The Rigidity of Periodic Frameworks as Graphs on a Torus

Elissa Ross

Fields Institute

October 17, 2011

Workshop on Rigidity and Symmetry

・ロト ・ 四ト ・ ヨト ・ ヨト

Zeolites

• Zeolites: Aluminosilicate minerals with "pore"-like structure

(ロ) (四) (注) (注) (注) (注)

Zeolites

• Zeolites: Aluminosilicate minerals with "pore"-like structure

• Mathematical Zeolites: corner-sharing *d*-simplices, two at each corner

CLICK

3

イロト イロト イヨト イヨト

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

OUTLINE

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

OUTLINE

• Periodic frameworks as finite graphs on a torus: gain graphs

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

OUTLINE

- Periodic frameworks as finite graphs on a torus: gain graphs
- Prameworks on a fixed torus

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

OUTLINE

- Periodic frameworks as finite graphs on a torus: gain graphs
- Prameworks on a fixed torus
 - 2-D: Henneberg & Laman results

Problem

When is an infinite periodic framework rigid, so that its parts cannot be moved periodically with respect to one another?

Other contributors to periodic rigidity:

- Whiteley (frame matroids, 1988)
- Connelly (sphere packings, 1988–)
- Guest & Hutchinson (zeolites, 2003-)
- Owen & Power (operator theory methods, 2009–)

イロト イポト イヨト イヨト

- Borcea & Streinu (2010–)
- Malestein & Theran (2010-)

OUTLINE

- Periodic frameworks as finite graphs on a torus: gain graphs
- Prameworks on a fixed torus
 - 2-D: Henneberg & Laman results
 - *n*-D: necessary conditions

Gain Graph $\langle G, m \rangle$

• directed multigraph G = (V, E)

æ

イロト イポト イヨト イヨト

Gain Graph $\langle G, m \rangle$

- directed multigraph G = (V, E)
- Gain assignment $m: E^+ \to \mathbb{Z}^d$
- Gain group \mathbb{Z}^d

æ

イロト イポト イヨト イヨト

Gain Graph $\langle G, m \rangle$

- directed multigraph G = (V, E)
- Gain assignment $m: E^+ \to \mathbb{Z}^d$
- Gain group Z^d

・ロト ・四ト ・ヨト ・ヨト

Gain Graph $\langle G, m \rangle$

- directed multigraph G = (V, E)
- Gain assignment $m: E^+ \to \mathbb{Z}^d$
- Gain group Z^d

Derived Graph G^m

イロン イロン イヨン イヨン

Gain Graph $\langle G, m \rangle$

- directed multigraph G = (V, E)
- Gain assignment $m: E^+ \to \mathbb{Z}^d$
- Gain group Z^d

Derived Graph G^m

- Vertices: $V \times \mathbb{Z}^d$
- Edges: $E \times \mathbb{Z}^d$
- edges determined by gains

イロト イロト イヨト イヨト

Elissa Ross (Fields Institute)

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

A periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is:

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

- A periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is:
 - a gain graph $\langle G, m \rangle$ with gain group \mathbb{Z}^d

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

A periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is:

- a gain graph $\langle G, m \rangle$ with gain group \mathbb{Z}^d
- a map $\mathbf{p}: V \to \mathcal{T}_0^d = \mathbb{R}^d / \mathbb{Z}^d$

イロト イロト イヨト イヨト

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

A periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is:

- a gain graph $\langle G, m \rangle$ with gain group \mathbb{Z}^d
- a map $\mathbf{p}: V
 ightarrow \mathcal{T}_0^d = \mathbb{R}^d / \mathbb{Z}^d$

イロト イポト イヨト イヨト

A *periodic framework* $(\langle \tilde{G}, L \rangle, \tilde{\mathbf{p}})$ is an infinite graph with periodic structure, placed periodically in \mathbb{R}^d .

A periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is:

- a gain graph $\langle G, m \rangle$ with gain group \mathbb{Z}^d
- a map $\mathbf{p}: V o \mathcal{T}_0^d = \mathbb{R}^d / \mathbb{Z}^d$

Theorem

Every periodic framework in \mathbb{R}^d can be represented as a periodic orbit framework on a torus \mathcal{T}_0^d .

