Counts for predicting symmetric motions in frameworks with applications to protein flexibility

Bernd Schulze

Fields Institute

October 18, 2011

Joint work with Adnan Sljoka (York U.) and Walter Whiteley (York U.)

Outline

- Part I: Symmetric counts for detecting flexibility in frameworks
 - Introduction
 - Symmetric Maxwell counts from the orbit rigidity matrix
 - Examples
 - Further results and extensions
- Part II: Applications to protein flexibility
 - Symmetry in molecules
 - Generic rigidity of molecular frameworks
 - Added flexibility due to C₂ symmetry: counts and algorithms
 - Added flexibility due to \mathcal{D}_2 and \mathcal{D}_3 symmetry
 - Conclusions

Part I

Symmetric counts for detecting flexibility in frameworks

• A bar-joint framework (in \mathbb{R}^d) is a pair (G, p), where G is a graph and $p: V(G) \to \mathbb{R}^d$ is an embedding.

- A bar-joint framework (in \mathbb{R}^d) is a pair (G, p), where G is a graph and $p: V(G) \to \mathbb{R}^d$ is an embedding.
- Let G be a graph with $V(G) = \{1, ..., n\}$. The edge function $f_G : \mathbb{R}^{dn} \to \mathbb{R}^{|E(G)|}$ of G is defined by

$$f_G(p_1,\ldots,p_n)=(\ldots,\|p_i-p_j\|^2,\ldots),$$

where $\{i,j\} \in E(G)$ and $p_i \in \mathbb{R}^d$ for all i = 1, ..., n.

- A bar-joint framework (in \mathbb{R}^d) is a pair (G, p), where G is a graph and $p: V(G) \to \mathbb{R}^d$ is an embedding.
- Let G be a graph with $V(G) = \{1, ..., n\}$. The edge function $f_G : \mathbb{R}^{dn} \to \mathbb{R}^{|E(G)|}$ of G is defined by

$$f_G(p_1,\ldots,p_n)=(\ldots,\|p_i-p_j\|^2,\ldots),$$

where $\{i,j\} \in E(G)$ and $p_i \in \mathbb{R}^d$ for all i = 1, ..., n.

• A framework (G, p) is flexible if there exists a differentiable path $x : [0, 1] \to \mathbb{R}^{dn}$ such that x(0) = p and $x(t) \in f_G^{-1}(f_G(p)) \setminus f_{K_n}^{-1}(f_{K_n}(p))$ for all $t \in (0, 1]$. Otherwise (G, p) is called rigid.

- A bar-joint framework (in \mathbb{R}^d) is a pair (G, p), where G is a graph and $p: V(G) \to \mathbb{R}^d$ is an embedding.
- Let G be a graph with $V(G) = \{1, ..., n\}$. The edge function $f_G : \mathbb{R}^{dn} \to \mathbb{R}^{|E(G)|}$ of G is defined by

$$f_G(p_1,\ldots,p_n)=(\ldots,\|p_i-p_j\|^2,\ldots),$$

where $\{i,j\} \in E(G)$ and $p_i \in \mathbb{R}^d$ for all i = 1, ..., n.

• A framework (G, p) is flexible if there exists a differentiable path $x : [0, 1] \to \mathbb{R}^{dn}$ such that x(0) = p and $x(t) \in f_G^{-1}(f_G(p)) \setminus f_{K_n}^{-1}(f_{K_n}(p))$ for all $t \in (0, 1]$. Otherwise (G, p) is called rigid.

Figure: A flexible and a rigid framework in 2D

- A bar-joint framework (in \mathbb{R}^d) is a pair (G, p), where G is a graph and $p: V(G) \to \mathbb{R}^d$ is an embedding.
- Let G be a graph with $V(G) = \{1, ..., n\}$. The edge function $f_G : \mathbb{R}^{dn} \to \mathbb{R}^{|E(G)|}$ of G is defined by

$$f_G(p_1,\ldots,p_n)=(\ldots,\|p_i-p_j\|^2,\ldots),$$

where $\{i,j\} \in E(G)$ and $p_i \in \mathbb{R}^d$ for all i = 1, ..., n.

• A framework (G, p) is flexible if there exists a differentiable path $x : [0, 1] \to \mathbb{R}^{dn}$ such that x(0) = p and $x(t) \in f_G^{-1}(f_G(p)) \setminus f_{K_n}^{-1}(f_{K_n}(p))$ for all $t \in (0, 1]$. Otherwise (G, p) is called rigid.

Figure: A flexible and a rigid framework in 2D

Infinitesimal rigidity

• The Jacobian matrix $df_G(p)$ of f_G , evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

$$\mathbf{R}(G,p) = \begin{pmatrix} 1 & i & j & n \\ & \vdots & & \vdots \\ 0 & \dots & 0 & (p_i - p_j) & 0 & \dots & 0 & (p_j - p_i) & 0 & \dots & 0 \\ & \vdots & & & \vdots & & & \end{pmatrix} \{i,j\}$$

5/36

Infinitesimal rigidity

• The Jacobian matrix $df_G(p)$ of f_G , evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

$$\mathbf{R}(G,p) = \begin{pmatrix} 1 & i & j & n \\ & & \vdots & & \\ 0 & \dots & 0 & (p_i - p_j) & 0 & \dots & 0 & (p_j - p_i) & 0 & \dots & 0 \\ & & \vdots & & & \end{pmatrix} \{i,j\}$$

• We say that $u \in \mathbb{R}^{d|V(G)|}$ is an infinitesimal motion of (G, p) if $\mathbf{R}(G, p)u = 0$, and a trivial infinitesimal motion if it is the derivative of a motion of congruent frameworks.

