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Gain Graph (G, m)
e directed multigraph G = (V, E)
® Gain assignment m: Et — 7.9

® Gain group 79
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Derived Graph G™
® Vertices: V x 79
e Edges: E x 29

® edges determined by gains
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Periodic Orbit Frameworks on the Torus

A periodic framework ((E, L), p) is an infinite graph with periodic structure,
placed periodically in RY.
A periodic orbit framework ({G, m), p) is:
e a gain graph (G, m) with gain group Z4
eamapp:V —7T¢ =Rz
L

(0,1)

Every periodic framework in R? can be represented as a periodic orbit framework
on a torus T
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o Fixed torus: assume torus is of fixed shape and dimension
e An infinitesimal motion of ((G,m),p) on 7 is a functionu: V — RY s.t.

(i —uj)-(pi — (pj +me)) =0

for all e = {i,j,m.} € E(G, m)

uy
uz

1 =

P1 p2 + me

e u is trivial if it corresponds to a translation of ((G, m),p) on 77

e ((G, m),p) is infinitesimally rigid on T if the only infinitesimal motions of
the framework are trivial.
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Fixed Torus Rigidity Matrix
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Fixed Torus Rigidity Matrix

The periodic rigidity matrix Ro({G, m), p) is the |E| x d|V/| matrix

uj; 0

pi—(pjt+me) - (pj+me)—pi - B
U‘V‘ 0

e ((G, m),p) infinitesimally rigid on 7 <= rankRy((G, m),p) = d|V|—d.

e minimally rigid = infinitesimally rigid and independent

Theorem (Periodic Maxwell Rule, Whiteley 1988)

If ((G, m),p) is minimally rigid on the fixed torus T, then |E| = d|V| — d.

e The rigidity properties of a generic framework are properties of the periodic
orbit graph (G, m), NOT the configuration p.
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Periodic Inductive Constructions (2 dimensions)

e Periodic inductive constructions preserve generic rigidity
e Periodic vertex addition: add a 2-valent vertex:

’
U
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e Periodic edge split: Add a 3-valent vertex, delete an edge, preserve gain on
deleted edge:

@ @ @ @ my + my = me @ @ mp + my = me

\/ m # ma!
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Periodic Inductive Constructions

e These moves are really “local”

e easy to see that inductions hold for “some” choice of gains

Vertex additions:
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Periodic Inductive Constructions

e These moves are really “local”

e easy to see that inductions hold for “some” choice of gains
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it can be constructed from a single vertex by a series of periodic vertex additions
and edge splits.

e Basic observation: the single vertex is rigid on the fixed torus

e Add a two-valent vertex, creating a non-zero cycle gain
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Periodic Laman Theorem

=

Constructive gain assignment for G on 72: Every subgraph G’ C G with
|E’| =2|V'| — 2 contains a cycle with non-trivial net gain.

Theorem ( R., 2009)

The periodic orbit framework ((G, m), p) is generically minimally rigid on T3 if

and only if |E| =2|V| - 2,
constructive.

E'|<2|V'|=2forall G' C G, and m: E* — Z? is

e Proof by induction

e Periodic Laman theorem on 77 naturally leads to an algorithm, based on the
pebble game.
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T-gain procedure

e T-gain procedure: tool to identify a fundamental system of cycles (Gross &
Tucker, 1987)

o THEOREM: preserves rank of rigidity matrix

(0,-1)
(1,0) / (1,-1) /
o 1) (0.1) / (0,0)
O—0 @4(0, HN——Q
0,—-1
(G, m) ( ) (G, mT1)
A A

® graph isomorphism between G and G™T

not an affine transformation, the graphs
are homotopic

same rigidity properties
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d-Dimensional Rigidity on the Fixed Torus

Theorem (R., 2011)

Let ((G,m),p) be a minimally rigid framework on T¢. Then |E| = d|V| — d, and
for all subsets of edges Y C E,
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Let ((G,m),p) be a minimally rigid framework on T¢. Then |E| = d|V| — d, and
for all subsets of edges Y C E,

[Me(Y)
visdvini-(“3H)+ X @-n.

i=1
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Bar-Body Frameworks for d = 2

Finite Periodic
Counts |E| =3|V|—-3 |E| =3|V|—2

(Gain) Graph H=(V,E) (H, m)

(5— -
B B> B
Framework (H,q) in R? ((H,m), q) on 7§
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Bar-Body Frameworks for all d (Further Work)

Theorem (R., 2011)

Let (H, m) be a generically minimally rigid bar-body framework on T, with
|E| = (“31)|V| — d. Then for all nonempty subsets Y C E of edges,

[Mec(Y)]
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Bar-Body Frameworks for all d (Further Work)

Theorem (R., 2011)

Let (H, m) be a generically minimally rigid bar-body framework on T, with
|E| = (“31)|V| — d. Then for all nonempty subsets Y C E of edges,

|Y|§(d+1)|v(y)| <d+1) IMi(:Y W

Conjecture: also sufficient
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e Scaling: forced vs. incidental periodicity
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