Regular polygonal complexes in space

Daniel Pellicer

Egon Schulte

Polyhedra

- Search for symmetric structures in space.

Polyhedra

- Search for symmetric structures in space.

Convex polyhedra

Polyhedra

- Search for symmetric structures in space.

Convex polyhedra

$\{3,3\}$

$\{4,3\}$

$\{3,4\}$

$\{5,3\}$

$\{3,5\}$

Kepler

Petrie, Coxeter

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

- polygon \longrightarrow 2-regular connected graph

Combinatorial polyhedra

Combinatorial polyhedra

Planar polyhedra

Planar polyhedra

Grünbaum, Dress

Regular polyhedra in the Euclidean space

Grünbaum, Dress

Regular polyhedra in the Euclidean space

\author{

- 18 finite
}

Grünbaum, Dress

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar

Grünbaum, Dress

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar
- 24 infinite nonplanar

Grünbaum, Dress

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar
- 24 infinite nonplanar
- 48 in total

Polygons

- polygon \longrightarrow 2-regular connected graph

Polygons

- polygon \longrightarrow 2-regular connected graph
- regular \longrightarrow isometry group is dihedral on vertices

Polygons

Finite planar

Polygons

Finite planar

Polygons

Finite skew

Polygons

Finite skew

Polygons

Infinite planar

Polygons

Infinite planar

- $\cdot \square \longrightarrow-0-0$

Polygons

Infinite planar

Polygons

Infinite helical

Polygons

Infinite helical

Polygons

Infinite helical

Polygons

Infinite helical

Regular polyhedra

Polyhedron

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces
- Regular \longrightarrow symmetry group transitive on flags

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces
- Regular \longrightarrow symmetry group transitive on flags (vertex, edge, face)

Regular polyhedra

- 18 finite

Regular polyhedra

- 18 finite
- 7 with convex faces
- 2 with star faces
- 9 with skew faces

Regular polyhedra

- 18 finite
- 7 with convex faces
- 2 with star faces
- 9 with skew faces
- 6 planar

Regular polyhedra

- 18 finite
- 7 with convex faces
- 2 with star faces
- 9 with skew faces
- 6 planar
- 3 with convex faces
- 3 with zigzag faces

Regular polyhedra

- 24 nonplanar infinite

Regular polyhedra

- 24 nonplanar infinite
- 3 with planar convex faces
- 6 with zigzag faces
- 6 with finite skew faces
- 9 with helical faces

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow \uparrow

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow $\uparrow \quad \uparrow \uparrow$

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces \longleftarrow $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$

Regular polyhedra

Polyhedron

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely two faces
\longleftarrow

$\uparrow \uparrow$
\uparrow
\uparrow

Polygonal complexes

Polygonal complex

Set of vertices, edges, polygons (faces)

- Discrete, connected
- Every edge belongs to precisely k faces

Polygonal complexes

Polygonal complex

- Set of vertices, edges, polygons (faces)
- Discrete, connected
- Every edge belongs to precisely k faces ($k=2 \longrightarrow$ polyhedron)

Polygonal complexes

Polygonal complex

Set of vertices, edges, polygons (faces)

- Discrete, connected
- Every edge belongs to precisely k faces
($k=2 \longrightarrow$ polyhedron)
- Regular \longrightarrow symmetry group transitive on flags

Polygonal complexes

Polygonal complexes

Polygonal complexes

Polygonal complexes

$$
k=4
$$

Polygonal complexes

Polygonal complexes

Polygonal complexes

Polygonal complexes

$k=8$

Polygonal complexes

Theorem

All finite regular polygonal complexes in space are polyhedra.

Polygonal complexes

Theorem

All finite regular polygonal complexes in space are polyhedra.