Infinitesimal rigidity

• The Jacobian matrix $df_G(p)$ of f_G , evaluated at the point $p \in \mathbb{R}^{d|V(G)|}$, is (up to a constant) the rigidity matrix

- We say that $u \in \mathbb{R}^{d|V(G)|}$ is an infinitesimal motion of (G, p) if $\mathbf{R}(G, p)u = 0$, and a trivial infinitesimal motion if it is the derivative of a motion of congruent frameworks.
- (G, p) is called infinitesimally flexible in \mathbb{R}^d if there exists a non-trivial infinitesimal motion. Otherwise, (G, p) is called infinitesimally rigid.

• Thm. A framework (G, p) in \mathbb{R}^d with $|V(G)| \ge d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p)) = d|V(G)| - \binom{d+1}{2}$.

- Thm. A framework (G, p) in \mathbb{R}^d with $|V(G)| \ge d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p)) = d|V(G)| {d+1 \choose 2}$.
- Thm. Infinitesimal rigidity implies rigidity.

- Thm. A framework (G, p) in \mathbb{R}^d with $|V(G)| \ge d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p)) = d|V(G)| {d+1 \choose 2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- **Def.** A point $p \in \mathbb{R}^{dn}$ is a regular point of G if

$$\operatorname{rank}(\mathbf{R}(G,p)) \geq \operatorname{rank}(\mathbf{R}(G,q))$$
 for all $q \in \mathbb{R}^{dn}$.

Note: if p is 'generic', then p is regular.

6/36

- Thm. A framework (G, p) in \mathbb{R}^d with $|V(G)| \ge d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p)) = d|V(G)| {d+1 \choose 2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- **Def.** A point $p \in \mathbb{R}^{dn}$ is a regular point of G if

$$\operatorname{rank}(\mathbf{R}(G,p)) \geq \operatorname{rank}(\mathbf{R}(G,q))$$
 for all $q \in \mathbb{R}^{dn}$.

Note: if p is 'generic', then p is regular.

• Thm. (Asimov, Roth, 1978) Let p be a regular point of G. Then (G, p) is infinitesimally rigid if and only if (G, p) is rigid.

- Thm. A framework (G, p) in \mathbb{R}^d with $|V(G)| \ge d$ is infinitesimally rigid if and only if $\operatorname{rank}(\mathbf{R}(G, p)) = d|V(G)| {d+1 \choose 2}$.
- Thm. Infinitesimal rigidity implies rigidity.
- **Def.** A point $p \in \mathbb{R}^{dn}$ is a regular point of G if

$$\operatorname{rank}(\mathbf{R}(G, p)) \geq \operatorname{rank}(\mathbf{R}(G, q))$$
 for all $q \in \mathbb{R}^{dn}$.

Note: if p is 'generic', then p is regular.

- Thm. (Asimov, Roth, 1978) Let p be a regular point of G. Then (G, p) is infinitesimally rigid if and only if (G, p) is rigid.
- Thm. (Maxwell, 1864) If a graph G is generically d-rigid, then

$$|E(G)| \geq d|V(G)| - {d+1 \choose 2}.$$

Symmetry in frameworks

• Let (G, p) be a framework with symmetry group S, that is,

$$x(p_i) = p_{x(i)}$$
 for all $i \in V(G)$ and all $x \in S$.

Symmetry in frameworks

• Let (G, p) be a framework with symmetry group S, that is,

$$x(p_i) = p_{x(i)}$$
 for all $i \in V(G)$ and all $x \in S$.

 An infinitesimal motion u of (G, p) is S-symmetric if u is unchanged under all symmetry operations in S, that is, if

$$x(u_i) = u_{x(i)}$$
 for all $i \in V(G)$ and all $x \in S$.

Symmetry in frameworks

• Let (G, p) be a framework with symmetry group S, that is,

$$x(p_i) = p_{x(i)}$$
 for all $i \in V(G)$ and all $x \in S$.

 An infinitesimal motion u of (G, p) is S-symmetric if u is unchanged under all symmetry operations in S, that is, if

$$x(u_i) = u_{x(i)}$$
 for all $i \in V(G)$ and all $x \in S$.

Figure: (a), (b) C_s -symmetric infinitesimal motions; (c) a non-symmetric infinitesimal motion.

• Let (G, p) be a framework with symmetry group S.

- Let (G, p) be a framework with symmetry group S.
- Choose a set of representatives $\mathcal{O}_{v} = \{1, \dots, k\}$ for the vertex orbits.

- Let (G, p) be a framework with symmetry group S.
- Choose a set of representatives $\mathcal{O}_{v} = \{1, \dots, k\}$ for the vertex orbits.
- Choose a set of representatives \mathcal{O}_e for the edge orbits, so that each edge $e \in \mathcal{O}_e$ is of the form $e = \{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathcal{O}_v$.

- Let (G, p) be a framework with symmetry group S.
- Choose a set of representatives $\mathcal{O}_{v} = \{1, \dots, k\}$ for the vertex orbits.
- Choose a set of representatives \mathscr{O}_e for the edge orbits, so that each edge $e \in \mathscr{O}_e$ is of the form $e = \{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_v$.
- The orbit matrix is of size $|\mathscr{O}_e| \times \sum_{i=1}^k c_i$, where $c_i = \dim \bigcap_{x \in S: x(p_i) = p_i} F_x$ and $F_x = \{a \in \mathbb{R}^d : x(a) = a\}$.

