# Counts for predicting symmetric motions in frameworks with applications to protein flexibility 

Bernd Schulze

Fields Institute

## October 18, 2011

Joint work with Adnan Sljoka (York U.) and Walter Whiteley (York U.)

## Outline

(1) Part I: Symmetric counts for detecting flexibility in frameworks

- Introduction
- Symmetric Maxwell counts from the orbit rigidity matrix
- Examples
- Further results and extensions
(2) Part II: Applications to protein flexibility
- Symmetry in molecules
- Generic rigidity of molecular frameworks
- Added flexibility due to $\mathcal{C}_{2}$ symmetry: counts and algorithms
- Added flexibility due to $\mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry
- Conclusions


## Part I

## Symmetric counts for detecting flexibility in frameworks

## Rigidity

- A bar-joint framework (in $\mathbb{R}^{d}$ ) is a pair $(G, p)$, where $G$ is a graph and $p: V(G) \rightarrow \mathbb{R}^{d}$ is an embedding.


## Rigidity

- A bar-joint framework (in $\mathbb{R}^{d}$ ) is a pair ( $G, p$ ), where $G$ is a graph and $p: V(G) \rightarrow \mathbb{R}^{d}$ is an embedding.
- Let $G$ be a graph with $V(G)=\{1, \ldots, n\}$. The edge function $f_{G}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{|E(G)|}$ of $G$ is defined by

$$
f_{G}\left(p_{1}, \ldots, p_{n}\right)=\left(\ldots,\left\|p_{i}-p_{j}\right\|^{2}, \ldots\right)
$$

where $\{i, j\} \in E(G)$ and $p_{i} \in \mathbb{R}^{d}$ for all $i=1, \ldots, n$.

## Rigidity

- A bar-joint framework (in $\mathbb{R}^{d}$ ) is a pair $(G, p)$, where $G$ is a graph and $p: V(G) \rightarrow \mathbb{R}^{d}$ is an embedding.
- Let $G$ be a graph with $V(G)=\{1, \ldots, n\}$. The edge function $f_{G}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{|E(G)|}$ of $G$ is defined by

$$
f_{G}\left(p_{1}, \ldots, p_{n}\right)=\left(\ldots,\left\|p_{i}-p_{j}\right\|^{2}, \ldots\right)
$$

where $\{i, j\} \in E(G)$ and $p_{i} \in \mathbb{R}^{d}$ for all $i=1, \ldots, n$.

- A framework $(G, p)$ is flexible if there exists a differentiable path $x:[0,1] \rightarrow \mathbb{R}^{d n}$ such that $x(0)=p$ and $x(t) \in f_{G}^{-1}\left(f_{G}(p)\right) \backslash f_{K_{n}}^{-1}\left(f_{K_{n}}(p)\right)$ for all $t \in(0,1]$. Otherwise $(G, p)$ is called rigid.


## Rigidity

- A bar-joint framework (in $\mathbb{R}^{d}$ ) is a pair $(G, p)$, where $G$ is a graph and $p: V(G) \rightarrow \mathbb{R}^{d}$ is an embedding.
- Let $G$ be a graph with $V(G)=\{1, \ldots, n\}$. The edge function $f_{G}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{|E(G)|}$ of $G$ is defined by

$$
f_{G}\left(p_{1}, \ldots, p_{n}\right)=\left(\ldots,\left\|p_{i}-p_{j}\right\|^{2}, \ldots\right)
$$

where $\{i, j\} \in E(G)$ and $p_{i} \in \mathbb{R}^{d}$ for all $i=1, \ldots, n$.

- A framework $(G, p)$ is flexible if there exists a differentiable path $x:[0,1] \rightarrow \mathbb{R}^{d n}$ such that $x(0)=p$ and $x(t) \in f_{G}^{-1}\left(f_{G}(p)\right) \backslash f_{K_{n}}^{-1}\left(f_{K_{n}}(p)\right)$ for all $t \in(0,1]$. Otherwise $(G, p)$ is called rigid.


Figure: A flexible and a rigid framework in 2D

## Rigidity

- A bar-joint framework (in $\mathbb{R}^{d}$ ) is a pair $(G, p)$, where $G$ is a graph and $p: V(G) \rightarrow \mathbb{R}^{d}$ is an embedding.
- Let $G$ be a graph with $V(G)=\{1, \ldots, n\}$. The edge function $f_{G}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{|E(G)|}$ of $G$ is defined by

$$
f_{G}\left(p_{1}, \ldots, p_{n}\right)=\left(\ldots,\left\|p_{i}-p_{j}\right\|^{2}, \ldots\right)
$$

where $\{i, j\} \in E(G)$ and $p_{i} \in \mathbb{R}^{d}$ for all $i=1, \ldots, n$.

- A framework $(G, p)$ is flexible if there exists a differentiable path $x:[0,1] \rightarrow \mathbb{R}^{d n}$ such that $x(0)=p$ and $x(t) \in f_{G}^{-1}\left(f_{G}(p)\right) \backslash f_{K_{n}}^{-1}\left(f_{K_{n}}(p)\right)$ for all $t \in(0,1]$. Otherwise $(G, p)$ is called rigid.


Figure: A flexible and a rigid framework in 2D

## Infinitesimal rigidity

- The Jacobian matrix $d f_{G}(p)$ of $f_{G}$, evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

$$
\mathbf{R}(G, p)=\left(\begin{array}{cccccc}
1 & i & & j & & n \\
0 & \ldots & 0 & \left(p_{i}-p_{j}\right) & 0 & \ldots \\
& & 0 & \left(p_{j}-p_{i}\right) & 0 & \ldots
\end{array}\right) \quad 0 \quad\{i, j\}
$$

## Infinitesimal rigidity

- The Jacobian matrix $d f_{G}(p)$ of $f_{G}$, evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

$$
\mathbf{R}(G, p)=\left(\begin{array}{cccccc}
1 & i & & j & n \\
0 & \ldots & 0 & \left(p_{i}-p_{j}\right) & 0 & \ldots \\
& & 0 & \left(p_{j}-p_{i}\right) & 0 & \ldots
\end{array}\right) \quad 0 \quad\{i, j\}
$$

- We say that $u \in \mathbb{R}^{d|V(G)|}$ is an infinitesimal motion of $(G, p)$ if $\mathbf{R}(G, p) u=0$, and a trivial infinitesimal motion if it is the derivative of a motion of congruent frameworks.


