Rigidity and Circuits on the Cylinder

Tony Nixon

The Fields Institute

October 2011

We define the cylinder C as the solution set (in \mathbb{R}^3) to $x^2+y^2=1$.

We define the cylinder C as the solution set (in \mathbb{R}^3) to $x^2+y^2=1$. A framework on C, (G,p), is a graph and a vector $p=(p_1,\ldots,p_{|V|})\in C^{|V|}$.

We define the cylinder C as the solution set (in \mathbb{R}^3) to $x^2+y^2=1$. A framework on C, (G,p), is a graph and a vector $p=(p_1,\ldots,p_{|V|})\in C^{|V|}$.

• We use Euclidean distance in \mathbb{R}^3 so edges are straight line segments that need not lie on the surface.

We define the cylinder C as the solution set (in \mathbb{R}^3) to $x^2+y^2=1$. A framework on C, (G,p), is a graph and a vector $p=(p_1,\ldots,p_{|V|})\in C^{|V|}$.

• We use Euclidean distance in \mathbb{R}^3 so edges are straight line segments that need not lie on the surface.

A framework (G, p) is continuously flexible if there exists a continuous function $x : [0,1] \to C^{|V|}$ such that the following hold:

- (G, x(t)) is equivalent to (G, p) for all $t \in [0, 1]$,
- (G, x(t)) is not congruent to (G, p) for some $t \in (0, 1]$.

We define the cylinder C as the solution set (in \mathbb{R}^3) to $x^2 + y^2 = 1$. A framework on C, (G, p), is a graph and a vector $p = (p_1, \dots, p_{|V|}) \in C^{|V|}$.

• We use Euclidean distance in \mathbb{R}^3 so edges are straight line segments that need not lie on the surface.

A framework (G, p) is continuously flexible if there exists a continuous function $x : [0,1] \to C^{|V|}$ such that the following hold:

- x(0) = p,
- (G, x(t)) is equivalent to (G, p) for all $t \in [0, 1]$,
- (G, x(t)) is not congruent to (G, p) for some $t \in (0, 1]$.

Definition

A framework (G, p) is (continuously) rigid on C if it is not continuously flexible and is minimally rigid if $(G \setminus e, p)$ is flexible for any edge $e \in E(G)$.

Infinitesimal Rigidity

Definition

The cylinder rigidity matrix $R_C(G, p)$ is the $(|E| + |V|) \times 3|V|$ matrix where the usual 3-dimensional rigidity matrix is augmented by |V| extra rows, one for each vertex. The entries in the row for vertex i are zero except in the column triple corresponding to i where the entry is $(x_i, y_i, 0)$.

$$\begin{bmatrix} p_i - p_j & \dots & p_j - p_i & \dots \\ (x_i, y_i, 0) & \dots & & & \\ & \ddots & & & \\ & \dots & (x_j, y_j, 0) & \dots \end{bmatrix}$$

Infinitesimal Rigidity

Definition

The cylinder rigidity matrix $R_C(G, p)$ is the $(|E| + |V|) \times 3|V|$ matrix where the usual 3-dimensional rigidity matrix is augmented by |V| extra rows, one for each vertex. The entries in the row for vertex i are zero except in the column triple corresponding to i where the entry is $(x_i, y_i, 0)$.

$$\begin{bmatrix} p_i - p_j & \dots & p_j - p_i & \dots \\ (x_i, y_i, 0) & \dots & & & \\ & \ddots & & & & \\ & \dots & (x_j, y_j, 0) & \dots \end{bmatrix}$$

Definition

(G,p) is infinitesimally rigid on C if $R_C(G,p)$ has maximal rank. Moreover (G,p) is minimally infinitesimally rigid on C if $R_C(G,p)$ has maximal rank and linearly independent rows.

 Whiteley 1988 - variant of this problem with geodesic edges and (hence) multigraphs.

- Whiteley 1988 variant of this problem with geodesic edges and (hence) multigraphs.
- These extra rows arise from differentiating the polynomials defining the cylinder and ensure that infinitesimal flexes occur tangentially to the surface.

- Whiteley 1988 variant of this problem with geodesic edges and (hence) multigraphs.
- These extra rows arise from differentiating the polynomials defining the cylinder and ensure that infinitesimal flexes occur tangentially to the surface.
- Notice on the cylinder, there are only two trivial motions so a framework (G, p) has dim ker $R_C(G, p) \ge 2$.

