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Frameworks on a Cylinder

We define the cylinder C as the solution set (in R
3) to x2 + y2 = 1.
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3) to x2 + y2 = 1.

A framework on C , (G , p), is a graph and a vector
p = (p1, . . . , p|V |) ∈ C |V |.

We use Euclidean distance in R
3 so edges are straight line segments

that need not lie on the surface.

A framework (G , p) is continuously flexible if there exists a continuous
function x : [0, 1] → C |V | such that the following hold:

1 x(0) = p,

2 (G , x(t)) is equivalent to (G , p) for all t ∈ [0, 1],

3 (G , x(t)) is not congruent to (G , p) for some t ∈ (0, 1].

Tony Nixon (The Fields Institute) Frameworks on the Cylinder October 2011 2 / 18



Frameworks on a Cylinder

We define the cylinder C as the solution set (in R
3) to x2 + y2 = 1.

A framework on C , (G , p), is a graph and a vector
p = (p1, . . . , p|V |) ∈ C |V |.

We use Euclidean distance in R
3 so edges are straight line segments

that need not lie on the surface.

A framework (G , p) is continuously flexible if there exists a continuous
function x : [0, 1] → C |V | such that the following hold:

1 x(0) = p,

2 (G , x(t)) is equivalent to (G , p) for all t ∈ [0, 1],

3 (G , x(t)) is not congruent to (G , p) for some t ∈ (0, 1].

Definition

A framework (G , p) is (continuously) rigid on C if it is not continuously
flexible and is minimally rigid if (G \ e, p) is flexible for any edge e ∈ E (G ).
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Infinitesimal Rigidity

Definition

The cylinder rigidity matrix RC (G , p) is the (|E | + |V |) × 3|V | matrix
where the usual 3-dimensional rigidity matrix is augmented by |V | extra
rows, one for each vertex. The entries in the row for vertex i are zero
except in the column triple corresponding to i where the entry is (xi , yi , 0).











pi − pj . . . pj − pi . . .

(xi , yi , 0) . . .
. . .

. . . (xj , yj , 0) . . .
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pi − pj . . . pj − pi . . .

(xi , yi , 0) . . .
. . .

. . . (xj , yj , 0) . . .











Definition

(G , p) is infinitesimally rigid on C if RC (G , p) has maximal rank.
Moreover (G , p) is minimally infinitesimally rigid on C if RC (G , p) has
maximal rank and linearly independent rows.
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Whiteley 1988 - variant of this problem with geodesic edges and
(hence) multigraphs.
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(hence) multigraphs.

These extra rows arise from differentiating the polynomials defining
the cylinder and ensure that infinitesimal flexes occur tangentially to
the surface.
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Notice on the cylinder, there are only two trivial motions so a
framework (G , p) has dim ker RC (G , p) ≥ 2.
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(hence) multigraphs.

These extra rows arise from differentiating the polynomials defining
the cylinder and ensure that infinitesimal flexes occur tangentially to
the surface.

Notice on the cylinder, there are only two trivial motions so a
framework (G , p) has dim ker RC (G , p) ≥ 2.

Example: K4 − e is generically flexible.

A framework (G , p) on C is generic if the only polynomial equations in
3|V | variables with solution p are the equations defining C .
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Whiteley 1988 - variant of this problem with geodesic edges and
(hence) multigraphs.

These extra rows arise from differentiating the polynomials defining
the cylinder and ensure that infinitesimal flexes occur tangentially to
the surface.

Notice on the cylinder, there are only two trivial motions so a
framework (G , p) has dim ker RC (G , p) ≥ 2.

Example: K4 − e is generically flexible.

A framework (G , p) on C is generic if the only polynomial equations in
3|V | variables with solution p are the equations defining C .

Proposition

For generic p, (G , p) is infinitesimally rigid on C if and only if (G , p) is
continuously rigid on C .
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Theorem: Maxwell, Henneberg, Laman, Lovasz and Yemini

For generic p and a graph G = (V ,E ), the following are equivalent

1 (G , p) is minimally rigid (in R
2),

2 |E | = 2|V | − 3 and for every subgraph X of G with at least one edge,
|E (X )| ≤ 2|V (X )| − 3,

3 G can be derived from K2 by Henneberg 1 and 2 moves,

4 for any non-edge e (including a second copy of an existing edge)
G + e is the edge disjoint union of two spanning trees.
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Inductive Moves

Tay’s inductive characterisation of 2|V | − 2 (multi)graphs is not
enough.
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Inductive Moves

Tay’s inductive characterisation of 2|V | − 2 (multi)graphs is not
enough.