## Infinitesimal rigidity

- The Jacobian matrix $d f_{G}(p)$ of $f_{G}$, evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

$$
\mathbf{R}(G, p)=\left(\begin{array}{cccccc}
1 & i & & j & n \\
0 & \ldots & 0 & \left(p_{i}-p_{j}\right) & 0 & \ldots \\
& & 0 & \left(p_{j}-p_{i}\right) & 0 & \ldots
\end{array}\right) \quad 0 \quad\{i, j\}
$$

- We say that $u \in \mathbb{R}^{d|V(G)|}$ is an infinitesimal motion of $(G, p)$ if $\mathbf{R}(G, p) u=0$, and a trivial infinitesimal motion if it is the derivative of a motion of congruent frameworks.
- $(G, p)$ is called infinitesimally flexible in $\mathbb{R}^{d}$ if there exists a non-trivial infinitesimal motion. Otherwise, $(G, p)$ is called infinitesimally rigid.


## Rigidity vs. infinitesimal rigidity

- Thm. A framework $(G, p)$ in $\mathbb{R}^{d}$ with $|V(G)| \geq d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p))=d|V(G)|-\binom{d+1}{2}$.


## Rigidity vs. infinitesimal rigidity

- Thm. A framework $(G, p)$ in $\mathbb{R}^{d}$ with $|V(G)| \geq d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p))=d|V(G)|-\binom{d+1}{2}$.
- Thm. Infinitesimal rigidity implies rigidity.


## Rigidity vs. infinitesimal rigidity

- Thm. A framework $(G, p)$ in $\mathbb{R}^{d}$ with $|V(G)| \geq d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p))=d|V(G)|-\binom{d+1}{2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- Def. A point $p \in \mathbb{R}^{d n}$ is a regular point of $G$ if

$$
\operatorname{rank}(\mathbf{R}(G, p)) \geq \operatorname{rank}(\mathbf{R}(G, q)) \text { for all } q \in \mathbb{R}^{d n} .
$$

Note: if $p$ is 'generic', then $p$ is regular.

## Rigidity vs. infinitesimal rigidity

- Thm. A framework $(G, p)$ in $\mathbb{R}^{d}$ with $|V(G)| \geq d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p))=d|V(G)|-\binom{d+1}{2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- Def. A point $p \in \mathbb{R}^{d n}$ is a regular point of $G$ if

$$
\operatorname{rank}(\mathbf{R}(G, p)) \geq \operatorname{rank}(\mathbf{R}(G, q)) \text { for all } q \in \mathbb{R}^{d n}
$$

Note: if $p$ is 'generic', then $p$ is regular.

- Thm. (Asimov, Roth, 1978) Let $p$ be a regular point of $G$. Then $(G, p)$ is infinitesimally rigid if and only if ( $G, p$ ) is rigid.


## Rigidity vs. infinitesimal rigidity

- Thm. A framework $(G, p)$ in $\mathbb{R}^{d}$ with $|V(G)| \geq d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p))=d|V(G)|-\binom{d+1}{2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- Def. A point $p \in \mathbb{R}^{d n}$ is a regular point of $G$ if

$$
\operatorname{rank}(\mathbf{R}(G, p)) \geq \operatorname{rank}(\mathbf{R}(G, q)) \text { for all } q \in \mathbb{R}^{d n}
$$

Note: if $p$ is 'generic', then $p$ is regular.

- Thm. (Asimov, Roth, 1978) Let $p$ be a regular point of $G$. Then $(G, p)$ is infinitesimally rigid if and only if ( $G, p$ ) is rigid.
- Thm. (Maxwell, 1864) If a graph $G$ is generically $d$-rigid, then

$$
|E(G)| \geq d|V(G)|-\binom{d+1}{2}
$$

## Symmetry in frameworks

- Let $(G, p)$ be a framework with symmetry group $S$, that is,

$$
x\left(p_{i}\right)=p_{x(i)} \text { for all } i \in V(G) \text { and all } x \in S
$$

## Symmetry in frameworks

- Let $(G, p)$ be a framework with symmetry group $S$, that is,

$$
x\left(p_{i}\right)=p_{x(i)} \text { for all } i \in V(G) \text { and all } x \in S
$$

- An infinitesimal motion $u$ of $(G, p)$ is $S$-symmetric if $u$ is unchanged under all symmetry operations in $S$, that is, if

$$
x\left(u_{i}\right)=u_{x(i)} \text { for all } i \in V(G) \text { and all } x \in S
$$

## Symmetry in frameworks

- Let $(G, p)$ be a framework with symmetry group $S$, that is,

$$
x\left(p_{i}\right)=p_{x(i)} \text { for all } i \in V(G) \text { and all } x \in S
$$

- An infinitesimal motion $u$ of $(G, p)$ is $S$-symmetric if $u$ is unchanged under all symmetry operations in $S$, that is, if

$$
x\left(u_{i}\right)=u_{x(i)} \text { for all } i \in V(G) \text { and all } x \in S
$$


(a)

(b)

(c)

Figure: (a), (b) $\mathcal{C}_{s}$-symmetric infinitesimal motions; (c) a non-symmetric infinitesimal motion.

## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.


## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.
- Choose a set of representatives $\mathscr{O}_{v}=\{1, \ldots, k\}$ for the vertex orbits.


## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.
- Choose a set of representatives $\mathscr{O}_{v}=\{1, \ldots, k\}$ for the vertex orbits.
- Choose a set of representatives $\mathscr{O}_{e}$ for the edge orbits, so that each edge $e \in \mathscr{O}_{e}$ is of the form $e=\{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_{v}$.


## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.
- Choose a set of representatives $\mathscr{O}_{v}=\{1, \ldots, k\}$ for the vertex orbits.
- Choose a set of representatives $\mathscr{O}_{e}$ for the edge orbits, so that each edge $e \in \mathscr{O}_{e}$ is of the form $e=\{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_{v}$.
- The orbit matrix is of size $\left|\mathscr{O}_{e}\right| \times \sum_{i=1}^{k} c_{i}$, where $c_{i}=\operatorname{dim} \bigcap_{x \in S: x\left(p_{i}\right)=p_{i}} F_{X}$ and $F_{x}=\left\{a \in \mathbb{R}^{d}: x(a)=a\right\}$.


## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.
- Choose a set of representatives $\mathscr{O}_{v}=\{1, \ldots, k\}$ for the vertex orbits.
- Choose a set of representatives $\mathscr{O}_{e}$ for the edge orbits, so that each edge $e \in \mathscr{O}_{e}$ is of the form $e=\{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_{v}$.
- The orbit matrix is of size $\left|\mathscr{O}_{e}\right| \times \sum_{i=1}^{k} c_{i}$, where $c_{i}=\operatorname{dim} \bigcap_{x \in S: x\left(p_{i}\right)=p_{i}} F_{X}$ and $F_{x}=\left\{a \in \mathbb{R}^{d}: x(a)=a\right\}$.
- The row corresponding to an edge $\{i, x(j)\}$ is of the form

$$
\left.\right)
$$

## The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let $(G, p)$ be a framework with symmetry group $S$.
- Choose a set of representatives $\mathscr{O}_{V}=\{1, \ldots, k\}$ for the vertex orbits.
- Choose a set of representatives $\mathscr{O}_{e}$ for the edge orbits, so that each edge $e \in \mathscr{O}_{e}$ is of the form $e=\{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_{v}$.
- The orbit matrix is of size $\left|\mathscr{O}_{e}\right| \times \sum_{i=1}^{k} c_{i}$, where $c_{i}=\operatorname{dim} \bigcap_{x \in S: x\left(p_{i}\right)=p_{i}} F_{X}$ and $F_{x}=\left\{a \in \mathbb{R}^{d}: x(a)=a\right\}$.
- The row corresponding to an edge $\{i, x(j)\}$ is of the form

$$
\left.\right)
$$

- The row corresponding to an edge $\{i, x(i)\}$ is of the form

$$
\left(\begin{array}{lllll}
0 \ldots 0 & \left(2 p_{i}-y\left(p_{i}\right)-y^{-1}\left(p_{i}\right)\right) \mathbf{M}_{i} & 0 \ldots 0 & 0 & 0 \ldots 0
\end{array}\right)
$$

## Examples of orbit rigidity matrices



## Examples of orbit rigidity matrices



## Examples of orbit rigidity matrices



$$
\left[\begin{array}{ll}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
&
\end{array}\right]
$$

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0
\end{array}\right]
$$

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]
$$

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 & 0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]
$$

$3 \times 4$ matrix

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]
$$

$3 \times 4$ matrix

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]
$$

$3 \times 4$ matrix

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \quad 0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]\left[\begin{array}{ll}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right)\binom{0}{1}
\end{array}\right.
$$

$3 \times 4$ matrix

## Examples of orbit rigidity matrices



$$
\left[\begin{array}{cc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 \\
0 & 2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]\left[\begin{array}{ccc}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right)\binom{0}{1} & 0 \\
\left(p_{1}-p_{3}\right) & 0 & \left(p_{3}-p_{1}\right)\binom{0}{1}
\end{array}\right]
$$

$3 \times 4$ matrix

## Examples of orbit rigidity matrices

$$
\left.\begin{array}{l} 
\\
{\left[\begin{array}{c:c}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right) \\
2\left(p_{1}-s\left(p_{1}\right)\right) & 0 \\
0 & 0
\end{array}\right)} \\
2\left(p_{2}-s\left(p_{2}\right)\right)
\end{array}\right]\left[\begin{array}{lll}
\left(p_{1}-p_{2}\right) & \left(p_{2}-p_{1}\right)\binom{0}{1} & 0 \\
\left(p_{1}-p_{3}\right) & 0 & \left(p_{3}-p_{1}\right)\binom{0}{1}
\end{array}\right]
$$

## Properties of the orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Thm. (S. and Whiteley, 2010) Let ( $G, p$ ) be a framework with symmetry group $S$. Then
(i) The solutions to $\mathbf{O}(G, p, S) u=0$ are isomorphic to the space of $S$-symmetric infinitesimal motions of $(G, p)$.
(ii) The solutions to $\omega \mathbf{O}(G, p, S)=0$ are isomorphic to the space of $S$-symmetric self-stresses of $(G, p)$.


## Properties of the orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Thm. (S. and Whiteley, 2010) Let $(G, p)$ be a framework with symmetry group $S$. Then
(i) The solutions to $\mathbf{O}(G, p, S) u=0$ are isomorphic to the space of $S$-symmetric infinitesimal motions of $(G, p)$.
(ii) The solutions to $\omega \mathbf{O}(G, p, S)=0$ are isomorphic to the space of $S$-symmetric self-stresses of $(G, p)$.
- Df. The configuration $p$ of a framework $(G, p)$ with symmetry group $S$ is $S$-regular if the rank of $\mathbf{O}(G, p, S)$ is maximal.


## Properties of the orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Thm. (S. and Whiteley, 2010) Let ( $G, p$ ) be a framework with symmetry group $S$. Then
(i) The solutions to $\mathbf{O}(G, p, S) u=0$ are isomorphic to the space of $S$-symmetric infinitesimal motions of $(G, p)$.
(ii) The solutions to $\omega \mathbf{O}(G, p, S)=0$ are isomorphic to the space of $S$-symmetric self-stresses of $(G, p)$.
- Df. The configuration $p$ of a framework $(G, p)$ with symmetry group $S$ is $S$-regular if the rank of $\mathbf{O}(G, p, S)$ is maximal.
Note: Choosing 'generic positions' for the vertices in $\mathscr{O}_{v}$ yields an $S$-regular configuration.