- Whiteley 1988 variant of this problem with geodesic edges and (hence) multigraphs.
- These extra rows arise from differentiating the polynomials defining the cylinder and ensure that infinitesimal flexes occur tangentially to the surface.
- Notice on the cylinder, there are only two trivial motions so a framework (G, p) has dim ker $R_C(G, p) \ge 2$.
- Example: $K_4 e$ is generically flexible.

- Whiteley 1988 variant of this problem with geodesic edges and (hence) multigraphs.
- These extra rows arise from differentiating the polynomials defining the cylinder and ensure that infinitesimal flexes occur tangentially to the surface.
- Notice on the cylinder, there are only two trivial motions so a framework (G, p) has dim ker $R_C(G, p) \ge 2$.
- Example: $K_4 e$ is generically flexible.

A framework (G, p) on C is generic if the only polynomial equations in 3|V| variables with solution p are the equations defining C.

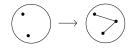
- Whiteley 1988 variant of this problem with geodesic edges and (hence) multigraphs.
- These extra rows arise from differentiating the polynomials defining the cylinder and ensure that infinitesimal flexes occur tangentially to the surface.
- Notice on the cylinder, there are only two trivial motions so a framework (G, p) has dim ker $R_C(G, p) \ge 2$.
- Example: $K_4 e$ is generically flexible.

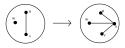
A framework (G, p) on C is generic if the only polynomial equations in 3|V| variables with solution p are the equations defining C.

Proposition

For generic p, (G, p) is infinitesimally rigid on C if and only if (G, p) is continuously rigid on C.

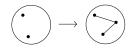
Henneberg-Laman

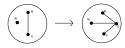




Recall for the plane:

Henneberg-Laman





Recall for the plane:

Theorem: Maxwell, Henneberg, Laman, Lovasz and Yemini

For generic p and a graph G = (V, E), the following are equivalent

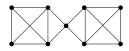
- \bullet (G, p) is minimally rigid (in \mathbb{R}^2),
- ② |E| = 2|V| 3 and for every subgraph X of G with at least one edge, $|E(X)| \le 2|V(X)| 3$,
- \odot G can be derived from K_2 by Henneberg 1 and 2 moves,
- for any non-edge e (including a second copy of an existing edge) G + e is the edge disjoint union of two spanning trees.

• Tay's inductive characterisation of 2|V|-2 (multi)graphs is not enough.

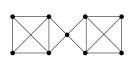
- Tay's inductive characterisation of 2|V| 2 (multi)graphs is not enough.
- There are graphs that we cannot derive just from Henneberg moves.

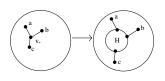
- Tay's inductive characterisation of 2|V| 2 (multi)graphs is not enough.
- There are graphs that we cannot derive just from Henneberg moves.

- Tay's inductive characterisation of 2|V| 2 (multi)graphs is not enough.
- There are graphs that we cannot derive just from Henneberg moves.



- Tay's inductive characterisation of 2|V| 2 (multi)graphs is not enough.
- There are graphs that we cannot derive just from Henneberg moves.





Let $H \subset G$ be a proper subgraph with |E(H)| = 2|V(H)| - 2. Write G/H for the (possibly multi)graph formed by contracting H to a point v_* . G/H is called a contraction of G by H and conversely, G is an extension of G/H by H.

Theorem. Tutte, Nash-Williams 1964, N., Owen and Power 2010

For a simple graph G = (V, E) with $|V| \ge 4$ and generic p the following are equivalent:

- \bullet (G, p) is minimally infinitesimally rigid on C,
- ② G is derivable from K_4 by the Henneberg 1, Henneberg 2 and graph extension moves,
- ③ |E| = 2|V| 2 and every subgraph G' = (V', E') satisfies $|E'| \le 2|V'| 2$,
- \bullet G is the edge-disjoint union of two spanning trees.

Theorem. Tutte, Nash-Williams 1964, N., Owen and Power 2010

For a simple graph G = (V, E) with $|V| \ge 4$ and generic p the following are equivalent:

- \bullet (G,p) is minimally infinitesimally rigid on C,
- ② G is derivable from K_4 by the Henneberg 1, Henneberg 2 and graph extension moves,
- **③** |E| = 2|V| 2 and every subgraph G' = (V', E') satisfies $|E'| \le 2|V'| 2$,
- \bullet G is the edge-disjoint union of two spanning trees.
 - Aside: the theorem extends to a union of concentric cylinders.