Theorem

There are no regular polygonal complexes in space with affinely irreducible group of symmetries, except for polyhedra.

flags

- Flag \longrightarrow triple of incident vertex, edge and face

flags

- Flag \longrightarrow triple of incident vertex, edge and face

flags

- Flag \longrightarrow triple of incident vertex, edge and face

flags

- Flag \longrightarrow triple of incident vertex, edge and face

flags

- Flag \longrightarrow triple of incident vertex, edge and face

Flag stabilizer

Planar faces

Flag stabilizer

Planar faces

- Trivial stabilizer

Flag stabilizer

Planar faces

- Trivial stabilizer
- Plane reflection

Flag stabilizer

Flag stabilizer

Planar faces

- Trivial stabilizer
- Plane relection

Flag stabilizer

Planar faces

- Trivial stabilizer
- Plane relection

Non planar faces

Flag stabilizer

Planar faces

- Trivial stabilizer
- Plane relection

Non planar faces

- Trivial stabilizer

Flag stabilizer

Theorem

Flag stabilizer

Theorem

Every regular polygonal complex with nontrivial flag stabilizer is the 2 -skeleton of a regular 4-polytope in space.

Flag stabilizer

Theorem

Every regular polygonal complex with nontrivial flag stabilizer is the 2-skeleton of a regular 4-polytope in space.

There are 4 instances

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,
(2 elements)

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,
(2 elements)
$G_{1} \longrightarrow$ stabilizes vertex and face,

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,
(2 elements)
- $G_{1} \longrightarrow$ stabilizes vertex and face, (2 elements)

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,
(2 elements)
- $G_{1} \longrightarrow$ stabilizes vertex and face, (2 elements)
- $G_{2} \longrightarrow$ stabilizes vertex and edge,

Group structure

- $G_{0} \longrightarrow$ stabilizes edge and face,
(2 elements)
- $G_{1} \longrightarrow$ stabilizes vertex and face, (2 elements)
- $G_{2} \longrightarrow$ stabilizes vertex and edge, (cyclic or dihedral)

Group structure

G_{0}

Group structure

G_{0}

Group structure

G_{1}

Group structure

G_{1}

Group structure

G_{2}

Group structure

G_{2}

Group structure

- Symmetry group

Group structure

- Symmetry group \longrightarrow crystallographic group generated by G_{0}, G_{1} and G_{2}

Group structure

- Symmetry group \longrightarrow crystallographic group generated by G_{0}, G_{1} and G_{2}
- Point group

Group structure

- Symmetry group \longrightarrow crystallographic group generated by G_{0}, G_{1} and G_{2}
- Point group \longrightarrow Symmetry group modulo translations

Group structure

- Symmetry group \longrightarrow crystallographic group generated by G_{0}, G_{1} and G_{2}
- Point group \longrightarrow Symmetry group modulo translations

Theorem

The point group is a subgroup of the octahedral group

Procedure

- Choose appropriate G_{0}, G_{1} and G_{2} in the point group

Procedure

- Choose appropriate G_{0}, G_{1} and G_{2} in the point group
- Choose the translation vector for G_{0}

Procedure

- Choose appropriate G_{0}, G_{1} and G_{2} in the point group
- Choose the translation vector for G_{0}
- Do the necessary computations!!

Procedure

Procedure

Procedure

Procedure

Procedure

Shortcuts

Shortcuts

Shortcuts

Shortcuts

Lattices

Cubical Iattice

Lattices

Cubical Iattice

Lattices

Body centred cubic lattice

Lattices

Body centred cubic lattice

Lattices

Body centred cubic lattice

Lattices

Body centred cubic lattice

Lattices

Body centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Lattices

Face centred cubic lattice

Enumeration

- 25 regular polygonal complexes

Enumeration

- 25 regular polygonal complexes
- 4 with non-trivial flag-stabilizers

Enumeration

- 25 regular polygonal complexes
- 4 with non-trivial flag-stabilizers
- 21 with trivial flag-stabilizers

Enumeration

- 3 with finite planar faces

Enumeration

- 3 with finite planar faces
- 8 with finite skew faces

Enumeration

Enumeration

- 3 with finite planar faces
- 8 with finite skew faces

Enumeration

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces

Enumeration

Enumeration

Enumeration

Enumeration

Enumeration

Enumeration

Enumeration

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces

Enumeration

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces
- 9 with helical faces

Enumeration

Enumeration

\ldots... N D...