## Properties of the orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Thm. (S. and Whiteley, 2010) Let ( $G, p$ ) be a framework with symmetry group $S$. Then
(i) The solutions to $\mathbf{O}(G, p, S) u=0$ are isomorphic to the space of $S$-symmetric infinitesimal motions of $(G, p)$.
(ii) The solutions to $\omega \mathbf{O}(G, p, S)=0$ are isomorphic to the space of $S$-symmetric self-stresses of $(G, p)$.
- Df. The configuration $p$ of a framework $(G, p)$ with symmetry group $S$ is $S$-regular if the rank of $\mathbf{O}(G, p, S)$ is maximal.
Note: Choosing 'generic positions' for the vertices in $\mathscr{O}_{v}$ yields an $S$-regular configuration.
- Thm. (S., 2009) If $p$ is $S$-regular and ( $G, p$ ) has an $S$-symmetric infinitesimal flex, then there also exists a finite flex of $(G, p)$ which preserves the symmetry of $(G, p)$ throughout the path.


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let $r$ be the number of rows of $\mathbf{O}(G, p, S)$ ( $r$ is the number of edge orbits);


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let $r$ be the number of rows of $\mathbf{O}(G, p, S)$ ( $r$ is the number of edge orbits);
- Let $m$ be the dimension of the space of $S$-symmetric trivial infinitesimal motions.


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let $r$ be the number of rows of $\mathbf{O}(G, p, S)$ ( $r$ is the number of edge orbits);
- Let $m$ be the dimension of the space of $S$-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of $G$ have no symmetry-preserving finite flex only if

$$
r \geq c-m .
$$

## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let $r$ be the number of rows of $\mathbf{O}(G, p, S)$ ( $r$ is the number of edge orbits);
- Let $m$ be the dimension of the space of $S$-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of $G$ have no symmetry-preserving finite flex only if

$$
r \geq c-m .
$$

- Rem. This count is particularly easy if $S$ acts freely on the vertices and edges of $G$ since then $c=d k$.


## Symmetric versions of Maxwell's theorem

- Let $(G, p)$ be a framework with symmetry group $S$.
- Let $c=\sum_{i=1}^{k} c_{i}$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let $r$ be the number of rows of $\mathbf{O}(G, p, S)$ ( $r$ is the number of edge orbits);
- Let $m$ be the dimension of the space of $S$-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of $G$ have no symmetry-preserving finite flex only if

$$
r \geq c-m .
$$

- Rem. This count is particularly easy if $S$ acts freely on the vertices and edges of $G$ since then $c=d k$.
- Rem. It can be tricky to find $m$.


## Example 1: quadrilaterals with mirror symmetry



## Example 1: quadrilaterals with mirror symmetry



$$
c=2 \cdot 2=4
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3
\end{gathered}
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1
\end{gathered}
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1 \\
r=3=c-m
\end{gathered}
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1 \\
r=3=c-m
\end{gathered}
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1 \\
r=3=c-m
\end{gathered}
$$

$$
c=2+2 \cdot 1=4
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1 \\
r=3=c-m
\end{gathered}
$$



$$
c=2+2 \cdot 1=4
$$

$$
r=2
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1
\end{gathered}
$$

$$
r=3=c-m
$$



$$
c=2+2 \cdot 1=4
$$

$$
r=2
$$

$$
m=1
$$

## Example 1: quadrilaterals with mirror symmetry



$$
\begin{gathered}
c=2 \cdot 2=4 \\
r=3 \\
m=1 \\
r=3=c-m
\end{gathered}
$$

$$
c=2+2 \cdot 1=4
$$

$$
r=2
$$

$$
m=1
$$

$$
r=2<3=c-m
$$

## Example 2: the Bricard octahedra



## Example 2: the Bricard octahedra



## Example 2: the Bricard octahedra

$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6
\end{gathered}
$$

## Example 2: the Bricard octahedra

$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

$$
r=6<7=c-m
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

$$
r=6<7=c-m
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

$$
r=6<7=c-m
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

$$
r=6<7=c-m
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2
\end{gathered}
$$

$$
r=6<7=c-m
$$

## Example 2: the Bricard octahedra



$$
\begin{gathered}
c=3 \cdot 3=9 \\
r=6 \\
m=2 \\
r=6<7=c-m
\end{gathered}
$$

$$
r=6<7=c-m
$$

## A general result for $\mathcal{C}_{2}$

Thm. Let $G$ be a graph with $|E(G)|=3|V(G)|-6$ and let $\mathcal{C}_{2}=\left\{I d, C_{2}\right\}$ be the half-turn symmetry group in 3-space.
If $j_{C_{2}}=b_{C_{2}}=0$ (i.e., no vertices and no edges fixed by $C_{2}$ ), then $\mathcal{C}_{2}$-regular realizations of $G$ have a symmetry-preserving finite flex.

## A general result for $\mathcal{C}_{2}$

Thm. Let $G$ be a graph with $|E(G)|=3|V(G)|-6$ and let $\mathcal{C}_{2}=\left\{I d, C_{2}\right\}$ be the half-turn symmetry group in 3 -space.
If $j_{C_{2}}=b_{C_{2}}=0$ (i.e., no vertices and no edges fixed by $C_{2}$ ), then $\mathcal{C}_{2}$-regular realizations of $G$ have a symmetry-preserving finite flex.

Proof. We have $\quad c=3 \frac{|V(G)|}{2} \quad r=\frac{|E(G)|}{2} \quad m=2$

## A general result for $\mathcal{C}_{2}$

Thm. Let $G$ be a graph with $|E(G)|=3|V(G)|-6$ and let $\mathcal{C}_{2}=\left\{I d, C_{2}\right\}$ be the half-turn symmetry group in 3 -space.
If $j_{C_{2}}=b_{C_{2}}=0$ (i.e., no vertices and no edges fixed by $C_{2}$ ), then $\mathcal{C}_{2}$-regular realizations of $G$ have a symmetry-preserving finite flex.