Theorem. Tutte, Nash-Williams 1964, N., Owen and Power 2010

For a simple graph G = (V, E) with $|V| \ge 4$ and generic p the following are equivalent:

- \bullet (G, p) is minimally infinitesimally rigid on C,
- ② G is derivable from K_4 by the Henneberg 1, Henneberg 2 and graph extension moves,
- **③** |E| = 2|V| 2 and every subgraph G' = (V', E') satisfies $|E'| \le 2|V'| 2$,
- \bullet G is the edge-disjoint union of two spanning trees.
 - Aside: the theorem extends to a union of concentric cylinders.
- Half turn (\mathbb{Z}_2) symmetry 'predicts' flexibility in minimally rigid graphs...

Back to the Plane

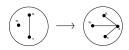
G=(V,E) is a \mathcal{R}_2 -circuit if and only if G satisfies |E|=2|V|-2 and all proper subgraphs G'=V',E') (with at least one edge) satisfy |E'|<2|V'|-3.

Back to the Plane

G=(V,E) is a \mathcal{R}_2 -circuit if and only if G satisfies |E|=2|V|-2 and all proper subgraphs G'=V',E') (with at least one edge) satisfy $|E'|\leq 2|V'|-3$.

Theorem - Berg and Jordan 2003

Let G be a 3-connected \mathcal{R}_2 -circuit with $|V| \geq 5$. Then some inverse Henneberg 2 move is possible on G.

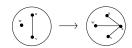


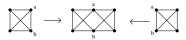
Back to the Plane

G=(V,E) is a \mathcal{R}_2 -circuit if and only if G satisfies |E|=2|V|-2 and all proper subgraphs G'=V',E') (with at least one edge) satisfy $|E'|\leq 2|V'|-3$.

Theorem - Berg and Jordan 2003

Let G be a 3-connected \mathcal{R}_2 -circuit with $|V| \geq 5$. Then some inverse Henneberg 2 move is possible on G.





Theorem - Berg and Jordan 2003

G is a \mathcal{R}_2 -circuit if and only if G can be formed from disjoint copies of K_4 by Henneberg 2 moves and sums.

We have the cylinder rigidity matroid $\mathcal{R}_{\mathcal{C}}$.

We have the cylinder rigidity matroid $\mathcal{R}_{\mathcal{C}}$.

Definition

A simple graph G = (V, E) is a circuit (in \mathcal{R}_C) if and only if |E| = 2|V| - 1 and all proper subgraphs G' = (V', E') satisfy $|E'| \le 2|V'| - 2$.

We have the cylinder rigidity matroid $\mathcal{R}_{\mathcal{C}}$.

Definition

A simple graph G = (V, E) is a circuit (in \mathcal{R}_C) if and only if |E| = 2|V| - 1 and all proper subgraphs G' = (V', E') satisfy $|E'| \le 2|V'| - 2$.

A vertex v in a circuit is admissible if it has degree 3 and there is an inverse Henneberg 2 move removing v that results in a circuit.

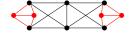
We have the cylinder rigidity matroid $\mathcal{R}_{\mathcal{C}}$.

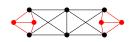
Definition

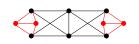
A simple graph G=(V,E) is a circuit (in \mathcal{R}_C) if and only if |E|=2|V|-1 and all proper subgraphs G'=(V',E') satisfy $|E'|\leq 2|V'|-2$.

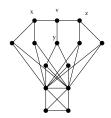
A vertex v in a circuit is admissible if it has degree 3 and there is an inverse Henneberg 2 move removing v that results in a circuit.

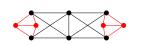
- In the corresponding multigraph matroid every circuit has an admissible vertex.
- In $\mathcal{R}_{\mathcal{C}}$ not every circuit has an admissible vertex.

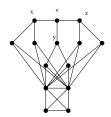


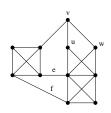


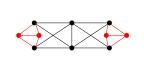


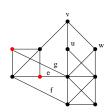


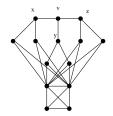


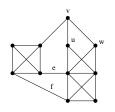












Let G = (V, E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V| \ge 6$. Then

lacksquare there are two degree 3 vertices not contained in copies of K_4 .

