symmetry!
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Symmetric pebble game for D2

Algorithm: Given a body-bar multi-graph G = (B,E) with D2 symmetry, apply
the following sequence of steps:

(1) Apply the 6|B| − 6 pebble game to the entire framework. If this step
returns a maximal set of edges E∗ with |E∗| < 6|B| − 6, then the
framework is flexible;
(for efficiency, apply it to one copy (storing that), then copy the pebble
placements to the other copies, and proceed with the pebble game on the
bridging bars);

(2) Start from the 6|B| − 6 output on one copy of the protein (which
represents all orbits of vertices and a subset of orbits of edges). With this
pebbling preserved, test only the edge orbits between the copies, using
the 6|B0| pebble game. If this produces a maximal set E∗0 of edges with
|E∗0 | < 6|B0|, then the protein is flexible.

Note that we need to check both counts, since there are frameworks which
are under-braced (i.e., step (1) detects a flex), but do not have any symmetric
flex (i.e., step (2) does not detect a flex).
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The symmetry group D3
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Added flexibility due to D3 symmetry

Theorem: A body-bar framework in 3D (with multi-graph G = (B,E))
which has D3 symmetry, has no body and no bar ‘fixed’ by any of the
rotations, and is generic modulo the D3 symmetry, has only trivial
symmetry-preserving motions only if there is a subset of bars E∗0 such
that:

(i) |E∗0 | = 6|B0|;
(ii) |E ′0| ≤ 6|B′0| for all subsets E ′0 of E∗0 .

Note: If G = (B,E) satisfies |E | = 6|B| − 6 (i.e., G counts to be isostatic),
then we have |E0| = 6|B0| − 1. Thus, we detect a finite flex which
preserves the D3 symmetry!

The symmetric pebble game for D3 is analogous to the one for D2.
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that:

(i) |E∗0 | = 6|B0|;
(ii) |E ′0| ≤ 6|B′0| for all subsets E ′0 of E∗0 .

Note: If G = (B,E) satisfies |E | = 6|B| − 6 (i.e., G counts to be isostatic),
then we have |E0| = 6|B0| − 1. Thus, we detect a finite flex which
preserves the D3 symmetry!

The symmetric pebble game for D3 is analogous to the one for D2.
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Conclusions

Symmetry (in particular C2, D2 and D3 symmetry in 3-space) can induce
additional flexibility in a framework;

We have established new sufficient conditions (symmetry-adapted
Tay-type counts) for the existence of a finite motion which preserves the
symmetry of the framework, provided it is realized generically within the
symmetry;

These new conditions provide further sufficient conditions for flexibility, in
addition to Tay’s non-symmetric counts;

There exist fast extended pebble game algorithms to check these new
counts. Both the old and the new criteria should be checked when testing
a protein for flexibility!

Symmetry should be incorporated into the study of molecular motions
and allosteric behavior!
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Further work

Sufficient conditions for symmetric / periodic orbit matrices to have full
rank (initial results by Ross, Streinu, Theran, etc.)

Orbit matrices for other (non-trivial) irreducible representations
How can we detect flexes in structure which possess multiple symmetric
components (such as β-sheets e.g.)?

How do we detect motions in finite repetitive structures?
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Thanks!

Questions?

bschulze@fields.utoronto.ca
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