Proof. We have $\quad c=3 \frac{|V(G)|}{2} \quad r=\frac{|E(G)|}{2} \quad m=2$

$$
c-m=3 \frac{|V(G)|}{2}-2
$$

## A general result for $\mathcal{C}_{2}$

Thm. Let $G$ be a graph with $|E(G)|=3|V(G)|-6$ and let $\mathcal{C}_{2}=\left\{I d, C_{2}\right\}$ be the half-turn symmetry group in 3 -space.
If $j_{C_{2}}=b_{C_{2}}=0$ (i.e., no vertices and no edges fixed by $C_{2}$ ), then $\mathcal{C}_{2}$-regular realizations of $G$ have a symmetry-preserving finite flex.

Proof. We have $\quad c=3 \frac{|V(G)|}{2} \quad r=\frac{|E(G)|}{2} \quad m=2$

$$
\begin{aligned}
c-m & =3 \frac{|V(G)|}{2}-2 \\
r & =3 \frac{|V(G)|}{2}-3
\end{aligned}
$$

## A general result for $\mathcal{C}_{2}$

Thm. Let $G$ be a graph with $|E(G)|=3|V(G)|-6$ and let $\mathcal{C}_{2}=\left\{I d, C_{2}\right\}$ be the half-turn symmetry group in 3 -space.
If $j_{C_{2}}=b_{C_{2}}=0$ (i.e., no vertices and no edges fixed by $C_{2}$ ), then $\mathcal{C}_{2}$-regular realizations of $G$ have a symmetry-preserving finite flex.

Proof. We have $\quad c=3 \frac{|V(G)|}{2} \quad r=\frac{|E(G)|}{2} \quad m=2$

$$
\begin{aligned}
c-m & =3 \frac{|V(G)|}{2}-2 \\
r & =3 \frac{|V(G)|}{2}-3
\end{aligned}
$$

Thus, $r<c-m$. $\square$

## Further results and extensions

- Extensions to higher dimensions and other groups


## Further results and extensions

- Extensions to higher dimensions and other groups
- Orbit rigidity matrix allows easy transfer of (finite) flexibility between metrics:
Symmetric infinitesimal flexes and finite flexes (at $S$-regular points) can be transferred from frameworks in $\mathbb{E}^{d}$ to coned frameworks in $\mathbb{E}^{d+1}$ and to frameworks in $\mathbb{S}^{d}, \mathbb{H}^{d}$, and $\mathbb{M}^{d}$ (using symmetric coning).
[S. and Whiteley: Coning, symmetry and spherical frameworks, arXiv:1108.2174, 2011]


## Further results and extensions

- Extensions to higher dimensions and other groups
- Orbit rigidity matrix allows easy transfer of (finite) flexibility between metrics:
Symmetric infinitesimal flexes and finite flexes (at $S$-regular points) can be transferred from frameworks in $\mathbb{E}^{d}$ to coned frameworks in $\mathbb{E}^{d+1}$ and to frameworks in $\mathbb{S}^{d}, \mathbb{H}^{d}$, and $\mathbb{M}^{d}$ (using symmetric coning).
[S. and Whiteley: Coning, symmetry and spherical frameworks, arXiv:1108.2174, 2011]
- Combined orbit matrices for periodic frameworks with additional symmetries allow detection of finite flexes which preserve the entire crystallographic group.
In particular: Inversion symmetry in 3-space gives 4 degrees of freedom in a generically minimally rigid graph on the flexible torus!
[Ross, S., and Whiteley: Finite motions from periodic frameworks with added symmetry, IJSS 48, 1711-1729, 2011]


## Part II

## Applications to protein flexibility

## Symmetry in molecules

- The well developed theory of generic rigidity of frameworks allows for basic predictions of flexibility of molecules


## Symmetry in molecules

- The well developed theory of generic rigidity of frameworks allows for basic predictions of flexibility of molecules
- Observation: molecules often exhibit rotational symmetries:


Point symmetry

| Protein | Number of subunits | Crystallographic symbol | Schönflies symbol |
| :---: | :---: | :---: | :---: |
| Alcohol dehydrogenase (234) | 2 | 2 | $\mathrm{C}_{2}$ |
| Immunoglobulin (294) | 4 | 2 | $\mathrm{C}_{2}$ |
| s-Malate dehydrogenase (233) | 2 | 2 | $\mathrm{C}_{2}$ |
| Superoxide dismutase (286) | 2 | 2 | $\mathrm{C}_{2}$ |
| Triose phosphate isomerase (305) | 2 | 2 | $\mathrm{C}_{2}$ |
| Phosphorylase (236) | 2 | 2 | $\mathrm{C}_{2}$ |
| Alkaline phosphatase (317) | 2 | 2 | $\mathrm{C}_{2}$ |
| 6-Phosphogluconate dehydrogenase (318) | 2 | 2 | $\mathrm{C}_{2}$ |
| Wheat germ agglutinin (316) | 2 | 2 | $\mathrm{C}_{2}$ |
| Glucose phosphate isomerase (313) | 2 | 2 | $\mathrm{C}_{2}$ |
| Tyr-tRNA-synthetase (221) | 2 | 2 | $\mathrm{C}_{2}$ |
| Glutathione reductase (124) | 2 | 2 | $\mathrm{C}_{2}$ |
| Aldolase (306) | 3 | 3 | $\mathrm{C}_{3}$ |
| Bacteriochlorophyll protein (303) | 3 | 3 | $\mathrm{C}_{3}$ |
| Glucagon (278) | (3) | 3 | $\mathrm{C}_{3}$ |
| TMV-protein disc (218) | 17 | 17 | $\mathrm{C}_{17}$ |
| Concanavalin A $(281,282)$ | 4 | 222. | $\mathrm{D}_{2}$ |
| Glyceraldehyde-3-phosphate dehydrogenase $(230,231)$ | 4 | 222 | $\mathrm{D}_{2}$ |
| Lactate dehydrogenase (232) | 4 | 222 | $\mathrm{D}_{2}$ |
| Prealbumin (206) | 4 | 222 | $\mathrm{D}_{2}$ |
| Pyruvate kinase (80) | 4 | 222 | $\mathrm{D}_{2}$ |
| Phosphoglycerate mutase (307) | 4 | 222 | $\mathrm{D}_{2}$ |
| Hemoglobin (human) (274) | $2+2$ | Pseudo 222 | Pseudo $\mathrm{D}_{2}$ |
| Insulin (259) | 6 | 32 | $\mathrm{D}_{3}$ |
| Aspartate transcarbamoylase (319) | $6+6$ | 32 | $\mathrm{D}_{3}$ |
| Hemerythrin (217) | 8 | 422 | $\mathrm{D}_{4}$ |
| Apoferritin (320) | 24 | 432 | 0 |
| Coat of tomato bushy stunt virus | 180 | 532 | Y |

