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•cubical complex = polyhedral complex of 
unit cubes + all attaching maps are injective

•metric on cubical complex induced by 
Euclidean L2 metric on each cube

Cubical Complexes

cubes can be 
different dimensions



A

B CX

A’

B’ C’X’

triangle in a NPC 
space:

Euclidean 
comparison triangle:

•non-positive curvature (NPC) = triangles are at 
least as thin as in Euclidean space

• global non-positive curvature = all triangles are at 
least as thin as in Euclidean space = CAT(0)  

CAT(0)



A

B CX

A’

B’ C’X’

triangle in a NPC 
space:

Euclidean 
comparison triangle:

•non-positive curvature (NPC) = triangles are at 
least as thin as in Euclidean space

• global non-positive curvature = all triangles are at 
least as thin as in Euclidean space = CAT(0)  

CAT(0)

d(A,X) ≤ d’(A’,X’)



A

B CX

A’

B’ C’X’

triangle in a NPC 
space:

Euclidean 
comparison triangle:

•non-positive curvature (NPC) = triangles are at 
least as thin as in Euclidean space

• global non-positive curvature = all triangles are at 
least as thin as in Euclidean space = CAT(0)  

CAT(0)

• CAT(0) ⇒ unique shortest paths (geodesics)                  

d(A,X) ≤ d’(A’,X’)



CAT(0) Cubical Complexes

not CAT(0): CAT(0):

Theorem (Gromov, 1987):  
A cubical complex is CAT(0)                                          
xxit is simply connected and the link of any vertex is 
a flag simplicial complex
⇔



Applications
• CAT(0) cubical complexes appear in:

• geometric group theory

• reconfigurable systems:

• robots perform discrete, reversible moves

• moves represented as edges in the complex

4 R. GHRIST & V. PETERSON

2.2. The state complex.

Definition 2.6. In a reconfigurable system, a collection of generators {φαi} is said
to commute if

(2.3) TR(φαi) ∩ SUP(φαj ) = ∅ ∀i $= j.

Commutativity connotes physical independence. Consider the system of Fig. 1[left],
which consists of planar hexagonal cells in a hex lattice. For the moment, think of a
‘generator’ as representing a hexagon pivoting to an unoccupied neighboring lat-
tice point. It is the case that a pair of commuting generators yields a square in the
transition graph of states.

FIGURE 1. Examples of commuting and noncommuting local
moves which form a 4-cycle in the transition graph: [left] pivoting
hexagons lead to commutative moves; [right] sliding rows/columns
which intersect does not commute.

Compare this with a planar sliding block example in Fig. 1 [right]: ‘generators’
consist of sliding a row or column of squares one unit. Although the pair of moves
illustrated forms a square in the transition graph, this particular pair of generators
does not commute. Physically, it is obvious why these moves are not independent:
sliding the column part-way obstructs sliding a transverse row. If we were to make
this a formal reconfigurable system, then we would specify that the trace of a gen-
erator is the entire row or column. The traces of the generators illustrated then
intersect.

We define the state complex to be the cube complex with an abstract k-cube for
each collection of k admissible commuting generators:

Definition 2.7. The state complex S of a local reconfigurable system is the follow-
ing abstract cubical complex. Each abstract k-cube e(k) of S is an equivalence class
[u; (φαi)

k
i=1] where

(1) (φαi)
k
i=1 is a k-tuple of commuting generators;

(2) u is some state for which all the generators (φαi)
k
i=1 are admissible; and

Ghrist and Peterson, 2007
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Theorem (Billera, Holmes, Vogtmann, 2001):  
The space of metric trees is a CAT(0) cubical complex. 
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Application: Phylogenetics
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• length of geodesic = distance between trees

Theorem (Billera, Holmes, Vogtmann, 2001):  
The space of metric trees is a CAT(0) cubical complex. 



Problem
Problem:  

Given a CAT(0) cubical complex and two 
points x and y, find the geodesic from x to y.

x

y



Outline
1. Coordinatize the CAT(0) complex:  Establish a 

bijection with posets with inconsistent pairs.  
Coordinates = poset elements

2. Reduce problem to subcomplex containing 
geodesic and find starting cube sequence.

3. Find geodesic through this cube sequence.     

4. If possible, improve cube sequence and repeat 
from 3.
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•associate each cube edge with the 
perpendicular “hyperplane” that bisects it

•hyperplanes act as coordinates
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1. Poset Representation
•fix a vertex v

•for each hyperplane, label the vertex 
closest to v on the opposite side of the 
hyperplane from v
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1. Poset Representation
• labeled vertices form poset with inconsistent pairs:

• u < w     any path from v to w crosses hyperplane 
xxxxxxxxxassociated with u

• (p,q) is an inconsistent pair     no geodesic from v 
crosses both hyperplanes p and q 

a b

c d

e

v
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b e

⇔

⇔

inconsistent 
pair



1. Poset Representation
• poset with inconsistent pairs                                         

= (~finite) poset P + set of inconsistent pairs {p,q} with:                                        

1. no r in P such that r ≥ p, r ≥ q                                         
2. p’ ≥ p, q’ ≥ q  ⇒ {p’,q’} is inconsistent pair
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1. Poset Representation
• poset with inconsistent pairs                                         

= (~finite) poset P + set of inconsistent pairs {p,q} with:                                        

1. no r in P such that r ≥ p, r ≥ q                                         
2. p’ ≥ p, q’ ≥ q  ⇒ {p’,q’} is inconsistent pair

• standard embedding (P finite):

XP = {(x1,...,xn) ∈ [0,1]|P|:

if u ≤P w and xu <1, then xw = 0
and if {p,q} inconsistent, then xp = 0 or xq = 0 }
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Theorem (Ardila, O., Sullivant):  
Fixing a vertex, there is a bijection between CAT(0) 
cube complexes and posets with inconsistent pairs. 
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Fixing a vertex, there is a bijection between CAT(0) 
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Theorem (Ardila, O., Sullivant):  
Fixing a vertex, there is a bijection between CAT(0) 
cube complexes and posets with inconsistent pairs. 
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2. Starting Cube Sequence
•choose a valid starting cube sequence 

based on x and y
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3. Touring Problem
•rephrase as convex optimization problem

•solvable as a second order cone problem 
in polynomial time (Polishchuk and 
Mitchell, 2005)
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4. Improve the Path
4. Can geodesic be improved?                  

If yes, get a new cube sequence; go to 
step 3.  If no, then done.
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• Only need to check geodesic bendpoints

4. Improve the Path
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• Only need to check geodesic bendpoints

4. Improve the Path

Cube exists?
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Check for both by finding a min weight vertex cover 
on a bipartite graph.  (O. and Provan, 2011)
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Algorithm in Tree Space

Theorem (O. 2011, O. and Provan 2011):  
In tree space:
•≤ n - 2 iterations
•geodesics can be computed using a linear 
algorithm instead of as touring problems
•complexity:  O(n4)

•can be iteratively used to compute mean and 
variance for a set of trees

•goal:  Principal Component Analysis 



Thank You
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