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Zeolites

• Zeolites: Aluminosilicate minerals with “pore”-like structure

• Mathematical Zeolites: corner-sharing d-simplices, two at each corner

COMBINATORIAL 2D ZEOLITES 3

mechanism. Since K3,3 is not planar, K2
3 is not planar either. Studying the motion

of the corresponding unit distance mechanism by assigning uniform weight to the
triangles and keeping the center of gravity fixed, we find that the convex hull
changes from an equilateral triangle to a regular hexagon of side-length 1.

In [1] unit distance graphs were studied in a different context, namely to answer
a question of Erdös and Purdy, who asked for the minimum number p(n) of points
in the plane such that each point has distance 1 to exactly n other of the p(n)
points. For n = 4 this yields K2

3 and other intriguing examples suggest possible
generalizations.

1.2. Planar examples of 2-d zeolites. In unit distance realizations of K2
3 tri-

angles overlap. The non-overlapping case was studied in [2], where a general con-
struction for a class of finite planar zeolites is given. All these finite examples are
rigid, not just generically, but also in their unit-distance realization.

A planar 3-regular body-pin graph on t vertices has 3t/2 edges. Its line graph
is also planar, is 4-regular and has n = 3t/2 vertices and e = 3t edges. A plane
realization has, by Euler’s formula, n + 2 faces, t of which are the given triangles.
Each edge is, in a planar rendering, the boundary between a triangle and a ”hole”.
Dividing the number of edges by the number of holes, we get an average hole size
(i.e. the number of edges along the hole boundary) of 6n/(6+n), so for large n the
average hole size is 6.

An infinite example is the Kagome lattice, see Figure 3, where each hole is a

Figure 3. The Kagome Zeolite perturbed with congruent holes.

regular hexagon, which indicates that in this embedding of the underlying graph
the holes take up the maximum possible area. This unit-distance realization is not
rigid, in fact behaves as a mechanism if we insist that all the holes remain congruent
and are translates of one another. Under these periodicity conditions the Kagome
lattice can be deformed continuously without changing edge-lengths and without
overlapping triangles so that the area covered by the holes becomes zero.

Another infinite example is given in Figure 4, where the holes are squares and
octagons. Here all octagons cannot simultaneously be embedded regularly. A unit
distance embedding has more than one degree of freedom, so it is not as clear as
in the Kagome case whether in this figure the holes occupy the maximum possible
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Introduction

Problem
When is an infinite periodic framework rigid, so that its parts cannot be moved
periodically with respect to one another?

1

Other contributors to periodic rigidity:

• Whiteley (frame matroids, 1988)

• Connelly (sphere packings, 1988–)

• Guest & Hutchinson (zeolites, 2003–)

• Owen & Power (operator theory methods, 2009–)

• Borcea & Streinu (2010–)

• Malestein & Theran (2010–)
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OUTLINE

1 Periodic frameworks as finite graphs on a torus: gain graphs

2 Frameworks on a fixed torus

• 2-D: Henneberg & Laman results
• n-D: necessary conditions
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Gain Graphs

1

2

3

4

d = 2

(0, 0)

(0, 0)

(1, 0)

(0, 1)

(0, 0)

(0, 0)

Gain Graph 〈G , m〉
• directed multigraph G = (V , E)

• Gain assignment m : E+ → Zd

• Gain group Zd

Derived Graph Gm

• Vertices: V × Zd

• Edges: E × Zd

• edges determined by gains
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Periodic Orbit Frameworks on the Torus

A periodic framework (〈G̃ , L〉, p̃) is an infinite graph with periodic structure,
placed periodically in Rd .

A periodic orbit framework (〈G , m〉,p) is:
• a gain graph 〈G , m〉 with gain group Zd

• a map p : V → T d
0 = Rd/Zd

1

2

3

4 (1, 0)

(0, 1)

〈G , m〉

(〈G , m〉, p) on T 2
0

(Gm, pm) in Rd

Theorem

Every periodic framework in Rd can be represented as a periodic orbit framework
on a torus T d

0 .
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Infinitesimal Rigidity on the Fixed Torus

• Fixed torus: assume torus is of fixed shape and dimension

• An infinitesimal motion of (〈G , m〉,p) on T d
0 is a function u : V → Rd s.t.

(ui − uj) · (pi − (pj + me)) = 0

for all e = {i , j , me} ∈ E 〈G , m〉

p1 p2 + me

u1
u2

• u is trivial if it corresponds to a translation of (〈G , m〉,p) on T 2
0

• (〈G , m〉,p) is infinitesimally rigid on T d
0 if the only infinitesimal motions of

the framework are trivial.
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Fixed Torus Rigidity Matrix

The periodic rigidity matrix R0(〈G , m〉,p) is the |E | × d |V | matrix · · · pi − (pj + me) · · · (pj + me)− pi · · ·


 u1

...
u|V |

 =

 0
...
0



• (〈G , m〉,p) infinitesimally rigid on T d
0 ⇐⇒ rankR0(〈G , m〉,p) = d |V | − d .

