Cubical 4-Twistoids: II

Mark Mixer

The Fields Institute
October 2011
with Isabel Hubard, Daniel Pellicer, Asia Ivić Weiss

Outline

- Introduction to Twistoids
- Twistoids from the group $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$
- Twistoids from the group $22 * \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

What is a twistoid?

- Start with an underlying tessellation \mathcal{U} tessellation of \mathbb{E}^{d}.
- In this talk \mathcal{U} is always the tessellation by cubes

What is a twistoid?

- Start with an underlying tessellation \mathcal{U} tessellation of \mathbb{E}^{d}.
- In this talk \mathcal{U} is always the tessellation by cubes
- Let G be a subgroup of $\operatorname{Aut}(\mathcal{U})$.
- G has no fixed points.

What is a twistoid?

- Start with an underlying tessellation \mathcal{U} tessellation of \mathbb{E}^{d}.
- In this talk \mathcal{U} is always the tessellation by cubes
- Let G be a subgroup of $\operatorname{Aut}(\mathcal{U})$.
- G has no fixed points.
- Twistoid $\mathcal{T}=\mathcal{U} / G$ has faces which are orbits of faces of \mathcal{U} under the action of G

Example in 2-d

$$
\begin{aligned}
& \alpha=(-1,2) \\
& \beta=(2,1) \\
& G=\langle\alpha, \beta\rangle
\end{aligned}
$$

Example in 2-d

$$
\begin{aligned}
& \alpha=(-1,2) \\
& \beta=(2,1) \\
& G=\langle\alpha, \beta\rangle
\end{aligned}
$$

- a flag of \mathcal{T} is the orbit of a flag of \mathcal{U} under the action of G.

Example in 2-d

$$
\begin{aligned}
& \alpha=(-1,2) \\
& \beta=(2,1) \\
& G=\langle\alpha, \beta\rangle
\end{aligned}
$$

- a flag of \mathcal{T} is the orbit of a flag of \mathcal{U} under the action of G.

- In general, topologically, this quotient gives us a flat riemannian manifold.

Example in 2-d

- Maps on the torus and Klein bottle are 3-twistoids.

Symmetries of $\{4,3,4\}$

Symmetries of $\{4,3,4\}$

Symmetries of Twistoids

- $\mathcal{T}=\mathcal{U} / G$ where $G<\operatorname{Aut}(\mathcal{U})$.
- Let $h \in \operatorname{Aut}(\mathcal{U})$
- if the action of h is compatible with the quotient, then we say that h is a symmetry of \mathcal{T}, denoted $h \in \operatorname{Sym}(\mathcal{T})$

Symmetries of Twistoids

- $\mathcal{T}=\mathcal{U} / G$ where $G<\operatorname{Aut}(\mathcal{U})$.
- Let $h \in \operatorname{Aut}(\mathcal{U})$
- if the action of h is compatible with the quotient, then we say that h is a symmetry of \mathcal{T}, denoted $h \in \operatorname{Sym}(\mathcal{T})$ $\Leftrightarrow h(F)$ is in the same orbit as $h(g(F))$ for all $g \in G$ and F in $\mathcal{F}(U)$.

Symmetries of Twistoids

- $\mathcal{T}=\mathcal{U} / G$ where $G<\operatorname{Aut}(\mathcal{U})$.
- Let $h \in \operatorname{Aut}(\mathcal{U})$
- if the action of h is compatible with the quotient, then we say that h is a symmetry of \mathcal{T}, denoted $h \in \operatorname{Sym}(\mathcal{T})$ $\Leftrightarrow h(F)$ is in the same orbit as $h(g(F))$ for all $g \in G$ and F in $\mathcal{F}(U)$.
$\Leftrightarrow g^{\prime} h=h g$
$\Leftrightarrow h g h^{-1} \in G$
- We are looking for symmetries of the underlying tessellation which normalize the group that we are using for the quotient.
- $\operatorname{Aut}(\mathcal{T})=\operatorname{Sym}(\mathcal{T}) / G$

Twistoids from the group $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

Twistoids from the group $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- G is generated by two 3 -fold twists (screw motions) in parallel axis with equal translational component.

Twistoids from the group $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- G is generated by two 3 -fold twists (screw motions) in parallel axis with equal translational component.
- $\alpha \beta^{-2}=\gamma^{-1}$
- How can we place this fundamental region into a fixed cubical lattice so that G is a subgroup of the lattice's automorphisms?

Twistoids from the group $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- In the point group of $\{4,3,4\}$ the only elements of order 3 are rotations through the main diagonal of the cube.
- In the point group of $\{4,3,4\}$ the only elements of order 3 are rotations through the main diagonal of the cube.
- Thus the axis of our generating twists (screw motions) must be parallel to this direction.
- In the point group of $\{4,3,4\}$ the only elements of order 3 are rotations through the main diagonal of the cube.
- Thus the axis of our generating twists (screw motions) must be parallel to this direction.

Example of cubes twisting through petrie motion

Example of cubes twisting through petrie motion

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- The translational component is "determined" by the placement of the twist.

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- The translational component is "determined" by the placement of the twist.
- If a twist is through a node of the projection, then the translation is up by $k \frac{\sqrt{3}}{3}$ for $k \equiv 0(\bmod 3)$.