Let G = (V, E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V| \ge 6$. Then

- lacktriangle there are two degree 3 vertices not contained in copies of K_4 .
- ② If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy, xz \in E$ and $yz \notin E$, then v is admissible.

Let G=(V,E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V|\geq 6$. Then

- lacktriangle there are two degree 3 vertices not contained in copies of K_4 .
- ② If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy, xz \in E$ and $yz \notin E$, then v is admissible.
- If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy \in E$, $xz, yz \notin E$ then v is admissible.

Let G=(V,E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V|\geq 6$. Then

- lacktriangle there are two degree 3 vertices not contained in copies of K_4 .
- ② If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy, xz \in E$ and $yz \notin E$, then v is admissible.
- If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy \in E$, $xz, yz \notin E$ then v is admissible.

If for every degree 3 not in a K_4 , no pair of neighbours defines an edge then follow Berg and Jordan 2003 to show that if v is not-admissible then there is some other vertex w which is admissible.

Let G=(V,E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V|\geq 6$. Then

- lacktriangle there are two degree 3 vertices not contained in copies of K_4 .
- ② If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy, xz \in E$ and $yz \notin E$, then v is admissible.
- If $v \in V$, d(v) = 3, $N(v) = \{x, y, z\}$, $xy \in E$, $xz, yz \notin E$ then v is admissible.

If for every degree 3 not in a K_4 , no pair of neighbours defines an edge then follow Berg and Jordan 2003 to show that if v is not-admissible then there is some other vertex w which is admissible.

Proposition

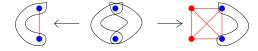
Let G = (V, E) be a 3-connected circuit with no non-trivial 3-edge-cutsets and $|V| \ge 6$. Then some vertex is admissible.

Sum moves

• For H = (V, E), let f(H) = 2|V| - |E| and similarly for any subgraph.

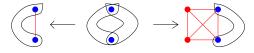
Sum moves

• For H=(V,E), let f(H)=2|V|-|E| and similarly for any subgraph. Let G=(V,E) be a circuit with a cutpair a,b with a bipartition A,B of $V\setminus\{a,b\}$ such that $f(G[A\cup\{a,b\}])< f(G[B\cup\{a,b\}])$. A 1-separation over the cutpair a,b forms disjoint graphs $G[A\cup\{a,b\}]\cup ab$ and $G[B\cup\{a,b\}]\cup K_4(a,b,c,d)$ where $c,d\notin B\cup\{a,b\}$.

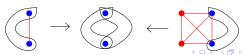


Sum moves

• For H=(V,E), let f(H)=2|V|-|E| and similarly for any subgraph. Let G=(V,E) be a circuit with a cutpair a,b with a bipartition A,B of $V\setminus\{a,b\}$ such that $f(G[A\cup\{a,b\}])< f(G[B\cup\{a,b\}])$. A 1-separation over the cutpair a,b forms disjoint graphs $G[A\cup\{a,b\}]\cup ab$ and $G[B\cup\{a,b\}]\cup K_4(a,b,c,d)$ where $c,d\notin B\cup\{a,b\}$.



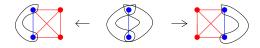
Let G_1 , G_2 be circuits such that G_1 contains an edge a_1b_1 and G_2 contains a two vertex cut a_2 , b_2 within $K_4(a_2, b_2, c_2, d_2)$. A 1-sum operation takes G_1 and G_2 and forms $G_1 \oplus_1 G_2$ by removing a_1b_1 , c_2 , d_2 and a_2b_2 and superimposing a_1 , b_1 onto a_2 , b_2 and calling the resulting vertices a, b.



• Cutpairs may define an edge.

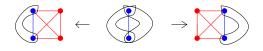
Cutpairs may define an edge.

Let G = (V, E) be a circuit with a cutpair a, b with a bipartition A, B of $V \setminus \{a, b\}$ such that $f(G[A \cup \{a, b\}]) = f(G[B \cup \{a, b\}])$. A 2-separation over the cutpair a, b forms disjoint graphs $G[A \cup \{a, b\}] \cup K_4(a, b, c, d)$ and $G[B \cup \{a, b\}] \cup K_4(a, b, c, d)$ where $c, d \notin A \cup \{a, b\}$ or $B \cup \{a, b\}$.