There are graphs that we cannot derive just from Henneberg moves.

H*
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*

Let H ⊂ G be a proper subgraph with |E (H)| = 2|V (H)| − 2. Write G/H
for the (possibly multi)graph formed by contracting H to a point v∗. G/H
is called a contraction of G by H and conversely, G is an extension of
G/H by H.
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Theorem. Tutte, Nash-Williams 1964, N., Owen and Power 2010

For a simple graph G = (V ,E ) with |V | ≥ 4 and generic p the following
are equivalent:

1 (G , p) is minimally infinitesimally rigid on C ,

2 G is derivable from K4 by the Henneberg 1, Henneberg 2 and graph
extension moves,

3 |E | = 2|V | − 2 and every subgraph G ′ = (V ′,E ′) satisfies
|E ′| ≤ 2|V ′| − 2,

4 G is the edge-disjoint union of two spanning trees.
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4 G is the edge-disjoint union of two spanning trees.

Aside: the theorem extends to a union of concentric cylinders.
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Theorem. Tutte, Nash-Williams 1964, N., Owen and Power 2010

For a simple graph G = (V ,E ) with |V | ≥ 4 and generic p the following
are equivalent:

1 (G , p) is minimally infinitesimally rigid on C ,

2 G is derivable from K4 by the Henneberg 1, Henneberg 2 and graph
extension moves,

3 |E | = 2|V | − 2 and every subgraph G ′ = (V ′,E ′) satisfies
|E ′| ≤ 2|V ′| − 2,

4 G is the edge-disjoint union of two spanning trees.

Aside: the theorem extends to a union of concentric cylinders.

Half turn (Z2) symmetry ’predicts’ flexibility in minimally rigid
graphs...
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Back to the Plane

G = (V ,E ) is a R2-circuit if and only if G satisfies |E | = 2|V | − 2 and all
proper subgraphs G ′ = V ′,E ′) (with at least one edge) satisfy
|E ′| ≤ 2|V ′| − 3.
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Theorem - Berg and Jordan 2003

Let G be a 3-connected R2-circuit with |V | ≥ 5. Then some inverse
Henneberg 2 move is possible on G .

u

v

u

v

ww

x

Tony Nixon (The Fields Institute) Frameworks on the Cylinder October 2011 8 / 18



Back to the Plane

G = (V ,E ) is a R2-circuit if and only if G satisfies |E | = 2|V | − 2 and all
proper subgraphs G ′ = V ′,E ′) (with at least one edge) satisfy
|E ′| ≤ 2|V ′| − 3.

Theorem - Berg and Jordan 2003

Let G be a 3-connected R2-circuit with |V | ≥ 5. Then some inverse
Henneberg 2 move is possible on G .

u

v

u

v

ww

x

a

b

a a

b b

Theorem - Berg and Jordan 2003

G is a R2-circuit if and only if G can be formed from disjoint copies of K4

by Henneberg 2 moves and sums.
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Circuits

We have the cylinder rigidity matroid RC .
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|E | = 2|V | − 1 and all proper subgraphs G ′ = (V ′,E ′) satisfy
|E ′| ≤ 2|V ′| − 2.

A vertex v in a circuit is admissible if it has degree 3 and there is an
inverse Henneberg 2 move removing v that results in a circuit.
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Circuits

We have the cylinder rigidity matroid RC .

Definition

A simple graph G = (V ,E ) is a circuit (in RC ) if and only if
|E | = 2|V | − 1 and all proper subgraphs G ′ = (V ′,E ′) satisfy
|E ′| ≤ 2|V ′| − 2.

A vertex v in a circuit is admissible if it has degree 3 and there is an
inverse Henneberg 2 move removing v that results in a circuit.

In the corresponding multigraph matroid every circuit has an
admissible vertex.

In RC not every circuit has an admissible vertex.
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Lemma

Let G = (V ,E ) be a 3-connected circuit with no non-trivial 3-edge-cutsets
and |V | ≥ 6. Then

1 there are two degree 3 vertices not contained in copies of K4.
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Lemma

Let G = (V ,E ) be a 3-connected circuit with no non-trivial 3-edge-cutsets
and |V | ≥ 6. Then

1 there are two degree 3 vertices not contained in copies of K4.

2 If v ∈ V , d(v) = 3, N(v) = {x , y , z}, xy , xz ∈ E and yz /∈ E , then v

is admissible.
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Lemma

Let G = (V ,E ) be a 3-connected circuit with no non-trivial 3-edge-cutsets
and |V | ≥ 6. Then

1 there are two degree 3 vertices not contained in copies of K4.

