Regular polygonal complexes in space

Daniel Pellicer

Egon Schulte

Polyhedra

Search for symmetric structures in space.

Polyhedra

Search for symmetric structures in space.

Convex polyhedra

Polyhedra

Search for symmetric structures in space.

Convex polyhedra

Poinsot

Petrie, Coxeter

Planar polyhedra

Planar polyhedra

Regular polyhedra in the Euclidean space

Regular polyhedra in the Euclidean space

18 finite

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar
- 24 infinite nonplanar

Regular polyhedra in the Euclidean space

- 18 finite
- 6 infinite planar
- 24 infinite nonplanar

48 in total

▶ polygon → 2-regular connected graph

▶ regular → isometry group is dihedral on vertices

Finite planar

Finite planar

Finite skew

Finite skew

Infinite planar

Infinite planar

Infinite planar

Polyhedron

► Set of vertices, edges, polygons (faces)

- ➤ Set of vertices, edges, polygons (faces)
- ► Discrete, connected

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces
- ► Regular symmetry group transitive on flags

- ► Set of vertices, edges, polygons (faces)
- ► Discrete, connected
- ► Every edge belongs to precisely two faces
- ightharpoonup Regular \longrightarrow symmetry group transitive on flags (vertex, edge, face)

18 finite

- 18 finite
 - 7 with convex faces
 - 2 with star faces
 - 9 with skew faces

- 18 finite
 - 7 with convex faces
 - 2 with star faces
 - 9 with skew faces
- 6 planar

- 18 finite
 - 7 with convex faces
 - 2 with star faces
 - 9 with skew faces
- 6 planar
 - 3 with convex faces
 - 3 with zigzag faces

24 nonplanar infinite

- 24 nonplanar infinite
 - 3 with planar convex faces
 - 6 with zigzag faces
 - 6 with finite skew faces
 - 9 with helical faces

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←

- ➤ Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ← ↑ ↑ ↑ ↑ ↑

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely two faces ←
 ↑ ↑ ↑ ↑ ↑ ↑ ↑

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- Every edge belongs to precisely two faces ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Regular polyhedra

Polyhedron

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- Every edge belongs to precisely two faces ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely *k* faces

- ► Set of vertices, edges, polygons (faces)
- ▶ Discrete, connected
- ► Every edge belongs to precisely k faces $(k = 2 \longrightarrow \text{polyhedron})$

- ► Set of vertices, edges, polygons (faces)
- ► Discrete, connected
- ► Every edge belongs to precisely k faces $(k = 2 \longrightarrow \text{polyhedron})$
- ▶ Regular → symmetry group transitive on flags

Theorem

All finite regular polygonal complexes in space are polyhedra.

Theorem

All finite regular polygonal complexes in space are polyhedra.

Theorem

There are no regular polygonal complexes in space with affinely irreducible group of symmetries, except for polyhedra.

Planar faces

Planar faces

Trivial stabilizer

Planar faces

- Trivial stabilizer
- Plane reflection

Planar faces

- Trivial stabilizer
- Plane relection

Planar faces

- Trivial stabilizer
- Plane relection

Non planar faces

Planar faces

- Trivial stabilizer
- Plane relection

Non planar faces

Trivial stabilizer

Theorem

Theorem

Every regular polygonal complex with nontrivial flag stabilizer is the 2-skeleton of a regular 4-polytope in space.

Theorem

Every regular polygonal complex with nontrivial flag stabilizer is the 2-skeleton of a regular 4-polytope in space.

There are 4 instances

 $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face,

 $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face, (2 elements)

- $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face, (2 elements)
- $ightharpoonup G_1 \longrightarrow \text{stabilizes vertex and face},$

- $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face, (2 elements)
- $ightharpoonup G_1 \longrightarrow$ stabilizes vertex and face, (2 elements)

- $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face, (2 elements)
- $ightharpoonup G_1 \longrightarrow \text{stabilizes vertex and face,}$ (2 elements)
- $ightharpoonup G_2 \longrightarrow$ stabilizes vertex and edge,

- $ightharpoonup G_0 \longrightarrow$ stabilizes edge and face, (2 elements)
- $ightharpoonup G_1 \longrightarrow \text{stabilizes vertex and face,}$ (2 elements)
- $ightharpoonup G_2 \longrightarrow \text{stabilizes vertex and edge,}$ (cyclic or dihedral)

Symmetry group

► Symmetry group \longrightarrow crystallographic group generated by G_0 , G_1 and G_2

- ► Symmetry group \longrightarrow crystallographic group generated by G_0 , G_1 and G_2
- ▶ Point group

- ► Symmetry group \longrightarrow crystallographic group generated by G_0 , G_1 and G_2
- ► Point group → Symmetry group modulo translations

- ► Symmetry group \longrightarrow crystallographic group generated by G_0 , G_1 and G_2
- ► Point group → Symmetry group modulo translations

Theorem

The point group is a subgroup of the octahedral group

• Choose appropriate G_0 , G_1 and G_2 in the point group

- Choose appropriate G_0 , G_1 and G_2 in the point group
- Choose the translation vector for G_0

- Choose appropriate G_0 , G_1 and G_2 in the point group
- Choose the translation vector for G_0
- Do the necessary computations!!

Cubical lattice

Cubical lattice

➤ 25 regular polygonal complexes

- ▶ 25 regular polygonal complexes
- 4 with non-trivial flag-stabilizers

- ▶ 25 regular polygonal complexes
- 4 with non-trivial flag-stabilizers
- 21 with trivial flag-stabilizers

3 with finite planar faces

- 3 with finite planar faces
- 8 with finite skew faces

- 3 with finite planar faces
- 8 with finite skew faces

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces

- 3 with finite planar faces
- 8 with finite skew faces
- 5 with zigzag faces
- 9 with helical faces

... E N D ...