- Let (G, p) be a framework with symmetry group S.
- Choose a set of representatives $\mathcal{O}_v = \{1, \dots, k\}$ for the vertex orbits.
- Choose a set of representatives \mathscr{O}_e for the edge orbits, so that each edge $e \in \mathscr{O}_e$ is of the form $e = \{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_v$.
- The orbit matrix is of size $|\mathscr{O}_e| \times \sum_{i=1}^k c_i$, where $c_i = \dim \bigcap_{x \in S: x(p_i) = p_i} F_x$ and $F_x = \{a \in \mathbb{R}^d : x(a) = a\}$.
- The row corresponding to an edge $\{i, x(j)\}$ is of the form

$$\begin{pmatrix} i & j \\ (0\dots 0 & (p_i-x(p_j))\mathbf{M}_i & 0\dots 0 & (p_j-x^{-1}(p_i))\mathbf{M}_j & 0\dots 0 \end{pmatrix}$$

The orbit rigidity matrix $\mathbf{O}(G, p, S)$

- Let (G, p) be a framework with symmetry group S.
- Choose a set of representatives $\mathcal{O}_{v} = \{1, \dots, k\}$ for the vertex orbits.
- Choose a set of representatives \mathscr{O}_e for the edge orbits, so that each edge $e \in \mathscr{O}_e$ is of the form $e = \{i, x(j)\}$ for some $x \in S$, where $i, j \in \mathscr{O}_v$.
- The orbit matrix is of size $|\mathscr{O}_e| \times \sum_{i=1}^k c_i$, where $c_i = \dim \bigcap_{x \in S: x(p_i) = p_i} F_x$ and $F_x = \{a \in \mathbb{R}^d : x(a) = a\}$.
- The row corresponding to an edge $\{i, x(j)\}$ is of the form

$$(0...0 (p_i - x(p_j))\mathbf{M}_i 0...0 (p_j - x^{-1}(p_i))\mathbf{M}_j 0...0)$$

• The row corresponding to an edge $\{i, x(i)\}$ is of the form

$$(0...0 (2p_i - y(p_i) - y^{-1}(p_i))\mathbf{M}_i \ 0...0 \ 0 \ 0...0)$$

$$(p_1-p_2)$$
 (p_2-p_1)

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix}$$

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix}$$

$$\begin{bmatrix}
(p_1 - p_2) & (p_2 - p_1) \\
2(p_1 - s(p_1)) & 0 & 0 \\
0 & 0 & 2(p_2 - s(p_2))
\end{bmatrix}$$

$$3 \times 4$$
 matrix

$$\begin{bmatrix}
(p_1 - p_2) & (p_2 - p_1) \\
2(p_1 - s(p_1)) & 0 & 0 \\
0 & 0 & 2(p_2 - s(p_2))
\end{bmatrix}$$

$$p_1$$
 p_3
 p_3
 p_3
 p_3
 p_3
 p_3
 p_4
 p_5

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix} \begin{bmatrix} (p_1 - p_2) & (p_2 - p_1)\binom{0}{1} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
(p_1 - p_2) & (p_2 - p_1) \\
2(p_1 - s(p_1)) & 0 & 0 \\
0 & 0 & 2(p_2 - s(p_2))
\end{bmatrix}$$

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix} \begin{bmatrix} (p_1 - p_2) & (p_2 - p_1)\binom{0}{1} & 0 \\ (p_1 - p_3) & 0 & (p_3 - p_1)\binom{0}{1} \end{bmatrix}$$

$$p_1$$
 p_2
 p_3
 p_3
 p_3
 p_3
 p_3

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix}$$

$$\begin{bmatrix} (p_1 - p_2) & (p_2 - p_1) \\ 2(p_1 - s(p_1)) & 0 & 0 \\ 0 & 0 & 2(p_2 - s(p_2)) \end{bmatrix} \begin{bmatrix} (p_1 - p_2) & (p_2 - p_1)\binom{0}{1} & 0 \\ (p_1 - p_3) & 0 & (p_3 - p_1)\binom{0}{1} \end{bmatrix}$$

 3×4 matrix

2 × 4 matrix

- Thm. (S. and Whiteley, 2010) Let (G, p) be a framework with symmetry group S. Then
 - (i) The solutions to $\mathbf{O}(G, p, S)u = 0$ are isomorphic to the space of S-symmetric infinitesimal motions of (G, p).
 - (ii) The solutions to $\omega \mathbf{O}(G, p, S) = 0$ are isomorphic to the space of S-symmetric self-stresses of (G, p).

- Thm. (S. and Whiteley, 2010) Let (G, p) be a framework with symmetry group S. Then
 - (*i*) The solutions to $\mathbf{O}(G, p, S)u = 0$ are isomorphic to the space of *S*-symmetric infinitesimal motions of (G, p).
 - (ii) The solutions to $\omega \mathbf{O}(G, p, S) = 0$ are isomorphic to the space of S-symmetric self-stresses of (G, p).
- **Df.** The configuration p of a framework (G, p) with symmetry group S is S-regular if the rank of $\mathbf{O}(G, p, S)$ is maximal.

- Thm. (S. and Whiteley, 2010) Let (G, p) be a framework with symmetry group S. Then
 - (i) The solutions to $\mathbf{O}(G, p, S)u = 0$ are isomorphic to the space of S-symmetric infinitesimal motions of (G, p).
 - (ii) The solutions to $\omega \mathbf{O}(G, p, S) = 0$ are isomorphic to the space of S-symmetric self-stresses of (G, p).
- **Df.** The configuration p of a framework (G, p) with symmetry group S is S-regular if the rank of O(G, p, S) is maximal.

Note: Choosing 'generic positions' for the vertices in \mathcal{O}_{ν} yields an S-regular configuration.

- Thm. (S. and Whiteley, 2010) Let (G, p) be a framework with symmetry group S. Then
 - (i) The solutions to $\mathbf{O}(G, p, S)u = 0$ are isomorphic to the space of S-symmetric infinitesimal motions of (G, p).
 - (ii) The solutions to $\omega \mathbf{O}(G, p, S) = 0$ are isomorphic to the space of S-symmetric self-stresses of (G, p).
- **Df.** The configuration p of a framework (G, p) with symmetry group S is S-regular if the rank of O(G, p, S) is maximal.
 - Note: Choosing 'generic positions' for the vertices in \mathcal{O}_{ν} yields an S-regular configuration.
- Thm. (S., 2009) If p is S-regular and (G, p) has an S-symmetric infinitesimal flex, then there also exists a finite flex of (G, p) which preserves the symmetry of (G, p) throughout the path.