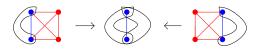


Cutpairs may define an edge.

Let G = (V, E) be a circuit with a cutpair a, b with a bipartition A, B of $V \setminus \{a, b\}$ such that $f(G[A \cup \{a, b\}]) = f(G[B \cup \{a, b\}])$. A 2-separation over the cutpair a, b forms disjoint graphs $G[A \cup \{a, b\}] \cup K_4(a, b, c, d)$ and $G[B \cup \{a, b\}] \cup K_4(a, b, c, d)$ where $c, d \notin A \cup \{a, b\}$ or $B \cup \{a, b\}$.



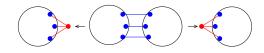
Let G_1 , G_2 be circuits such that G_i contains a two vertex cut a_i , b_i within $K_4(a_i, b_i, c_i, d_i)$. A 2-sum operation takes G_1 and G_2 and forms $G_1 \oplus_2 G_2$ by removing c_i , d_i and superimposing a_1 , b_1 onto a_2 , b_2 and calling the resulting vertices a, b and keeping only one copy of the edge ab.



• We also need to deal with non-trivial 3-edge-cutsets.

• We also need to deal with non-trivial 3-edge-cutsets.

Let G = (V, E) be a circuit with a non-trivial 3-edge-cutset a_1a_2, b_1b_2, c_1c_2 with a bipartition A, B of V such that f(G[A]) = f(G[B]). A 3-separation over the cutset a_1a_2, b_1b_2, c_1c_2 forms disjoint graphs $G[A] \cup v_1 \cup \{a_1v_1, b_1v_1, c_1v_1\}$ and $G[B] \cup v_2 \cup \{a_2v_2, b_2v_2, c_2v_2\}$.

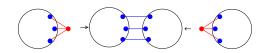


• We also need to deal with non-trivial 3-edge-cutsets.

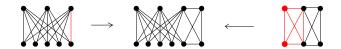
Let G = (V, E) be a circuit with a non-trivial 3-edge-cutset a_1a_2, b_1b_2, c_1c_2 with a bipartition A, B of V such that f(G[A]) = f(G[B]). A 3-separation over the cutset a_1a_2, b_1b_2, c_1c_2 forms disjoint graphs $G[A] \cup v_1 \cup \{a_1v_1, b_1v_1, c_1v_1\}$ and $G[B] \cup v_2 \cup \{a_2v_2, b_2v_2, c_2v_2\}$.



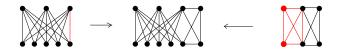
Let G_1 , G_2 be circuits such that G_i contains a node v_i with $N(v_i) = \{a_i, b_i, c_i\}$. A 3-sum operation takes G_1 and G_2 and forms $G_1 \oplus_3 G_2$ by deleting v_1, v_2 and adding edges a_1a_2, b_1b_2, c_1c_2 .

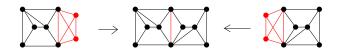


Examples

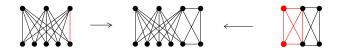


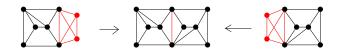
Examples

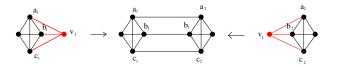




Examples







Circuits are 2-connected and 3-edge-connected.

Circuits are 2-connected and 3-edge-connected.

Sums

Let H_1 be a circuit and H_2 a circuit with a cutpair in which one component is a copy of K_4 . Then $H_1 \oplus_1 H_2$ is a circuit.

Circuits are 2-connected and 3-edge-connected.

Sums

Let H_1 be a circuit and H_2 a circuit with a cutpair in which one component is a copy of K_4 . Then $H_1 \oplus_1 H_2$ is a circuit. Let H_1 and H_2 be circuits with cutpairs in which one component is a copy of K_4 . Then $H_1 \oplus_2 H_2$ is a circuit.

Circuits are 2-connected and 3-edge-connected.

Sums

Let H_1 be a circuit and H_2 a circuit with a cutpair in which one component is a copy of K_4 . Then $H_1 \oplus_1 H_2$ is a circuit.

Let H_1 and H_2 be circuits with cutpairs in which one component is a copy of K_4 . Then $H_1 \oplus_2 H_2$ is a circuit.

Let H_1 and H_2 be circuits. Then $H_1 \oplus_3 H_2$ is a circuit.