## Body-bar frameworks

- Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space


A body-bar framework in 3D

## Body-bar frameworks

- Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space


A body-bar framework in 3D

- A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments


## Body-bar frameworks

- Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space


A body-bar framework in 3D

- A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments
- The underlying combinatorial structure is a multi-graph


## Body-bar frameworks

- Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space


A body-bar framework in 3D

- A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments
- The underlying combinatorial structure is a multi-graph
- A body-bar framework can be modeled as a bar-joint framework by replacing each body with an isostatic bar-joint framework


## Necessary and sufficient conditions for rigidity

- Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph $G=(B, E)$ is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars $E^{*}$ such that:
(i) $\left|E^{*}\right|=6|B|-6$;
(ii) $\left|E^{\prime}\right| \leq 6\left|B^{\prime}\right|-6$ for all subgraphs induced by subsets $E^{\prime}$ of $E^{*}$.


## Necessary and sufficient conditions for rigidity

- Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph $G=(B, E)$ is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars $E^{*}$ such that:
(i) $\left|E^{*}\right|=6|B|-6$;
(ii) $\left|E^{\prime}\right| \leq 6\left|B^{\prime}\right|-6$ for all subgraphs induced by subsets $E^{\prime}$ of $E^{*}$.
- Note: For generic selections of the lines of the bars, infinitesimal rigidity is equivalent to continuous (finite) rigidity;


## Necessary and sufficient conditions for rigidity

- Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph $G=(B, E)$ is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars $E^{*}$ such that:
(i) $\left|E^{*}\right|=6|B|-6$;
(ii) $\left|E^{\prime}\right| \leq 6\left|B^{\prime}\right|-6$ for all subgraphs induced by subsets $E^{\prime}$ of $E^{*}$.
- Note: For generic selections of the lines of the bars, infinitesimal rigidity is equivalent to continuous (finite) rigidity;
- Algorithmically, Tay's counts lead to a greedy algorithm called the pebble game, which has a running time of $O(|B||E|)$.


## Application: Flexibility of molecular frameworks

- Tay's counts (and the corresponding pebble game algorithms) also characterize generically rigid body-hinge frameworks (Tay, Whiteley, 1985) and even generically rigid molecular frameworks (Katoh, Tanigawa, 2010).


Body-bar framework


Body-hinge framework


Molecular framework

## Example

## Cyclohexane:

## Example

## Cyclohexane:

$|B|=6$

## Example

## Cyclohexane:

$|B|=6$
$|E|=6 \times 5=30$

## Example

Cyclohexane:

$|B|=6$
$|E|=6 \times 5=30$
$|E|=6|B|-6=30 \checkmark$
$\left|E^{\prime}\right| \leq 6\left|B^{\prime}\right|-6 \checkmark$ (via pebble game e.g.)

## Example

Cyclohexane:

$|B|=6$
$|E|=6 \times 5=30$
$|E|=6|B|-6=30 \checkmark \quad\left|E^{\prime}\right| \leq 6\left|B^{\prime}\right|-6 \checkmark$ (via pebble game e.g.)
Conclusion: Cyclohexane is generically rigid (in fact, isostatic).

## Symmetry can lead to added flexibility

Two basic conformations of cyclohexane:


Chair

Cary $\mathrm{g}^{-16}$
Three-fold symmetry
Rigid


Boat

Half-turn symmetry Flexible

## Symmetry can lead to added flexibility

Two basic conformations of cyclohexane:


Chair

Caryonts
Three-fold symmetry
Rigid


Boat

Half-turn symmetry
Flexible

We can detect this via our symmetric Maxwell counts (under the assumption that the 'Symmetric Molecular Conjecture' holds)!

## Symmetric counts for the 'boat'

Cyclohexane (boat conformation - $\mathcal{C}_{2}$ symmetry)


$$
|B|=6 ;|E|=6 \times 5=30
$$

## Symmetric counts for the 'boat'

Cyclohexane (boat conformation - $\mathcal{C}_{2}$ symmetry)


## Symmetric counts for the 'boat'

Cyclohexane (boat conformation - $\mathcal{C}_{2}$ symmetry)


$$
\begin{aligned}
& |B|=6 ;|E|=6 \times 5=30 \\
& \left|B_{0}\right|=3 ;\left|E_{0}\right|=3 \times 5=15
\end{aligned}
$$

2-dim. space of trivial symmetry-preserving motions

## Symmetric counts for the 'boat'

Cyclohexane (boat conformation - $\mathcal{C}_{2}$ symmetry)


$$
\begin{aligned}
& |B|=6 ;|E|=6 \times 5=30 \\
& \left|B_{0}\right|=3 ;\left|E_{0}\right|=3 \times 5=15
\end{aligned}
$$

2-dim. space of trivial symmetry-preserving motions

$$
\left|E_{0}\right|=15<16=6\left|B_{0}\right|-2
$$

## Symmetric counts for the 'boat'

Cyclohexane (boat conformation - $\mathcal{C}_{2}$ symmetry)


2-dim. space of trivial symmetry-preserving motions

$$
\left|E_{0}\right|=15<16=6\left|B_{0}\right|-2
$$

Conclusion: There exists a symmetry-preserving finite motion!

## Symmetric Tay's theorem for the group $\mathcal{C}_{2}$

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{C}_{2}$ symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the $\mathcal{C}_{2}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|-2$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|-2$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.


## Symmetric Tay's theorem for the group $\mathcal{C}_{2}$

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{C}_{2}$ symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the $\mathcal{C}_{2}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|-2$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|-2$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.
- This is a necessary condition for $\mathcal{C}_{2}$-rigidity! Failure to satisfy these counts guarantees the existence of a $\mathcal{C}_{2}$-symmetric infinitesimal flex, and for $\mathcal{C}_{2}$-regular realizations also the existence of a symmetry-preserving finite flex.