• Let (G, p) be a framework with symmetry group S.

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of $\mathbf{O}(G, p, S)$;

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of O(G, p, S);
- Let r be the number of rows of O(G, p, S) (r is the number of edge orbits);

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let r be the number of rows of O(G, p, S) (r is the number of edge orbits);
- Let m be the dimension of the space of S-symmetric trivial infinitesimal motions.

11/36

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let r be the number of rows of O(G, p, S) (r is the number of edge orbits);
- Let m be the dimension of the space of S-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of G have no symmetry-preserving finite flex only if

$$r \geq c - m$$
.

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let r be the number of rows of O(G, p, S) (r is the number of edge orbits);
- Let m be the dimension of the space of S-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of G have no symmetry-preserving finite flex only if

$$r \geq c - m$$
.

 Rem. This count is particularly easy if S acts freely on the vertices and edges of G since then c = dk.

11/36

- Let (G, p) be a framework with symmetry group S.
- Let $c = \sum_{i=1}^{k} c_i$ be the number of columns of $\mathbf{O}(G, p, S)$;
- Let r be the number of rows of O(G, p, S) (r is the number of edge orbits);
- Let m be the dimension of the space of S-symmetric trivial infinitesimal motions.
- Thm. (S. and Whiteley, 2010) S-regular realizations of G have no symmetry-preserving finite flex only if

$$r \geq c - m$$
.

- **Rem.** This count is particularly easy if S acts freely on the vertices and edges of G since then c = dk.
- Rem. It can be tricky to find m.

$$c = 2 \cdot 2 = 4$$

$$c = 2 \cdot 2 = 4$$
$$r = 3$$

$$c = 2 \cdot 2 = 4$$

$$r = 3$$

$$m = 1$$

$$c = 2 \cdot 2 = 4$$
$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c=2\cdot 2=4$$

$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c = 2 \cdot 2 = 4$$

$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c = 2 + 2 \cdot 1 = 4$$

$$p_1$$
 p_2
 p_3
 p_3
 p_3
 p_3
 p_3
 p_4
 p_5

$$c = 2 \cdot 2 = 4$$

$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c = 2 + 2 \cdot 1 = 4$$
$$r = 2$$

$$p_1$$
 p_3
 p_3
 p_3
 p_3
 p_4
 p_5

$$c = 2 \cdot 2 = 4$$
$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c = 2 + 2 \cdot 1 = 4$$
$$r = 2$$
$$m = 1$$

$$p_1$$
 p_3 p_3

$$c = 2 \cdot 2 = 4$$

$$r = 3$$

$$m = 1$$

$$r = 3 = c - m$$

$$c = 2 + 2 \cdot 1 = 4$$

$$r = 2$$

$$m = 1$$

$$r = 2 < 3 = c - m$$

$$c = 3 \cdot 3 = 9$$

$$c = 3 \cdot 3 = 9$$
$$r = 6$$

$$c = 3 \cdot 3 = 9$$
$$r = 6$$
$$m = 2$$

$$c = 3 \cdot 3 = 9$$

$$r = 6$$

$$m = 2$$

$$r = 6 < 7 = c - m$$

$$c = 3 \cdot 3 = 9$$

$$r = 6$$

$$m = 2$$

$$r = 6 < 7 = c - m$$

$$p_1$$
 p_2 p_3

$$c = 3 \cdot 3 = 9$$
$$r = 6$$
$$m = 2$$

r = 6 < 7 = c - m

$$c=2\cdot 3+2\cdot 2=10$$

$$c = 3 \cdot 3 = 9$$

$$r = 6$$

$$m = 2$$

$$r = 6 < 7 = c - m$$

$$c = 2 \cdot 3 + 2 \cdot 2 = 10$$
$$r = 6$$

$$c = 3 \cdot 3 = 9$$
$$r = 6$$
$$m = 2$$

$$r = 6 < 7 = c - m$$

$$c = 2 \cdot 3 + 2 \cdot 2 = 10$$
$$r = 6$$
$$m = 3$$

$$c = 3 \cdot 3 = 9$$
$$r = 6$$

$$m = 2$$

 $r = 6 < 7 = c - m$

$$c = 2 \cdot 3 + 2 \cdot 2 = 10$$

$$m = 3$$

$$r = 6 < 7 = c - m$$

Thm. Let *G* be a graph with |E(G)| = 3|V(G)| - 6 and let $C_2 = \{Id, C_2\}$ be the half-turn symmetry group in 3-space.

If $j_{C_2} = b_{C_2} = 0$ (i.e., no vertices and no edges fixed by C_2), then C_2 -regular realizations of G have a symmetry-preserving finite flex.

Thm. Let G be a graph with |E(G)| = 3|V(G)| - 6 and let $C_2 = \{Id, C_2\}$ be the half-turn symmetry group in 3-space.

If $j_{C_2} = b_{C_2} = 0$ (i.e., no vertices and no edges fixed by C_2), then C_2 -regular realizations of G have a symmetry-preserving finite flex.

Proof. We have
$$c = 3\frac{|V(G)|}{2}$$
 $r = \frac{|E(G)|}{2}$ $m = 2$

$$c=3\frac{|V(G)|}{2}$$

$$r=\frac{|E(G)|}{2}$$

$$m=2$$

Thm. Let G be a graph with |E(G)| = 3|V(G)| - 6 and let $C_2 = \{Id, C_2\}$ be the half-turn symmetry group in 3-space.

If $j_{C_2} = b_{C_2} = 0$ (i.e., no vertices and no edges fixed by C_2), then C_2 -regular realizations of G have a symmetry-preserving finite flex.

$$c=3\frac{|V(G)|}{2}$$

Proof. We have
$$c = 3\frac{|V(G)|}{2}$$
 $r = \frac{|E(G)|}{2}$ $m = 2$

$$m=2$$

$$c-m = 3\frac{|V(G)|}{2}-2$$

Thm. Let G be a graph with |E(G)| = 3|V(G)| - 6 and let $C_2 = \{Id, C_2\}$ be the half-turn symmetry group in 3-space.