• Fixed torus: assume torus is of fixed shape and dimension

E

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

- Fixed torus: assume torus is of fixed shape and dimension
- An *infinitesimal motion* of $(\langle G, m \rangle, \mathbf{p})$ on \mathcal{T}_0^d is a function $\mathbf{u} : V \to \mathbb{R}^d$ s.t.

$$(\mathbf{u}_i - \mathbf{u}_j) \cdot (\mathbf{p}_i - (\mathbf{p}_j + m_e)) = 0$$

for all $e = \{i, j, m_e\} \in E\langle G, m \rangle$

・ロト ・四ト ・ヨト・

- Fixed torus: assume torus is of fixed shape and dimension
- An *infinitesimal motion* of $(\langle G, m \rangle, \mathbf{p})$ on \mathcal{T}_0^d is a function $\mathbf{u} : V \to \mathbb{R}^d$ s.t.

$$(\mathbf{u}_i - \mathbf{u}_j) \cdot (\mathbf{p}_i - (\mathbf{p}_j + m_e)) = 0$$

for all $e = \{i, j, m_e\} \in E\langle G, m \rangle$

• **u** is *trivial* if it corresponds to a translation of $(\langle G, m \rangle, \mathbf{p})$ on \mathcal{T}_0^2

イロト 不得下 イヨト イヨト

- Fixed torus: assume torus is of fixed shape and dimension
- An *infinitesimal motion* of $(\langle G, m \rangle, \mathbf{p})$ on \mathcal{T}_0^d is a function $\mathbf{u} : V \to \mathbb{R}^d$ s.t.

$$(\mathbf{u}_i - \mathbf{u}_j) \cdot (\mathbf{p}_i - (\mathbf{p}_j + m_e)) = 0$$

for all $e = \{i, j, m_e\} \in E\langle G, m \rangle$

- **u** is *trivial* if it corresponds to a translation of $(\langle G, m \rangle, \mathbf{p})$ on \mathcal{T}_0^2
- (⟨G, m⟩, p) is *infinitesimally rigid* on T₀^d if the only infinitesimal motions of the framework are trivial.

ヘロト 人間ト 人間ト 人間ト

The *periodic rigidity matrix* $R_0(\langle G, m \rangle, \mathbf{p})$ is the $|E| \times d|V|$ matrix

$$\begin{bmatrix} \cdots & \mathbf{p}_i - (\mathbf{p}_j + m_e) & \cdots & (\mathbf{p}_j + m_e) - \mathbf{p}_i & \cdots \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{|V|} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

The *periodic rigidity matrix* $R_0(\langle G, m \rangle, \mathbf{p})$ is the $|E| \times d|V|$ matrix

$$\begin{bmatrix} \cdots & \mathbf{p}_i - (\mathbf{p}_j + m_e) & \cdots & (\mathbf{p}_j + m_e) - \mathbf{p}_i & \cdots \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{|V|} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

• $(\langle G, m \rangle, \mathbf{p})$ infinitesimally rigid on $\mathcal{T}_0^d \iff \operatorname{rank} R_0(\langle G, m \rangle, \mathbf{p}) = d|V| - d$.

The *periodic rigidity matrix* $R_0(\langle G, m \rangle, \mathbf{p})$ is the $|E| \times d|V|$ matrix

$$\cdots \quad \mathbf{p}_i - (\mathbf{p}_j + m_e) \quad \cdots \quad (\mathbf{p}_j + m_e) - \mathbf{p}_i \quad \cdots \\ \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{|V|} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- $(\langle G, m \rangle, \mathbf{p})$ infinitesimally rigid on $\mathcal{T}_0^d \iff \operatorname{rank} R_0(\langle G, m \rangle, \mathbf{p}) = d|V| d$.
- minimally rigid = infinitesimally rigid and independent

