Quadratic Solvability of Rigid Frameworks

Joint work with Bill Jackson

Motivation

- A framework (G,p) defines a set of edge distances $d_G = d_1,...d_E$ where $d_e = (p(u)-p(v))^2$ for uv in E(G).
- Often we are given edge distances and wish to find some (or all) of the (G,p) which satisfy these edge distances find the inverse of the edge map.
- This requires us to solve the system of polynomial equations defined by G and the edge distances.
- If G is minimally rigid we can consider generic distances. If G has more edges we must start with edge distances which are consistent. We use (G,p) to define a consistent set of edge distances and use these.
- Equations are most easily understood using complex variables. Thus:

(Complex) Rigid Frameworks

Consider (complex) frameworks (G,p) in the plane.

- A framework is a map from p:V(G) -> \mathbb{C}^2 . Framework points are complex vectors $p(v)=(p(v)_x,p(v)_y)$ where $p(v)_x$ and $p(v)_y$ are complex numbers.
- A framework defines a set of edge distances $d_G(p)=d_1,...,d_E$ where $d_e=(p(u)_x-p(v)_x)^2+(p(u)_y-p(v)_y)^2$ for e=uv in E(G). d_e is a complex number.
- Consider pinned (normal) frameworks which have $p(v_1)=(0,0)$ and $p(v_2)=(0,p(v_2)_y)$ for some v_1,v_2 in V(G). This takes care of (most) congruencies.
- A framework $(G,x) \sim (G,p)$ if $d_G(x)=d_G(p)$.
- (G,p) is (complex) rigid if $W_p = \{(G,x) : d_G(x) = d_G(p)\}$ is finite. (G,p) is (complex) globally rigid if $|W_p| = 4$.

Quadratically solvable frameworks

A framework (G,p) defines an extension field [Q(p):Q]

(G,p) also defines an extension field $[Q(d_G(p)):Q]$

 $Q(d_G(p))$ is contained in Q(p) so $[Q(p): Q(d_G(p))]$ is an extension of fields.

A framework (G,p) is quadratically solvable if [Q(p): $Q(d_G(p))$] is a sequence of degree 2 (quadratic) extensions i.e. degree([Q(p): $Q(d_G(p))$])=2^s

There is a related notion of radically solvable. Can also define the Galois group of (G,p).

Generic Properties

(G,p) is generic if p are algebraically independent over Q.

- (Complex) rigidity, global rigidity, quadratic solvability and radical solvability are all generic properties. This follows easily from the isomorphism of the algebraic closures of Q(p) and Q(p') when p and p' are generic.
- (Complex) rigidity, global rigidity, quadratic solvability and radical solvability are all properties of a graph.

Real/Complex

- For any graph G:
- Real Rigidity = Complex Rigidity(for all d)
- Real Global Rigidity = Complex Global Rigidity (for d=2). Conjecture: true for all d.

What does Quadratic Solvability mean?

If a graph G is quadratically solvable we can start with *any* set of consistent edge distances and compute one (and usually all) of the frameworks (G,x) which satisfy these edge distances simply by solving quadratic equations. This is often a very desirable property. Many "practical" frameworks have this property.

Which graphs are quadratically solvable?

Is there a good algorithm to compute (G,x)?

Quadratically solvable graphs

Not Quadratically Solvable Graphs

these are the only two with |V(G)| < 7

Globally Linked Vertices

Vertices v_1 and v_2 in V(G) are Globally Linked in (G,p) if $d(q(v_1)-q(v_2)) = d(p(v_1)-p(v_2))$ for all (G,x) ~ (G,p).

(Complex) global linkedness is a generic property.

Theorem: If v_1 and v_2 are globally linked in (G,p) then $d(p(v_1)-p(v_2))$ is in $Q(d_G(p))$.

This means that $d(p(v_1)-p(v_2))$ is a rational function of $d_G(p)$.

Example of Globally Linked Vertices

We have $a_rx^2+b_rx+c_r=0$ and $a_sx^2+b_sx+c_s=0$ where a_r,b_r,c_r are polynomials in r_1,r_2,r_3,r_4,r_5 and a_s,b_s,c_s are polynomials in s_1,s_2,s_3,s_4,s_5

Therefore

$$x = (a_r c_s - a_s c_r)/(a_s b_r - a_r b_s) = L(r_i, s_i) \text{ in } Q(r_i, s_i)$$

Can we recognise globally linked pairs of vertices in any rigid graph G? Yes (in C²).

How do we find $L(d_G)$ for any globally linked pair of vertices in any G?????

Global Rigidity

Theorem: If G is (complex) globally rigid then G is quadratically solvable.

Proof: Every pair of vertices is globally linked in G. K_n is quadratically solvable for all n.

Splitting at vertex 2-separations

Theorem: If G is an *RM*-connected graph then G is quadratically solvable

3-connected Graphs

We can determine if G is quadratically solvable by determining if its (recursively defined) 3-connected components are quadratically solvable.

We need consider only 3-connected graphs.

Conjecture: If G is isostatic and 3-connected then G is not quadratically solvable.

Proved (Owen and Power) when G is planar.

Rigid 3-connected Graphs

- Theorem: The following are equivalent (for d=2):
- (1) If G is isostatic and 3-connected then G is not quadratically solvable.
- (2) If G is rigid and 3-connected then G is quadratically solvable if and only if it is globally rigid.
- (3) If G is rigid and 3-connected then G is quadratically solvable if and only if it is redundantly rigid.

G is 3-connected and not redundantly rigid

Sketch Proof

- 1.G\e is not rigid. G\e has rigid components R_i
- 2. Replace each R_i by T_i in G where
 - a. T_i is isostatic and quadratically solvable.
 - b. New graph G(R,T) is 3-connected.
- 3. Then G(R,T) is 3-connected and isostatic.
- 4. Can show: if G is quadratically solvable then

any G(R,T) is quadratically solvable.

- 5. A contradiction: so G is not radically solvable
- 6. The only escape is for G to be redundantly rigid.

Summary and Problems

- 1. For d=2: Conjecture: If G is rigid and 3-connected then G is quadratically solvable if and only if G is globally (or redundantly) rigid.
 - Proved for G planar. Prove for G non-planar.
- 2. For d>2 Conjecture: If G is rigid and (d+1)-connected then G is quadratically solvable if and only if G is globally (or redundantly) rigid.
 - Conjecture: Every G which is radically solvable is also quadratically solvable.
- 3. If v_1 and v_2 are globally linked in (G,p) generate (in polynomial time) the formula L for $d(p(v_1)-p(v_2))$.

Specialisations

Specialisation conjecture:

If G is isostatic and quadratically solvable and a specialisation (G,p') is rigid then (G,p') is quadratically solvable.

Generally: Galois(G,p') is a subgroup of Galois(G).

Note: This may fail if G is not isostatic. True for K_n

Quadratically solvable

Not Quadratically solvable, K(,3,3) subgraph