If $j_{C_2} = b_{C_2} = 0$ (i.e., no vertices and no edges fixed by C_2), then C_2 -regular realizations of G have a symmetry-preserving finite flex.

Proof. We have
$$c = 3\frac{|V(G)|}{2}$$
 $r = \frac{|E(G)|}{2}$ $m = 2$

$$c=3\frac{|V(G)|}{2}$$

$$r=\frac{|E(G)|}{2}$$

$$m=2$$

$$c - m = 3 \frac{|V(G)|}{2} - 2$$

$$r = 3\frac{|V(G)|}{2} - 3$$

Thm. Let G be a graph with |E(G)| = 3|V(G)| - 6 and let $C_2 = \{Id, C_2\}$ be the half-turn symmetry group in 3-space.

If $j_{C_2} = b_{C_2} = 0$ (i.e., no vertices and no edges fixed by C_2), then C_2 -regular realizations of G have a symmetry-preserving finite flex.

$$c=3\frac{|V(G)|}{2}$$

Proof. We have
$$c = 3\frac{|V(G)|}{2}$$
 $r = \frac{|E(G)|}{2}$ $m = 2$

$$m=2$$

$$c-m = 3\frac{|V(G)|}{2} - 2$$

 $r = 3\frac{|V(G)|}{2} - 3$

Thus,
$$r < c - m$$
.

14/36

Further results and extensions

Extensions to higher dimensions and other groups

Further results and extensions

- Extensions to higher dimensions and other groups
- Orbit rigidity matrix allows easy transfer of (finite) flexibility between metrics:

Symmetric infinitesimal flexes and finite flexes (at S-regular points) can be transferred from frameworks in \mathbb{E}^d to coned frameworks in \mathbb{E}^{d+1} and to frameworks in \mathbb{S}^d , \mathbb{H}^d , and \mathbb{M}^d (using symmetric coning).

[S. and Whiteley: Coning, symmetry and spherical frameworks, arXiv:1108.2174, 2011]

Further results and extensions

- Extensions to higher dimensions and other groups
- Orbit rigidity matrix allows easy transfer of (finite) flexibility between metrics: Symmetric infinitesimal flexes and finite flexes (at S-regular points) can be transferred from frameworks in \mathbb{E}^d to coned frameworks in \mathbb{E}^{d+1} and to

frameworks in \mathbb{S}^d , \mathbb{H}^d , and \mathbb{M}^d (using symmetric coning). [S. and Whiteley: Coning, symmetry and spherical frameworks,

arXiv:1108.2174, 2011]

 Combined orbit matrices for periodic frameworks with additional symmetries allow detection of finite flexes which preserve the entire crystallographic group.

In particular: Inversion symmetry in 3-space gives 4 degrees of freedom in a generically minimally rigid graph on the flexible torus! [Ross, S., and Whiteley: Finite motions from periodic frameworks with added symmetry, IJSS 48, 1711-1729, 2011]

Part II

Applications to protein flexibility

Symmetry in molecules

 The well developed theory of generic rigidity of frameworks allows for basic predictions of flexibility of molecules

Symmetry in molecules

- The well developed theory of generic rigidity of frameworks allows for basic predictions of flexibility of molecules
- Observation: molecules often exhibit rotational symmetries:

		Point symmetry	
Protein	Number of subunits	Crystallographic symbol	Schönflies symbol
Alcohol dehydrogenase (234)	2	2	C ₂
Immunoglobulin (294)	4	2	C_2
s-Malate dehydrogenase (233)	2	2	C ₂
Superoxide dismutase (286)	2	2 2 2 2 2 2	C ₂
Triose phosphate isomerase (305)	2	2	C ₂
Phosphorylase (236)	2	2	C ₂
Alkaline phosphatase (317)	2 2	2	C ₂
6-Phosphogluconate dehydrogenase (318)	2	2	C_2
Wheat germ agglutinin (316)	2	2	C ₂
Glucose phosphate isomerase (313)	2		C ₂
Tyr-tRNA-synthetase (221)	2	2 2 2	C ₂
Glutathione reductase (124)	2	2	C ₂
Aldolase (306)	3	3	C_3
Bacteriochlorophyll protein (303)	3	3	C ₃
Glucagon (278)	(3)	3	C ₃
TMV-protein disc (218)	17	17	C ₁₇
Concanavalin A (281, 282)	4	222-	D_2
Glyceraldehyde-3-phosphate dehydrogenase (230, 231)	4	222	D_2
Lactate dehydrogenase (232)	4	222	D_2
Prealbumin (206)	4	222	D_2
Pyruvate kinase (80)	4	222	D_2
Phosphoglycerate mutase (307)	4	222	D_{\circ}
Hemoglobin (human) (274)	2 + 2	Pseudo 222	Pseudo Do
Insulin (259)	6	32	D_3
Aspartate transcarbamoylase (319)	6 + 6	32	D_3
Hemerythrin (217)	8	422	D_4 .
Apoferritin (320)	24	432	0
Coat of tomato bushy stunt virus (263)	180	532	Y

 Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space

A body-bar framework in 3D

 Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space

A body-bar framework in 3D

 A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments

 Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space

A body-bar framework in 3D

- A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments
- The underlying combinatorial structure is a multi-graph

19/36

 Molecular flexibility can be studied via the theory of rigid body-bar frameworks in 3-space

A body-bar framework in 3D

- A body-bar framework consists of 'rigid bodies' in the given dimension, attached by bars with rotatable vertex attachments
- The underlying combinatorial structure is a multi-graph
- A body-bar framework can be modeled as a bar-joint framework by replacing each body with an isostatic bar-joint framework

Necessary and sufficient conditions for rigidity

- Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph G = (B, E) is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars E^* such that:
 - (i) $|E^*| = 6|B| 6$;
 - (ii) $|E'| \le 6|B'| 6$ for all subgraphs induced by subsets E' of E^* .

