
Cubical 4−Twistoids: II

Mark Mixer

The Fields Institute

October 2011

with Isabel Hubard, Daniel Pellicer, Asia Ivić Weiss
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What is a twistoid?

Start with an underlying tessellation U tessellation of Ed .

In this talk U is always the tessellation by cubes

Let G be a subgroup of Aut(U).

G has no fixed points.

Twistoid T = U/G has faces which are orbits of faces of U
under the action of G
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Example in 2-d

α = (−1, 2)
β = (2, 1)
G = 〈α, β〉

a flag of T is the orbit of a flag of U under the action of G .

In general, topologically, this quotient gives us a flat
riemannian manifold.
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Example in 2-d

Maps on the torus and Klein bottle are 3-twistoids.
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Symmetries of {4, 3, 4}
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Symmetries of Twistoids

T = U/G where G < Aut(U).

Let h ∈ Aut(U)

if the action of h is compatible with the quotient, then we say
that h is a symmetry of T , denoted h ∈ Sym(T )

⇔ h(F ) is in the same orbit as h(g(F )) for all g ∈ G and F in
F(U).
⇔ g ′h = hg
⇔ hgh−1 ∈ G

We are looking for symmetries of the underlying tessellation
which normalize the group that we are using for the quotient.

Aut(T ) = Sym(T )/G
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Twistoids from the group 3331
3 +

1
3 +

1
3+

G is generated by two 3-fold twists (screw motions) in parallel
axis with equal translational component.

αβ−2 = γ−1

How can we place this fundamental region into a fixed cubical
lattice so that G is a subgroup of the lattice’s automorphisms?
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Twistoids from the group 3331
3 +

1
3 +

1
3+

In the point group of {4, 3, 4} the only elements of order 3 are
rotations through the main diagonal of the cube.

Thus the axis of our generating twists (screw motions) must
be parallel to this direction.
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Example of cubes twisting through petrie motion
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Placing a fundamental region for 3331
3 +

1
3 +

1
3+

The translational component is
“determined” by the placement of
the twist.

If a twist is through a node of the
projection, then the translation is

up by k
√
3
3 for k ≡ 0(mod 3).

If a twist is through a petrie
motion (triangle in projection),
then the translational component is

up by k
√
3
3 for k ≡ ±1(mod3).

Thus you either have your twists all
in diagonals of cubes, or all in axis
of petrie motions.
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Symmetries of a Twistoid

We now have 2 parameters that determine the fundamental
region (up to a relabeling of the origin).

An integer k which is gives the height of the fundamental
region

(and determines if the axis goes through diagonals of
cubes or axis of petrie motions).
A vector (a, b) which determines the position of the
fundamental region in the projection.
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Symmetries of a Twistoid

The parameters also determine a map in the projection, and
from the symmetries of this map we can determine the
symmetries of the Twistoid.
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Symmetries of a Twistoid

There are 48k(a2 + b2 + ab) flags.

Translations in Aut(T ) reduce the possible number of flag
orbits to 16(a2 + b2 + ab)

If the map in the projection is regular then there are
8(a2 + b2 + ab) in the petrie axis case, and 4(a2 + b2 + ab)
when the axis of twists lie on diagonals of cubes.
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Small Examples

If you don’t require that your Twistoid is a polytope, it can
get VERY small.

k = 1, (a, b) = (1, 0)
T has one vertex, three edges, three “squares”, and one
“cube.”
has four orbits on flags.

k = 4, (a, b) = (1, 1) gives the smallest polytopal example:
12 vertices, 36 edges, 36 squares, 12 cubes.

has 24 orbits on flags.

3 < k ≡ 0 (mod 3), (a, b) = (1, 1) gives a polytopal example
with 12 flag orbits.
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Twistoids from the group 22 ∗ 1
2 +

1
2 +

1
2+

G is generated by two 2-fold twists (screw motions) in parallel
axis and a glide reflection with equal translational component.

How can we place this fundamental region into a fixed cubical
lattice so that G is a subgroup of the lattice’s automorphisms?
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Twistoids from the group 22 ∗ 1
2 +

1
2 +

1
2+

First place try and place the twists as symmetries of the
lattice.

There are two non-equivalent ways of doing this:
The axis of the twists can be in the same direction as edges of
the cubes, or

The axis of the twists can be in the direction of diagonals of
the squares
We treat both cases separately, and I will only mention the
first case.
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Projecting onto a plane perpendicular to twist axis

There are 12 distinct ways of placing the twists and glide reflection
in this projection (up to duality)
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Projecting onto a plane perpendicular to twist axis

We can describe the fundamental region using 3 parameters:

k is the height of the twists,
a is the distance between the twist axis,
d is the distance from a twist to the wall of the glide reflection.

There are 192kad flags in the twistoid.
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Symmetries of a Twistoid

Translations in the same direction (“up”) as the twist axis
commute with the generators of G .

The smallest translation up which is identity is by 2k, so the
twistoid has a group of 2k automorphisms induced by these
translations.
If the two twists are “the same”, then there is another
translation which interchanges the axis.
In this case we have a group of 4k automorphisms of the
twistoid which come from translations of the tessellation.

What other symmetries of the twistoid might we have?
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Symmetries of a Twistoid

In the non-orientable setting, strange things happen!

As an automorphism of the twistoid, the symmetry induced by
translation up by k is equivalent to:

reflection in the same wall as the generating glide refection
half turn in the axis of the red twist
half turn in the axis of the green twist
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Symmetries of a Twistoid

There are two other types of automorphisms of the twistoid
that are not induced by translations of the tessellation.

half turn with axis parallel to twists, in the center of the
fundamental region
half turn with axis perpendicular to twists, in the center of the
“front” of the fundamental region.

Thus the automorphism group of the twistoid can have at
most 16k elements.

From 192kad flags, we get 12ad flag orbits.
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Small examples

Like in the previous group, if you don’t require polytopality,
then you can have very small objects.

Smallest twistoid for this group: one vertex, 3 “edges”, 3
“squares”, 1 “cube”

has 3 flag orbits

Smallest polytopal twistoid for this group: parameters k=2,
a=1=d

8 vertices, 24 edges, 24 squares, 8 cubes
with 12 flag orbits.
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Small examples

Like in the previous group, if you don’t require polytopality,
then you can have very small objects.

Smallest twistoid for this group: one vertex, 3 “edges”, 3
“squares”, 1 “cube”
has 3 flag orbits

Smallest polytopal twistoid for this group: parameters k=2,
a=1=d

8 vertices, 24 edges, 24 squares, 8 cubes
with 12 flag orbits.
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The End
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