2 If v ∈ V , d(v) = 3, N(v) = {x , y , z}, xy , xz ∈ E and yz /∈ E , then v

is admissible.

3 If v ∈ V , d(v) = 3, N(v) = {x , y , z}, xy ∈ E , xz , yz /∈ E then v is
admissible.

If for every degree 3 not in a K4, no pair of neighbours defines an edge
then follow Berg and Jordan 2003 to show that if v is not-admissible then
there is some other vertex w which is admissible.
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Lemma

Let G = (V ,E ) be a 3-connected circuit with no non-trivial 3-edge-cutsets
and |V | ≥ 6. Then

1 there are two degree 3 vertices not contained in copies of K4.

2 If v ∈ V , d(v) = 3, N(v) = {x , y , z}, xy , xz ∈ E and yz /∈ E , then v

is admissible.

3 If v ∈ V , d(v) = 3, N(v) = {x , y , z}, xy ∈ E , xz , yz /∈ E then v is
admissible.

If for every degree 3 not in a K4, no pair of neighbours defines an edge
then follow Berg and Jordan 2003 to show that if v is not-admissible then
there is some other vertex w which is admissible.

Proposition

Let G = (V ,E ) be a 3-connected circuit with no non-trivial 3-edge-cutsets
and |V | ≥ 6. Then some vertex is admissible.

Tony Nixon (The Fields Institute) Frameworks on the Cylinder October 2011 11 / 18



Sum moves

For H = (V ,E ), let f (H) = 2|V | − |E | and similarly for any subgraph.
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Sum moves

For H = (V ,E ), let f (H) = 2|V | − |E | and similarly for any subgraph.

Let G = (V ,E ) be a circuit with a cutpair a, b with a bipartition A,B of
V \ {a, b} such that f (G [A ∪ {a, b}]) < f (G [B ∪ {a, b}]). A 1-separation
over the cutpair a, b forms disjoint graphs G [A ∪ {a, b}] ∪ ab and
G [B ∪ {a, b}] ∪ K4(a, b, c , d) where c , d /∈ B ∪ {a, b}.
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Sum moves

For H = (V ,E ), let f (H) = 2|V | − |E | and similarly for any subgraph.

Let G = (V ,E ) be a circuit with a cutpair a, b with a bipartition A,B of
V \ {a, b} such that f (G [A ∪ {a, b}]) < f (G [B ∪ {a, b}]). A 1-separation
over the cutpair a, b forms disjoint graphs G [A ∪ {a, b}] ∪ ab and
G [B ∪ {a, b}] ∪ K4(a, b, c , d) where c , d /∈ B ∪ {a, b}.

Let G1,G2 be circuits such that G1 contains an edge a1b1 and G2 contains
a two vertex cut a2, b2 within K4(a2, b2, c2, d2). A 1-sum operation takes
G1 and G2 and forms G1 ⊕1 G2 by removing a1b1, c2, d2 and a2b2 and
superimposing a1, b1 onto a2, b2 and calling the resulting vertices a, b.
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Cutpairs may define an edge.
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Cutpairs may define an edge.

Let G = (V ,E ) be a circuit with a cutpair a, b with a bipartition A,B of
V \ {a, b} such that f (G [A ∪ {a, b}]) = f (G [B ∪ {a, b}]). A 2-separation
over the cutpair a, b forms disjoint graphs G [A ∪ {a, b}] ∪ K4(a, b, c , d)
and G [B ∪ {a, b}] ∪ K4(a, b, c , d) where c , d /∈ A ∪ {a, b} or B ∪ {a, b}.
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Cutpairs may define an edge.

Let G = (V ,E ) be a circuit with a cutpair a, b with a bipartition A,B of
V \ {a, b} such that f (G [A ∪ {a, b}]) = f (G [B ∪ {a, b}]). A 2-separation
over the cutpair a, b forms disjoint graphs G [A ∪ {a, b}] ∪ K4(a, b, c , d)
and G [B ∪ {a, b}] ∪ K4(a, b, c , d) where c , d /∈ A ∪ {a, b} or B ∪ {a, b}.

Let G1,G2 be circuits such that Gi contains a two vertex cut ai , bi within
K4(ai , bi , ci , di ). A 2-sum operation takes G1 and G2 and forms G1 ⊕2 G2

by removing ci , di and superimposing a1, b1 onto a2, b2 and calling the
resulting vertices a, b and keeping only one copy of the edge ab.
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We also need to deal with non-trivial 3-edge-cutsets.
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We also need to deal with non-trivial 3-edge-cutsets.