Necessary and sufficient conditions for rigidity

• Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph G = (B, E) is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars E^* such that:

(i)
$$|E^*| = 6|B| - 6$$
;

- (ii) $|E'| \le 6|B'| 6$ for all subgraphs induced by subsets E' of E^* .
- Note: For generic selections of the lines of the bars, infinitesimal rigidity is equivalent to continuous (finite) rigidity;

Necessary and sufficient conditions for rigidity

• Theorem (Tay, 1980): A body-bar framework in 3D with a multi-graph G = (B, E) is infinitesimally rigid (and rigid) for generic selections of the lines of the bars if and only if there is a subset of bars E^* such that:

(i)
$$|E^*| = 6|B| - 6$$
;

- (ii) $|E'| \le 6|B'| 6$ for all subgraphs induced by subsets E' of E^* .
- Note: For generic selections of the lines of the bars, infinitesimal rigidity is equivalent to continuous (finite) rigidity;
- Algorithmically, Tay's counts lead to a greedy algorithm called the pebble game, which has a running time of O(|B||E|).

Application: Flexibility of molecular frameworks

 Tay's counts (and the corresponding pebble game algorithms) also characterize generically rigid body-hinge frameworks (Tay, Whiteley, 1985) and even generically rigid molecular frameworks (Katoh, Tanigawa, 2010).

Body-hinge framework

Molecular framework

21/36

$$|B| = 6$$

$$\begin{aligned} |B| &= 6 \\ |E| &= 6 \times 5 = 30 \end{aligned}$$

$$|B| = 6$$

$$|E| = 6 \times 5 = 30$$

$$|E| = 6|B| - 6 = 30 \checkmark$$

$$|E|=6|B|-6=30$$
 \checkmark $|E'|\leq 6|B'|-6$ \checkmark (via pebble game e.g.)

Cyclohexane:

$$|B| = 6$$

$$|E| = 6 \times 5 = 30$$

$$|E| = 6|B| - 6 = 30 \checkmark$$

$$|E| = 6|B| - 6 = 30 \checkmark$$
 $|E'| \le 6|B'| - 6 \checkmark$ (via pebble game e.g.)

Conclusion: Cyclohexane is generically rigid (in fact, isostatic).

Symmetry can lead to added flexibility

Two basic conformations of cyclohexane:

Three-fold symmetry
Rigid

Half-turn symmetry Flexible

Symmetry can lead to added flexibility

Two basic conformations of cyclohexane:

Three-fold symmetry
Rigid

Half-turn symmetry Flexible

We can detect this via our symmetric Maxwell counts (under the assumption that the 'Symmetric Molecular Conjecture' holds)!

Cyclohexane (boat conformation - \mathcal{C}_2 symmetry)

Cyclohexane (boat conformation - C_2 symmetry)

$$|B| = 6; |E| = 6 \times 5 = 30$$

$$|B_0| = 3; |E_0| = 3 \times 5 = 15$$

Cyclohexane (boat conformation - C_2 symmetry)

$$|B| = 6; |E| = 6 \times 5 = 30$$

$$|B_0| = 3; |E_0| = 3 \times 5 = 15$$

2-dim. space of trivial symmetry-preserving motions

Cyclohexane (boat conformation - C_2 symmetry)

$$|B| = 6$$
; $|E| = 6 \times 5 = 30$

$$|B_0| = 3$$
; $|E_0| = 3 \times 5 = 15$

2-dim. space of trivial symmetry-preserving motions

$$|E_0| = 15 < 16 = 6|B_0| - 2$$

Cyclohexane (boat conformation - C_2 symmetry)

$$|B| = 6; |E| = 6 \times 5 = 30$$

$$|B_0| = 3$$
; $|E_0| = 3 \times 5 = 15$

2-dim. space of trivial symmetry-preserving motions

$$|E_0| = 15 < 16 = 6|B_0| - 2$$

Conclusion: There exists a symmetry-preserving finite motion!

24 / 36

Symmetric Tay's theorem for the group C_2

• **Theorem:** A body-bar framework in 3D (with multi-graph G = (B, E)) which has \mathcal{C}_2 symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the \mathcal{C}_2 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

(i)
$$|E_0^*| = 6|B_0| - 2$$
;

(ii)
$$|E_0'| \le 6|B_0'| - 2$$
 for all subsets E_0' of E_0^* .

Symmetric Tay's theorem for the group C_2

• **Theorem:** A body-bar framework in 3D (with multi-graph G = (B, E)) which has \mathcal{C}_2 symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the \mathcal{C}_2 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

(i)
$$|E_0^*| = 6|B_0| - 2$$
;

- (ii) $|E_0'| \le 6|B_0'| 2$ for all subsets E_0' of E_0^* .
- This is a necessary condition for \mathcal{C}_2 -rigidity! Failure to satisfy these counts guarantees the existence of a \mathcal{C}_2 -symmetric infinitesimal flex, and for \mathcal{C}_2 -regular realizations also the existence of a symmetry-preserving finite flex.

25/36

Symmetric Tay's theorem for the group C_2

• **Theorem:** A body-bar framework in 3D (with multi-graph G = (B, E)) which has \mathcal{C}_2 symmetry, has no body and no bar 'fixed' by the half-turn, and is generic modulo the \mathcal{C}_2 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0| 2$;
- (ii) $|E_0'| \le 6|B_0'| 2$ for all subsets E_0' of E_0^* .
- This is a necessary condition for C₂-rigidity!
 Failure to satisfy these counts guarantees the existence of a C₂-symmetric infinitesimal flex, and for C₂-regular realizations also the existence of a symmetry-preserving finite flex.
- Note: If G = (B, E) satisfies |E| = 6|B| 6, then we have $|E_0| = 6|B_0| 3$. Thus, we detect a finite flex which preserves the C_2 symmetry!