Circuits are 2-connected and 3-edge-connected.

Sums

Let H_1 be a circuit and H_2 a circuit with a cutpair in which one component is a copy of K_4 . Then $H_1 \oplus_1 H_2$ is a circuit.

Let H_1 and H_2 be circuits with cutpairs in which one component is a copy of K_4 . Then $H_1 \oplus_2 H_2$ is a circuit.

Let H_1 and H_2 be circuits. Then $H_1 \oplus_3 H_2$ is a circuit.

Separations

Let G = (V, E) be a circuit with a cutpair a, b. If $ab \notin E$ then there is a 1-separation move that results in two circuits H_1 and H_2 . If $ab \in E$ then there is a 2-separation move that results in two circuits H_1 and H_2 .

Circuits are 2-connected and 3-edge-connected.

Sums

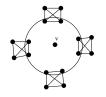
Let H_1 be a circuit and H_2 a circuit with a cutpair in which one component is a copy of K_4 . Then $H_1 \oplus_1 H_2$ is a circuit.

Let H_1 and H_2 be circuits with cutpairs in which one component is a copy of K_4 . Then $H_1 \oplus_2 H_2$ is a circuit.

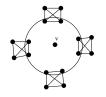
Let H_1 and H_2 be circuits. Then $H_1 \oplus_3 H_2$ is a circuit.

Separations

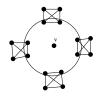
Let G = (V, E) be a circuit with a cutpair a, b. If $ab \notin E$ then there is a 1-separation move that results in two circuits H_1 and H_2 . If $ab \in E$ then there is a 2-separation move that results in two circuits H_1 and H_2 . Let G = (V, E) be a circuit with a non-trivial 3-edge-cutset. Then there is a 3-separation move that results in two circuits H_1 and H_2 .



We can apply an inverse Henneberg 2 move to v if and only if we can apply an inverse Henneberg 2 move to v' in the corresponding multigraph (that does not double an edge).



We can apply an inverse Henneberg 2 move to v if and only if we can apply an inverse Henneberg 2 move to v' in the corresponding multigraph (that does not double an edge).



We can apply an inverse Henneberg 2 move to v if and only if we can apply an inverse Henneberg 2 move to v' in the corresponding multigraph (that does not double an edge).

Theorem

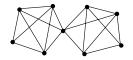
G is a circuit if and only if G can be formed from disjoint copies of $K_5 \setminus e$, $K_4 \sqcup K_4$ and/or $K_4 \veebar K_4$ by Henneberg 2 moves, 1-sums, 2-sums and 3-sums.

• Global rigidity:

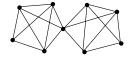
- Global rigidity:
 - Is redundant rigidity necessary?

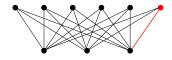
- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.

- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.
 - A graph G is \mathcal{R}_C -connected if and only if G is 2-connected with a redundantly rigid generic realisation on C.



- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.
 - A graph G is \mathcal{R}_C -connected if and only if G is 2-connected with a redundantly rigid generic realisation on C.

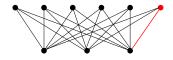




Conjectured Laman-type theorem for a cone:

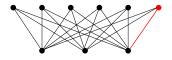
- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.
 - A graph G is \mathcal{R}_C -connected if and only if G is 2-connected with a redundantly rigid generic realisation on C.





- Conjectured Laman-type theorem for a cone:
 - we have Maxwell-type necessity,

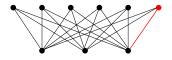
- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.
 - A graph G is R_C-connected if and only if G is 2-connected with a redundantly rigid generic realisation on C.



- Conjectured Laman-type theorem for a cone:
 - we have Maxwell-type necessity,
 - we have an inductive construction of 2|V|-1 simple graphs, (N. and Owen 2011),

- Global rigidity:
 - Is redundant rigidity necessary?
 - 2-connected is necessary, 3-connected is not.
 - A graph G is \mathcal{R}_C -connected if and only if G is 2-connected with a redundantly rigid generic realisation on C.





- Conjectured Laman-type theorem for a cone:
 - we have Maxwell-type necessity,
 - we have an inductive construction of 2|V|-1 simple graphs, (N. and Owen 2011),
 - it remains to prove these operations preserve rigidity on a cone/torus: Henneberg 1 and Henneberg 2 work on 'any' surface, other moves to work out.