## Symmetric Tay's theorem for the group $\mathcal{C}_{2}$

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{C}_{2}$ symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the $\mathcal{C}_{2}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|-2$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|-2$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.
- This is a necessary condition for $\mathcal{C}_{2}$-rigidity! Failure to satisfy these counts guarantees the existence of a $\mathcal{C}_{2}$-symmetric infinitesimal flex, and for $\mathcal{C}_{2}$-regular realizations also the existence of a symmetry-preserving finite flex.
- Note: If $G=(B, E)$ satisfies $|E|=6|B|-6$, then we have $\left|E_{0}\right|=6\left|B_{0}\right|-3$. Thus, we detect a finite flex which preserves the $\mathcal{C}_{2}$ symmetry!


## Another example

Two 4 -fold molecular rings sharing a 2-fold axis, connected by 4 bars


$$
\begin{aligned}
& |B|=8 ;|E|=4 \times 5+4 \times 5+4=44 \\
& |E|=44>42=6|B|-6-\text { overbraced }
\end{aligned}
$$

## Another example

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars


$$
\begin{aligned}
& |B|=8 ;|E|=4 \times 5+4 \times 5+4=44 \\
& |E|=44>42=6|B|-6-\text { overbraced } \\
& \left|B_{0}\right|=4 ;\left|E_{0}\right|=2 \times 5+2 \times 5+2=22 \\
& \left|E_{0}\right|=22=6\left|B_{0}\right|-2-\text { still no motion }
\end{aligned}
$$

## Another example

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars


$$
\begin{aligned}
& |B|=8 ;|E|=4 \times 5+4 \times 5+4=44 \\
& |E|=44>42=6|B|-6-\text { overbraced } \\
& \left|B_{0}\right|=4 ;\left|E_{0}\right|=2 \times 5+2 \times 5+2=22 \\
& \left|E_{0}\right|=22=6\left|B_{0}\right|-2-\text { still no motion } \\
& \text { Each 4-fold ring: }\left|\bar{E}_{0}\right|=10=6\left|\bar{B}_{0}\right|-2
\end{aligned}
$$

## Another example

Two 4 -fold molecular rings sharing a 2-fold axis, connected by 4 bars


$$
\begin{aligned}
& |B|=8 ;|E|=4 \times 5+4 \times 5+4=44 \\
& |E|=44>42=6|B|-6 \text { - overbraced } \\
& \left|B_{0}\right|=4 ;\left|E_{0}\right|=2 \times 5+2 \times 5+2=22 \\
& \left|E_{0}\right|=22=6\left|B_{0}\right|-2-\text { still no motion } \\
& \text { Each 4-fold ring: }\left|\bar{E}_{0}\right|=10=6\left|\bar{B}_{0}\right|-2
\end{aligned}
$$

Each 4 -fold ring is overbraced by 2, so we may select only 18 bars from each ring to make the subset $E^{*}$. This gives the count

$$
\left|E^{*}\right|=18+18+4=40<42=6|B|-6 .
$$

## Another example

Two 4 -fold molecular rings sharing a 2-fold axis, connected by 4 bars


$$
\begin{aligned}
& |B|=8 ;|E|=4 \times 5+4 \times 5+4=44 \\
& |E|=44>42=6|B|-6 \text { - overbraced } \\
& \left|B_{0}\right|=4 ;\left|E_{0}\right|=2 \times 5+2 \times 5+2=22 \\
& \left|E_{0}\right|=22=6\left|B_{0}\right|-2-\text { still no motion }
\end{aligned}
$$

Each 4-fold ring: $\left|\bar{E}_{0}\right|=10=6\left|\bar{B}_{0}\right|-2$
Each 4 -fold ring is overbraced by 2, so we may select only 18 bars from each ring to make the subset $E^{*}$. This gives the count

$$
\left|E^{*}\right|=18+18+4=40<42=6|B|-6 .
$$

Conclusion: We detect a finite motion which is not detected by the symmetric counts. To test for rigidity we need both of the criteria!

## Symmetric pebble game for the group $\mathcal{C}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{C}_{2}$ symmetry (e.g., a dimer), apply the following sequence of steps:

## Symmetric pebble game for the group $\mathcal{C}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{C}_{2}$ symmetry (e.g., a dimer), apply the following sequence of steps:
(1) Apply the $6|B|-6$ pebble game to the entire framework. If this step returns a maximal set of edges $E^{*}$ with $\left|E^{*}\right|<6|B|-6$, then the framework is flexible; (for efficiency, apply it to one protein (storing that), then copy the pebble placements to the second protein, and proceed with the pebble game on the bridging bars);

## Symmetric pebble game for the group $\mathcal{C}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{C}_{2}$ symmetry (e.g., a dimer), apply the following sequence of steps:
(1) Apply the $6|B|-6$ pebble game to the entire framework. If this step returns a maximal set of edges $E^{*}$ with $\left|E^{*}\right|<6|B|-6$, then the framework is flexible; (for efficiency, apply it to one protein (storing that), then copy the pebble placements to the second protein, and proceed with the pebble game on the bridging bars);
(2) Start from the $6|B|-6$ output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the two proteins, using the $6\left|B_{0}\right|-2$ pebble game. If this produces a maximal set $E_{0}^{*}$ of edges with $\left|E_{0}^{*}\right|<6\left|B_{0}\right|-2$, then the dimer is flexible.

## Further remarks on the flexibility of dimers with $\mathcal{C}_{2}$ symmetry

- We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$
|E|=2\left|E_{0}\right|=2\left(6\left|B_{0}\right|-2\right)>6|B|-6
$$

## Further remarks on the flexibility of dimers with $\mathcal{C}_{2}$ symmetry

- We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$
|E|=2\left|E_{0}\right|=2\left(6\left|B_{0}\right|-2\right)>6|B|-6
$$

- On the other hand, the dimer could be stably trapped in 2-fold symmetric configurations with one degree of freedom to function.