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars

$$|B| = 8;$$
 $|E| = 4 \times 5 + 4 \times 5 + 4 = 44$
 $|E| = 44 > 42 = 6|B| - 6$ - overbraced

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars

$$|B| = 8$$
; $|E| = 4 \times 5 + 4 \times 5 + 4 = 44$
 $|E| = 44 > 42 = 6|B| - 6$ - overbraced
 $|B_0| = 4$; $|E_0| = 2 \times 5 + 2 \times 5 + 2 = 22$

$$|E_0| = 22 = 6|B_0| - 2$$
 - still no motion

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars

$$|B| = 8;$$
 $|E| = 4 \times 5 + 4 \times 5 + 4 = 44$ $|E| = 44 > 42 = 6|B| - 6$ - overbraced

$$|B_0| = 4$$
; $|E_0| = 2 \times 5 + 2 \times 5 + 2 = 22$
 $|E_0| = 22 = 6|B_0| - 2$ - still no motion

Each 4-fold ring:
$$|\overline{E}_0| = 10 = 6|\overline{B}_0| - 2$$

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars

$$|B| = 8$$
; $|E| = 4 \times 5 + 4 \times 5 + 4 = 44$
 $|E| = 44 > 42 = 6|B| - 6$ - overbraced

$$|B_0| = 4$$
; $|E_0| = 2 \times 5 + 2 \times 5 + 2 = 22$
 $|E_0| = 22 = 6|B_0| - 2$ - still no motion

Each 4-fold ring:
$$|\overline{E}_0| = 10 = 6|\overline{B}_0| - 2$$

Each 4-fold ring is overbraced by 2, so we may select only 18 bars from each ring to make the subset E^* . This gives the count

$$|E^*| = 18 + 18 + 4 = 40 < 42 = 6|B| - 6.$$

Two 4-fold molecular rings sharing a 2-fold axis, connected by 4 bars

$$|B| = 8$$
; $|E| = 4 \times 5 + 4 \times 5 + 4 = 44$
 $|E| = 44 > 42 = 6|B| - 6$ - overbraced

$$|B_0| = 4$$
; $|E_0| = 2 \times 5 + 2 \times 5 + 2 = 22$
 $|E_0| = 22 = 6|B_0| - 2$ - still no motion

Each 4-fold ring:
$$|\overline{E}_0| = 10 = 6|\overline{B}_0| - 2$$

Each 4-fold ring is overbraced by 2, so we may select only 18 bars from each ring to make the subset E^* . This gives the count

$$|E^*| = 18 + 18 + 4 = 40 < 42 = 6|B| - 6.$$

Conclusion: We detect a finite motion which is not detected by the symmetric counts. To test for rigidity we need both of the criteria!

26 / 36

Symmetric pebble game for the group C_2

Algorithm: Given a body-bar multi-graph G = (B, E) with C_2 symmetry (e.g., a dimer), apply the following sequence of steps:

Symmetric pebble game for the group C_2

Algorithm: Given a body-bar multi-graph G = (B, E) with C_2 symmetry (e.g., a dimer), apply the following sequence of steps:

(1) Apply the 6|B|-6 pebble game to the entire framework. If this step returns a maximal set of edges E^* with $|E^*|<6|B|-6$, then the framework is flexible; (for efficiency, apply it to one protein (storing that), then copy the pebble placements to the second protein, and proceed with the pebble game on the bridging bars);

Symmetric pebble game for the group C_2

Algorithm: Given a body-bar multi-graph G = (B, E) with C_2 symmetry (e.g., a dimer), apply the following sequence of steps:

- (1) Apply the 6|B| 6 pebble game to the entire framework. If this step returns a maximal set of edges E* with |E*| < 6|B| - 6, then the framework is flexible; (for efficiency, apply it to one protein (storing that), then copy the pebble placements to the second protein, and proceed with the pebble game on the bridging bars);
- (2) Start from the 6|B|-6 output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the two proteins, using the $6|B_0|-2$ pebble game. If this produces a maximal set E_0^* of edges with $|E_0^*|<6|B_0|-2$, then the dimer is flexible.

Further remarks on the flexibility of dimers with C_2 symmetry

 We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$|E| = 2|E_0| = 2(6|B_0| - 2) > 6|B| - 6$$

Further remarks on the flexibility of dimers with \mathcal{C}_2 symmetry

 We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$|E| = 2|E_0| = 2(6|B_0| - 2) > 6|B| - 6$$

 On the other hand, the dimer could be stably trapped in 2-fold symmetric configurations with one degree of freedom to function.

Further remarks on the flexibility of dimers with \mathcal{C}_2 symmetry

 We might anticipate that a dimer pair which is initially predicted to be flexible, moves along the path and stabilizes with an additional hydrogen bond. This would lead to a redundantly rigid structure (which is conjectured to be a 'stable' molecule), because

$$|E| = 2|E_0| = 2(6|B_0| - 2) > 6|B| - 6$$

- On the other hand, the dimer could be stably trapped in 2-fold symmetric configurations with one degree of freedom to function.
- Allostery (shape change at a distance) frequently occurs in dimers with \mathcal{C}_2 symmetry.

The symmetry group \mathcal{D}_2

Added flexibility due to \mathcal{D}_2 symmetry

• **Theorem:** A body-bar framework in 3D (with multi-graph G = (B, E)) which has \mathcal{D}_2 symmetry, has no body and no bar 'fixed' by any of the half-turns, and is generic modulo the \mathcal{D}_2 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0|$;
- (ii) $|E_0'| \le 6|B_0'|$ for all subsets E_0' of E_0^* .