イロト イロト イヨト イヨト 二日

The *periodic rigidity matrix* $R_0(\langle G, m \rangle, \mathbf{p})$ is the $|E| \times d|V|$ matrix

$$\cdots \quad \mathbf{p}_i - (\mathbf{p}_j + m_e) \quad \cdots \quad (\mathbf{p}_j + m_e) - \mathbf{p}_i \quad \cdots \\ \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{|V|} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- $(\langle G, m \rangle, \mathbf{p})$ infinitesimally rigid on $\mathcal{T}_0^d \iff \operatorname{rank} R_0(\langle G, m \rangle, \mathbf{p}) = d|V| d.$
- minimally rigid = infinitesimally rigid and independent

Theorem (Periodic Maxwell Rule, Whiteley 1988)

If $(\langle G, m \rangle, \mathbf{p})$ is minimally rigid on the fixed torus \mathcal{T}_0^d , then |E| = d|V| - d.

イロト イポト イモト イモト 一日

The *periodic rigidity matrix* $R_0(\langle G, m \rangle, \mathbf{p})$ is the $|E| \times d|V|$ matrix

$$\cdots \quad \mathbf{p}_i - (\mathbf{p}_j + m_e) \quad \cdots \quad (\mathbf{p}_j + m_e) - \mathbf{p}_i \quad \cdots \\ \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_{|V|} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

- $(\langle G, m \rangle, \mathbf{p})$ infinitesimally rigid on $\mathcal{T}_0^d \iff \operatorname{rank} R_0(\langle G, m \rangle, \mathbf{p}) = d|V| d.$
- minimally rigid = infinitesimally rigid and independent

Theorem (Periodic Maxwell Rule, Whiteley 1988)

If $(\langle G, m \rangle, \mathbf{p})$ is minimally rigid on the fixed torus \mathcal{T}_0^d , then |E| = d|V| - d.

 The rigidity properties of a *generic* framework are properties of the periodic orbit graph (G, m), NOT the configuration p.

• Periodic inductive constructions preserve generic rigidity

イロト 不得下 イヨト イヨト

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

イロト 不得下 イヨト イヨト

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

イロト イポト イヨト イヨト

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

イロト イポト イヨト イヨト
- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

• *Periodic edge split*: Add a 3-valent vertex, delete an edge, preserve gain on deleted edge:

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

• *Periodic edge split*: Add a 3-valent vertex, delete an edge, preserve gain on deleted edge:

A E > A E >

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

• *Periodic edge split*: Add a 3-valent vertex, delete an edge, preserve gain on deleted edge:

A E > A E >

- Periodic inductive constructions preserve generic rigidity
- Periodic vertex addition: add a 2-valent vertex:

• *Periodic edge split*: Add a 3-valent vertex, delete an edge, preserve gain on deleted edge:

• These moves are really "local"

(日) (四) (E) (E) (E) (E)

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

Vertex additions:

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

Edge splits:

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

Edge splits:

9 / 17

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

3

9 / 17

- These moves are really "local"
- easy to see that inductions hold for "some" choice of gains

Edge splits:

A periodic orbit framework ($\langle G, m \rangle$, **p**) with |E| = 2|V| - 2 is infinitesimally rigid on the fixed torus T_0^2

it can be constructed from a single vertex by a series of periodic vertex additions and edge splits.

イロト 不得下 イヨト イヨト

A periodic orbit framework ($\langle G, m \rangle$, **p**) with |E| = 2|V| - 2 is infinitesimally rigid on the fixed torus T_0^2

it can be constructed from a single vertex by a series of periodic vertex additions and edge splits.

• Basic observation: the single vertex is rigid on the fixed torus

イロト 不得下 イヨト イヨト

A periodic orbit framework ($\langle G, m \rangle$, **p**) with |E| = 2|V| - 2 is infinitesimally rigid on the fixed torus T_0^2

it can be constructed from a single vertex by a series of periodic vertex additions and edge splits.

- Basic observation: the single vertex is rigid on the fixed torus
- Add a two-valent vertex, creating a non-zero cycle gain

A periodic orbit framework ($\langle G, m \rangle$, **p**) with |E| = 2|V| - 2 is infinitesimally rigid on the fixed torus T_0^2

it can be constructed from a single vertex by a series of periodic vertex additions and edge splits.