• minimally rigid = infinitesimally rigid and independent

Theorem (Periodic Maxwell Rule, Whiteley 1988)

If (〈G , m〉,p) is minimally rigid on the fixed torus T d
0 , then |E | = d |V | − d.

• The rigidity properties of a generic framework are properties of the periodic
orbit graph 〈G , m〉, NOT the configuration p.
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Periodic Inductive Constructions (2 dimensions)

• Periodic inductive constructions preserve generic rigidity

• Periodic vertex addition: add a 2-valent vertex:

1

2

1

2

0m1

m2

1

2

0
m1

m′1

m1 6= m1′

• Periodic edge split: Add a 3-valent vertex, delete an edge, preserve gain on
deleted edge:

1

23

me

1

23

0
m1

m2

m1 + m2 = me

1

23

0
m1

m2

m2′

m1 + m2 = me

m2 6= m2′
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• Periodic vertex addition: add a 2-valent vertex:
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Periodic Inductive Constructions

• These moves are really “local”

• easy to see that inductions hold for “some” choice of gains

Vertex additions:

1

2

0 1

2

0
(1, 0)

Edge splits:

1

23

0
1

23

0
(−1, 0)
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Periodic Henneberg Theorem

Theorem (R., 2009)

A periodic orbit framework (〈G , m〉,p) with |E | = 2|V | − 2 is infinitesimally rigid
on the fixed torus T 2

0

⇐⇒

it can be constructed from a single vertex by a series of periodic vertex additions
and edge splits.

• Basic observation: the single vertex is rigid on the fixed torus

• Add a two-valent vertex, creating a non-zero cycle gain

1

2

(1, 0)
(0, 0)
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Periodic Laman Theorem

1 2

34

5 6

rigid:
(0, 1)

(1, 0)

(1, 0)

1 2

34

5 6

flexible:
(0, 1)

(1, 0)

Constructive gain assignment for G on T 2
0 : Every subgraph G ′ ⊆ G with

|E ′| = 2|V ′| − 2 contains a cycle with non-trivial net gain.

Theorem ( R., 2009)

The periodic orbit framework (〈G , m〉,p) is generically minimally rigid on T 2
0 if

and only if |E | = 2|V | − 2, |E ′| ≤ 2|V ′| − 2 for all G ′ ⊆ G , and m : E + → Z2 is
constructive.

• Proof by induction

• Periodic Laman theorem on T 2
0 naturally leads to an algorithm, based on the

pebble game.
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T-gain procedure

• T-gain procedure: tool to identify a fundamental system of cycles (Gross &
Tucker, 1987)

• THEOREM: preserves rank of rigidity matrix

1 2

3

(1, 0)

(0, 1)

〈G , m〉

1 2

3

(1, 0)

(0, 1)

(0,−1)

u (0,−1)

1 2

3

(0, 1)

(1,−1)

(0, 0)

〈G , mT 〉

• graph isomorphism between Gm and GmT

• not an affine transformation, the graphs
are homotopic

• same rigidity properties
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d-Dimensional Rigidity on the Fixed Torus

Theorem (R., 2011)

Let (〈G , m〉,p) be a minimally rigid framework on T d
0 . Then |E | = d |V | − d, and

for all subsets of edges Y ⊆ E ,

|Y | ≤ d |V (Y )| −
(

d + 1

2

)
+

|MC(Y )|∑
i=1

(d − i).

1

2

3

4
5

6

7
8

Periodic Bananas:

|E | = 3|V | − 6

(0, 1, 0)(1, 0, 0) (0, 0, 1)

|E | = 3|V | − 3
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Bar-Body Frameworks for d = 2

Finite Periodic
Counts

|E | = 3|V | − 3 |E | = 3|V | − 2

B1 B2 B1 B2

(0, 1)

(Gain) Graph

H = (V , E ) 〈H, m〉

B1 B2 B1

B2

Framework

(H, q) in R2 (〈H, m〉, q) on T 2
0
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Bar-Body Frameworks for all d (Further Work)

Theorem (R., 2011)

Let 〈H, m〉 be a generically minimally rigid bar-body framework on T d
0 , with

|E | =
(
d+1

2

)
|V | − d. Then for all nonempty subsets Y ⊆ E of edges,

|Y | ≤
(

d + 1

2

)
|V (Y )| −

(
d + 1

2

)
+

|MC(Y )|∑
i=1

(d − i).

Conjecture: also sufficient
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|Y | ≤
(

d + 1

2

)
|V (Y )| −

(
d + 1

2

)
+

|MC(Y )|∑
i=1

(d − i).

Conjecture: also sufficient
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Other Questions

• Periodic frameworks with extra symmetry:

• R., Schulze, Whiteley (2011) found necessary conditions for periodic
frameworks for many symmetry groups in 2 and 3 dimensions, fixed and
flexible torus

• Malestein & Theran (2011) find sufficient conditions for periodic frameworks
with symmetry given by rotations and translations in 2 dimensions, on the
flexible torus

• Inductive characterizations of frameworks on the partially or fully flexible torus

• Global rigidity for periodic frameworks

• finite repetitive frameworks

• Scaling: forced vs. incidental periodicity
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The End

Thank you
Questions?
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