Added flexibility due to \mathcal{D}_2 symmetry

• **Theorem:** A body-bar framework in 3D (with multi-graph G=(B,E)) which has \mathcal{D}_2 symmetry, has no body and no bar 'fixed' by any of the half-turns, and is generic modulo the \mathcal{D}_2 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0|$;
- (ii) $|E_0'| \le 6|B_0'|$ for all subsets E_0' of E_0^* .
- Note: If G=(B,E) satisfies |E|=6|B|-4 (i.e., G is over-constrained by 2), then we have $|E_0|=6|B_0|-1$. Thus, we detect a finite flex which preserves the \mathcal{D}_2 symmetry!

Algorithm: Given a body-bar multi-graph G = (B, E) with \mathcal{D}_2 symmetry, apply the following sequence of steps:

Algorithm: Given a body-bar multi-graph G = (B, E) with \mathcal{D}_2 symmetry, apply the following sequence of steps:

(1) Apply the 6|B| - 6 pebble game to the entire framework. If this step returns a maximal set of edges E* with |E*| < 6|B| - 6, then the framework is flexible; (for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);</p>

Algorithm: Given a body-bar multi-graph G = (B, E) with \mathcal{D}_2 symmetry, apply the following sequence of steps:

- (1) Apply the 6|B|-6 pebble game to the entire framework. If this step returns a maximal set of edges E^* with $|E^*|<6|B|-6$, then the framework is flexible; (for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);
- (2) Start from the 6|B|-6 output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the copies, using the $6|B_0|$ pebble game. If this produces a maximal set E_0^* of edges with $|E_0^*| < 6|B_0|$, then the protein is flexible.

Algorithm: Given a body-bar multi-graph G = (B, E) with \mathcal{D}_2 symmetry, apply the following sequence of steps:

- (1) Apply the 6|B|-6 pebble game to the entire framework. If this step returns a maximal set of edges E^* with $|E^*|<6|B|-6$, then the framework is flexible; (for efficiency, apply it to one copy (storing that), then copy the pebble placements to the other copies, and proceed with the pebble game on the bridging bars);
- (2) Start from the 6|B|-6 output on one copy of the protein (which represents all orbits of vertices and a subset of orbits of edges). With this pebbling preserved, test only the edge orbits between the copies, using the $6|B_0|$ pebble game. If this produces a maximal set E_0^* of edges with $|E_0^*| < 6|B_0|$, then the protein is flexible.

Note that we need to check both counts, since there are frameworks which are under-braced (i.e., step (1) detects a flex), but do not have any symmetric flex (i.e., step (2) does not detect a flex).

The symmetry group \mathcal{D}_3

Added flexibility due to \mathcal{D}_3 symmetry

• **Theorem:** A body-bar framework in 3D (with multi-graph G = (B, E)) which has \mathcal{D}_3 symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the \mathcal{D}_3 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0|$;
- (ii) $|E_0'| \le 6|B_0'|$ for all subsets E_0' of E_0^* .

Added flexibility due to \mathcal{D}_3 symmetry

• **Theorem:** A body-bar framework in 3D (with multi-graph G=(B,E)) which has \mathcal{D}_3 symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the \mathcal{D}_3 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0|$;
- (ii) $|E_0'| \le 6|B_0'|$ for all subsets E_0' of E_0^* .
- Note: If G = (B, E) satisfies |E| = 6|B| 6 (i.e., G counts to be isostatic), then we have $|E_0| = 6|B_0| 1$. Thus, we detect a finite flex which preserves the \mathcal{D}_3 symmetry!

Added flexibility due to \mathcal{D}_3 symmetry

• **Theorem:** A body-bar framework in 3D (with multi-graph G=(B,E)) which has \mathcal{D}_3 symmetry, has no body and no bar 'fixed' by any of the rotations, and is generic modulo the \mathcal{D}_3 symmetry, has only trivial symmetry-preserving motions only if there is a subset of bars E_0^* such that:

- (i) $|E_0^*| = 6|B_0|$;
- (ii) $|E_0'| \le 6|B_0'|$ for all subsets E_0' of E_0^* .
- Note: If G = (B, E) satisfies |E| = 6|B| 6 (i.e., G counts to be isostatic), then we have $|E_0| = 6|B_0| 1$. Thus, we detect a finite flex which preserves the \mathcal{D}_3 symmetry!
- The symmetric pebble game for \mathcal{D}_3 is analogous to the one for \mathcal{D}_2 .

• Symmetry (in particular C_2 , D_2 and D_3 symmetry in 3-space) can induce additional flexibility in a framework;

34/36

- Symmetry (in particular C_2 , D_2 and D_3 symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;

- Symmetry (in particular C₂, D₂ and D₃ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;

- Symmetry (in particular C₂, D₂ and D₃ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;
- There exist fast extended pebble game algorithms to check these new counts. Both the old and the new criteria should be checked when testing a protein for flexibility!

- Symmetry (in particular C₂, D₂ and D₃ symmetry in 3-space) can induce additional flexibility in a framework;
- We have established new sufficient conditions (symmetry-adapted Tay-type counts) for the existence of a finite motion which preserves the symmetry of the framework, provided it is realized generically within the symmetry;
- These new conditions provide further sufficient conditions for flexibility, in addition to Tay's non-symmetric counts;
- There exist fast extended pebble game algorithms to check these new counts. Both the old and the new criteria should be checked when testing a protein for flexibility!
- Symmetry should be incorporated into the study of molecular motions and allosteric behavior!

 Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)

35/36

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations
- How can we detect flexes in structure which possess multiple symmetric components (such as β -sheets e.g.)?

- Sufficient conditions for symmetric / periodic orbit matrices to have full rank (initial results by Ross, Streinu, Theran, etc.)
- Orbit matrices for other (non-trivial) irreducible representations
- How can we detect flexes in structure which possess multiple symmetric components (such as β -sheets e.g.)?

• How do we detect motions in finite repetitive structures?

Thanks!

Questions?

bschulze@fields.utoronto.ca