- · Basic observation: the single vertex is rigid on the fixed torus
- Add a two-valent vertex, creating a non-zero cycle gain

3

イロン イヨン イヨン ・

flexible:

Elissa Ross (Fields Institute)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Constructive gain assignment for G on \mathcal{T}_0^2 : Every subgraph $G' \subseteq G$ with |E'| = 2|V'| - 2 contains a cycle with non-trivial net gain.

э

Constructive gain assignment for G on \mathcal{T}_0^2 : Every subgraph $G' \subseteq G$ with |E'| = 2|V'| - 2 contains a cycle with non-trivial net gain.

Theorem (R., 2009)

The periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is generically minimally rigid on \mathcal{T}_0^2 if and only if |E| = 2|V| - 2, $|E'| \le 2|V'| - 2$ for all $G' \subseteq G$, and $m : E^+ \to \mathbb{Z}^2$ is constructive.

イロト 不得 トイヨト イヨト

Constructive gain assignment for G on \mathcal{T}_0^2 : Every subgraph $G' \subseteq G$ with |E'| = 2|V'| - 2 contains a cycle with non-trivial net gain.

Theorem (R., 2009)

The periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is generically minimally rigid on \mathcal{T}_0^2 if and only if |E| = 2|V| - 2, $|E'| \le 2|V'| - 2$ for all $G' \subseteq G$, and $m : E^+ \to \mathbb{Z}^2$ is constructive.

Proof by induction

Constructive gain assignment for G on \mathcal{T}_0^2 : Every subgraph $G' \subseteq G$ with |E'| = 2|V'| - 2 contains a cycle with non-trivial net gain.

Theorem (R., 2009)

The periodic orbit framework $(\langle G, m \rangle, \mathbf{p})$ is generically minimally rigid on \mathcal{T}_0^2 if and only if |E| = 2|V| - 2, $|E'| \le 2|V'| - 2$ for all $G' \subseteq G$, and $m : E^+ \to \mathbb{Z}^2$ is constructive.

- Proof by induction
- Periodic Laman theorem on \mathcal{T}_0^2 naturally leads to an algorithm, based on the pebble game.

• T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

 $\langle G, m \rangle$

・ロト ・四ト ・ヨト ・ヨト

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

 $\langle G, m \rangle$

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

- graph isomorphism between G^m and G^mτ
- not an affine transformation, the graphs are homotopic

- T-gain procedure: tool to identify a fundamental system of cycles (Gross & Tucker, 1987)
 - THEOREM: preserves rank of rigidity matrix

 $\langle G, m \rangle$

- graph isomorphism between G^m and G^m
- not an affine transformation, the graphs are homotopic
- same rigidity properties

d-Dimensional Rigidity on the Fixed Torus

Elissa Ross (Fields Institute)

13 / 17

d-Dimensional Rigidity on the Fixed Torus

Theorem (R., 2011)

Let $(\langle G, m \rangle, \mathbf{p})$ be a minimally rigid framework on \mathcal{T}_0^d . Then |E| = d|V| - d, and for all subsets of edges $Y \subseteq E$,

$$|Y| \leq d|V(Y)| - {d+1 \choose 2} + \sum_{i=1}^{|\mathcal{M}_{\mathcal{C}}(Y)|} (d-i).$$
d-Dimensional Rigidity on the Fixed Torus

Theorem (R., 2011)

Let $(\langle G, m \rangle, \mathbf{p})$ be a minimally rigid framework on \mathcal{T}_0^d . Then |E| = d|V| - d, and for all subsets of edges $Y \subseteq E$,

$$|Y| \leq d|V(Y)| - {d+1 \choose 2} + \sum_{i=1}^{|\mathcal{M}_{\mathcal{C}}(Y)|} (d-i).$$

d-Dimensional Rigidity on the Fixed Torus

Theorem (R., 2011)