Let G = (V ,E ) be a circuit with a non-trivial 3-edge-cutset
a1a2, b1b2, c1c2 with a bipartition A,B of V such that f (G [A]) = f (G [B ]).
A 3-separation over the cutset a1a2, b1b2, c1c2 forms disjoint graphs
G [A] ∪ v1 ∪ {a1v1, b1v1, c1v1} and G [B ] ∪ v2 ∪ {a2v2, b2v2, c2v2}.
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We also need to deal with non-trivial 3-edge-cutsets.

Let G = (V ,E ) be a circuit with a non-trivial 3-edge-cutset
a1a2, b1b2, c1c2 with a bipartition A,B of V such that f (G [A]) = f (G [B ]).
A 3-separation over the cutset a1a2, b1b2, c1c2 forms disjoint graphs
G [A] ∪ v1 ∪ {a1v1, b1v1, c1v1} and G [B ] ∪ v2 ∪ {a2v2, b2v2, c2v2}.

Let G1,G2 be circuits such that Gi contains a node vi with
N(vi ) = {ai , bi , ci}. A 3-sum operation takes G1 and G2 and forms
G1 ⊕3 G2 by deleting v1, v2 and adding edges a1a2, b1b2, c1c2.
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Generating circuits

Circuits are 2-connected and 3-edge-connected.

Tony Nixon (The Fields Institute) Frameworks on the Cylinder October 2011 16 / 18



Generating circuits
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Let H1 be a circuit and H2 a circuit with a cutpair in which one
component is a copy of K4. Then H1 ⊕1 H2 is a circuit.
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Generating circuits

Circuits are 2-connected and 3-edge-connected.

Sums

Let H1 be a circuit and H2 a circuit with a cutpair in which one
component is a copy of K4. Then H1 ⊕1 H2 is a circuit.
Let H1 and H2 be circuits with cutpairs in which one component is a copy
of K4. Then H1 ⊕2 H2 is a circuit.
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Generating circuits

Circuits are 2-connected and 3-edge-connected.

Sums

Let H1 be a circuit and H2 a circuit with a cutpair in which one
component is a copy of K4. Then H1 ⊕1 H2 is a circuit.
Let H1 and H2 be circuits with cutpairs in which one component is a copy
of K4. Then H1 ⊕2 H2 is a circuit.
Let H1 and H2 be circuits. Then H1 ⊕3 H2 is a circuit.

Separations

Let G = (V ,E ) be a circuit with a cutpair a, b. If ab /∈ E then there is a
1-separation move that results in two circuits H1 and H2. If ab ∈ E then
there is a 2-separation move that results in two circuits H1 and H2.
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Generating circuits

Circuits are 2-connected and 3-edge-connected.

Sums

Let H1 be a circuit and H2 a circuit with a cutpair in which one
component is a copy of K4. Then H1 ⊕1 H2 is a circuit.
Let H1 and H2 be circuits with cutpairs in which one component is a copy
of K4. Then H1 ⊕2 H2 is a circuit.
Let H1 and H2 be circuits. Then H1 ⊕3 H2 is a circuit.

Separations

Let G = (V ,E ) be a circuit with a cutpair a, b. If ab /∈ E then there is a
1-separation move that results in two circuits H1 and H2. If ab ∈ E then
there is a 2-separation move that results in two circuits H1 and H2.
Let G = (V ,E ) be a circuit with a non-trivial 3-edge-cutset. Then there is
a 3-separation move that results in two circuits H1 and H2.
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v v’

We can apply an inverse Henneberg 2 move to v if and only if we can
apply an inverse Henneberg 2 move to v ′ in the corresponding multigraph
(that does not double an edge).
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v v’

We can apply an inverse Henneberg 2 move to v if and only if we can
apply an inverse Henneberg 2 move to v ′ in the corresponding multigraph
(that does not double an edge).

Theorem

G is a circuit if and only if G can be formed from disjoint copies of K5 \ e,
K4 ⊔ K4 and/or K4 ⊻ K4 by Henneberg 2 moves, 1-sums, 2-sums and
3-sums.
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Extensions

Global rigidity:
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Extensions

Global rigidity:

Is redundant rigidity necessary?
2-connected is necessary, 3-connected is not.
A graph G is RC -connected if and only if G is 2-connected with a
redundantly rigid generic realisation on C .

Conjectured Laman-type theorem for a cone:

we have Maxwell-type necessity,
we have an inductive construction of 2|V | − 1 simple graphs, (N. and
Owen 2011),
it remains to prove these operations preserve rigidity on a cone/torus:
Henneberg 1 and Henneberg 2 work on ’any’ surface, other moves to
work out.
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