## Further remarks on the flexibility of dimers with $\mathcal{C}_{2}$ symmetry

- We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$
|E|=2\left|E_{0}\right|=2\left(6\left|B_{0}\right|-2\right)>6|B|-6
$$

- On the other hand, the dimer could be stably trapped in 2-fold symmetric configurations with one degree of freedom to function.
- Allostery (shape change at a distance) frequently occurs in dimers with $\mathcal{C}_{2}$ symmetry.


## The symmetry group $\mathcal{D}_{2}$



## Added flexibility due to $\mathcal{D}_{2}$ symmetry

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{D}_{2}$ symmetry, has no body and no bar 'fixed' by any of the half-turns, and is generic modulo the $\mathcal{D}_{2}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.


## Added flexibility due to $\mathcal{D}_{2}$ symmetry

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{D}_{2}$ symmetry, has no body and no bar 'fixed' by any of the half-turns, and is generic modulo the $\mathcal{D}_{2}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.
- Note: If $G=(B, E)$ satisfies $|E|=6|B|-4$ (i.e., $G$ is over-constrained by 2), then we have $\left|E_{0}\right|=6\left|B_{0}\right|-1$. Thus, we detect a finite flex which preserves the $\mathcal{D}_{2}$ symmetry!


## Symmetric pebble game for $\mathcal{D}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{D}_{2}$ symmetry, apply the following sequence of steps:

## Symmetric pebble game for $\mathcal{D}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{D}_{2}$ symmetry, apply the following sequence of steps:
(1) Apply the $6|B|-6$ pebble game to the entire framework. If this step returns a maximal set of edges $E^{*}$ with $\left|E^{*}\right|<6|B|-6$, then the framework is flexible;
(for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);

## Symmetric pebble game for $\mathcal{D}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{D}_{2}$ symmetry, apply the following sequence of steps:
(1) Apply the $6|B|-6$ pebble game to the entire framework. If this step returns a maximal set of edges $E^{*}$ with $\left|E^{*}\right|<6|B|-6$, then the framework is flexible;
(for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);
(2) Start from the $6|B|-6$ output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the copies, using the $6\left|B_{0}\right|$ pebble game. If this produces a maximal set $E_{0}^{*}$ of edges with $\left|E_{0}^{*}\right|<6\left|B_{0}\right|$, then the protein is flexible.

## Symmetric pebble game for $\mathcal{D}_{2}$

Algorithm: Given a body-bar multi-graph $G=(B, E)$ with $\mathcal{D}_{2}$ symmetry, apply the following sequence of steps:
(1) Apply the $6|B|-6$ pebble game to the entire framework. If this step returns a maximal set of edges $E^{*}$ with $\left|E^{*}\right|<6|B|-6$, then the framework is flexible;
(for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);
(2) Start from the $6|B|-6$ output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the copies, using the $6\left|B_{0}\right|$ pebble game. If this produces a maximal set $E_{0}^{*}$ of edges with $\left|E_{0}^{*}\right|<6\left|B_{0}\right|$, then the protein is flexible.

Note that we need to check both counts, since there are frameworks which are under-braced (i.e., step (1) detects a flex), but do not have any symmetric flex (i.e., step (2) does not detect a flex).

## The symmetry group $\mathcal{D}_{3}$



## Added flexibility due to $\mathcal{D}_{3}$ symmetry

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{D}_{3}$ symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the $\mathcal{D}_{3}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.


## Added flexibility due to $\mathcal{D}_{3}$ symmetry

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{D}_{3}$ symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the $\mathcal{D}_{3}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.
- Note: If $G=(B, E)$ satisfies $|E|=6|B|-6$ (i.e., $G$ counts to be isostatic), then we have $\left|E_{0}\right|=6\left|B_{0}\right|-1$. Thus, we detect a finite flex which preserves the $\mathcal{D}_{3}$ symmetry!


## Added flexibility due to $\mathcal{D}_{3}$ symmetry

- Theorem: A body-bar framework in 3D (with multi-graph $G=(B, E)$ ) which has $\mathcal{D}_{3}$ symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the $\mathcal{D}_{3}$ symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars $E_{0}^{*}$ such that:
(i) $\left|E_{0}^{*}\right|=6\left|B_{0}\right|$;
(ii) $\left|E_{0}^{\prime}\right| \leq 6\left|B_{0}^{\prime}\right|$ for all subsets $E_{0}^{\prime}$ of $E_{0}^{*}$.
- Note: If $G=(B, E)$ satisfies $|E|=6|B|-6$ (i.e., $G$ counts to be isostatic), then we have $\left|E_{0}\right|=6\left|B_{0}\right|-1$. Thus, we detect a finite flex which preserves the $\mathcal{D}_{3}$ symmetry!
- The symmetric pebble game for $\mathcal{D}_{3}$ is analogous to the one for $\mathcal{D}_{2}$.


## Conclusions

- Symmetry (in particular $\mathcal{C}_{2}, \mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry in 3-space) can induce additional flexibility in a framework;


## Conclusions

- Symmetry (in particular $\mathcal{C}_{2}, \mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;


## Conclusions

- Symmetry (in particular $\mathcal{C}_{2}, \mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;


## Conclusions

- Symmetry (in particular $\mathcal{C}_{2}, \mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;
- There exist fast extended pebble game algorithms to check these new counts. Both the old and the new criteria should be checked when testing a protein for flexibility!


## Conclusions

- Symmetry (in particular $\mathcal{C}_{2}, \mathcal{D}_{2}$ and $\mathcal{D}_{3}$ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;
- There exist fast extended pebble game algorithms to check these new counts. Both the old and the new criteria should be checked when testing a protein for flexibility!
- Symmetry should be incorporated into the study of molecular motions and allosteric behavior!


## Further work

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)


## Further work

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations


## Further work

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations
- How can we detect flexes in structure which possess multiple symmetric components (such as $\beta$-sheets e.g.)?



## Further work

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations
- How can we detect flexes in structure which possess multiple symmetric components (such as $\beta$-sheets e.g.)?

- How do we detect motions in finite repetitive structures?


## Thanks!

## Questions?

bschulze@fields.utoronto.ca