Let $(\langle G, m \rangle, \mathbf{p})$ be a minimally rigid framework on \mathcal{T}_0^d . Then |E| = d|V| - d, and for all subsets of edges $Y \subseteq E$,

$$|Y| \leq d|V(Y)| - {d+1 \choose 2} + \sum_{i=1}^{|\mathcal{M}_{\mathcal{C}}(Y)|} (d-i).$$

	Finite	Periodic
Counts		
(Gain) Graph		
Framework		

	Finite	Periodic
Counts	E = 3 V - 3	
(Gain) Graph		
Framework		

	Finite	Periodic
Counts	E = 3 V - 3	
	B ₁ B ₂	
(Gain) Graph	H = (V, E)	
Framework		

Elissa Ross (Fields Institute)

14 / 17

	Finite	Periodic
Counts	E = 3 V - 3	
	B ₁ B ₂	
(Gain) Graph	H = (V, E)	
	B_1 B_2	
Framework	(H,q) in \mathbb{R}^2	

	Finite	Periodic
Counts	E = 3 V - 3	E =3 V -2
	<u>B1</u> <u>B2</u>	
(Gain) Graph	H = (V, E)	
	B_1 B_2	
Framework	(H,q) in \mathbb{R}^2	

э

イロト イポト イヨト イヨト

э

イロト イポト イヨト イヨト

Bar-Body Frameworks for all d (Further Work)

Theorem (R., 2011)

Let $\langle H, m \rangle$ be a generically minimally rigid bar-body framework on \mathcal{T}_0^d , with $|E| = \binom{d+1}{2}|V| - d$. Then for all nonempty subsets $Y \subseteq E$ of edges,

$$|Y| \leq {d+1 \choose 2} |V(Y)| - {d+1 \choose 2} + \sum_{i=1}^{|\mathcal{M}_{\mathcal{C}}(Y)|} (d-i).$$

Bar-Body Frameworks for all d (Further Work)

Theorem (R., 2011)

Let $\langle H, m \rangle$ be a generically minimally rigid bar-body framework on \mathcal{T}_0^d , with $|E| = \binom{d+1}{2}|V| - d$. Then for all nonempty subsets $Y \subseteq E$ of edges,

$$|Y| \leq {d+1 \choose 2} |V(Y)| - {d+1 \choose 2} + \sum_{i=1}^{|\mathcal{M}_{\mathcal{C}}(Y)|} (d-i).$$

Conjecture: also sufficient

・ロト ・回ト ・ヨト ・ヨト

• Periodic frameworks with extra symmetry:

æ

イロト イロト イヨト イヨト

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus
 - Malestein & Theran (2011) find sufficient conditions for periodic frameworks with symmetry given by rotations and translations in 2 dimensions, on the flexible torus

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus
 - Malestein & Theran (2011) find sufficient conditions for periodic frameworks with symmetry given by rotations and translations in 2 dimensions, on the flexible torus
- Inductive characterizations of frameworks on the partially or fully flexible torus

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus
 - Malestein & Theran (2011) find sufficient conditions for periodic frameworks with symmetry given by rotations and translations in 2 dimensions, on the flexible torus
- Inductive characterizations of frameworks on the partially or fully flexible torus
- Global rigidity for periodic frameworks

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus
 - Malestein & Theran (2011) find sufficient conditions for periodic frameworks with symmetry given by rotations and translations in 2 dimensions, on the flexible torus
- Inductive characterizations of frameworks on the partially or fully flexible torus
- Global rigidity for periodic frameworks
- finite repetitive frameworks

- Periodic frameworks with extra symmetry:
 - R., Schulze, Whiteley (2011) found necessary conditions for periodic frameworks for many symmetry groups in 2 and 3 dimensions, fixed and flexible torus
 - Malestein & Theran (2011) find sufficient conditions for periodic frameworks with symmetry given by rotations and translations in 2 dimensions, on the flexible torus
- Inductive characterizations of frameworks on the partially or fully flexible torus
- Global rigidity for periodic frameworks
- finite repetitive frameworks
- Scaling: forced vs. incidental periodicity

The End

Thank you Questions?

æ

イロト イヨト イヨト イヨト