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- The translational component is "determined" by the placement of the twist.
- If a twist is through a node of the projection, then the translation is up by $k \frac{\sqrt{3}}{3}$ for $k \equiv 0(\bmod 3)$.
- If a twist is through a petrie motion (triangle in projection), then the translational component is up by $k \frac{\sqrt{3}}{3}$ for $k \equiv \pm 1(\bmod 3)$.

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

- The translational component is "determined" by the placement of the twist.
- If a twist is through a node of the projection, then the translation is up by $k \frac{\sqrt{3}}{3}$ for $k \equiv 0(\bmod 3)$.
- If a twist is through a petrie motion (triangle in projection), then the translational component is up by $k \frac{\sqrt{3}}{3}$ for $k \equiv \pm 1(\bmod 3)$.
- Thus you either have your twists all in diagonals of cubes, or all in axis of petrie motions.

Placing a fundamental region for $333 \frac{1}{3}+\frac{1}{3}+\frac{1}{3}+$

Symmetries of a Twistoid

- We now have 2 parameters that determine the fundamental region (up to a relabeling of the origin).
- An integer k which is gives the height of the fundamental region

Symmetries of a Twistoid

- We now have 2 parameters that determine the fundamental region (up to a relabeling of the origin).
- An integer k which is gives the height of the fundamental region (and determines if the axis goes through diagonals of cubes or axis of petrie motions).

Symmetries of a Twistoid

- We now have 2 parameters that determine the fundamental region (up to a relabeling of the origin).
- An integer k which is gives the height of the fundamental region (and determines if the axis goes through diagonals of cubes or axis of petrie motions).
- A vector (a, b) which determines the position of the fundamental region in the projection.

Symmetries of a Twistoid

- The parameters also determine a map in the projection, and from the symmetries of this map we can determine the symmetries of the Twistoid.

Symmetries of a Twistoid

- The parameters also determine a map in the projection, and from the symmetries of this map we can determine the symmetries of the Twistoid.

Symmetries of a Twistoid

Symmetries of a Twistoid

- There are $48 k\left(a^{2}+b^{2}+a b\right)$ flags.

Symmetries of a Twistoid

- There are $48 k\left(a^{2}+b^{2}+a b\right)$ flags.
- Translations in $\operatorname{Aut}(\mathcal{T})$ reduce the possible number of flag orbits to $16\left(a^{2}+b^{2}+a b\right)$

Symmetries of a Twistoid

- There are $48 k\left(a^{2}+b^{2}+a b\right)$ flags.
- Translations in $\operatorname{Aut}(\mathcal{T})$ reduce the possible number of flag orbits to $16\left(a^{2}+b^{2}+a b\right)$
- If the map in the projection is regular then there are $8\left(a^{2}+b^{2}+a b\right)$ in the petrie axis case,

Symmetries of a Twistoid

- There are $48 k\left(a^{2}+b^{2}+a b\right)$ flags.
- Translations in $\operatorname{Aut}(\mathcal{T})$ reduce the possible number of flag orbits to $16\left(a^{2}+b^{2}+a b\right)$
- If the map in the projection is regular then there are $8\left(a^{2}+b^{2}+a b\right)$ in the petrie axis case, and $4\left(a^{2}+b^{2}+a b\right)$ when the axis of twists lie on diagonals of cubes.

Small Examples

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.
- $k=1,(a, b)=(1,0)$

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.
- $k=1,(a, b)=(1,0)$
- \mathcal{T} has one vertex, three edges, three "squares", and one "cube."
- has four orbits on flags.

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.
- $k=1,(a, b)=(1,0)$
- \mathcal{T} has one vertex, three edges, three "squares", and one "cube."
- has four orbits on flags.
- $k=4,(a, b)=(1,1)$ gives the smallest polytopal example:

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.
- $k=1,(a, b)=(1,0)$
- \mathcal{T} has one vertex, three edges, three "squares", and one "cube."
- has four orbits on flags.
- $k=4,(a, b)=(1,1)$ gives the smallest polytopal example:
- 12 vertices, 36 edges, 36 squares, 12 cubes.

- has 24 orbits on flags.

Small Examples

- If you don't require that your Twistoid is a polytope, it can get VERY small.
- $k=1,(a, b)=(1,0)$
- \mathcal{T} has one vertex, three edges, three "squares", and one "cube."
- has four orbits on flags.
- $k=4,(a, b)=(1,1)$ gives the smallest polytopal example:
- 12 vertices, 36 edges, 36 squares, 12 cubes.

- has 24 orbits on flags.
- $3<k \equiv 0(\bmod 3),(a, b)=(1,1)$ gives a polytopal example with 12 flag orbits.

Twistoids from the group $22 * \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

Twistoids from the group $22 * \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

- G is generated by two 2-fold twists (screw motions) in parallel axis and a glide reflection with equal translational component.

Twistoids from the group $22 * \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

- G is generated by two 2-fold twists (screw motions) in parallel axis and a glide reflection with equal translational component.
- How can we place this fundamental region into a fixed cubical lattice so that G is a subgroup of the lattice's automorphisms?
- First place try and place the twists as symmetries of the lattice.
- There are two non-equivalent ways of doing this:
- The axis of the twists can be in the same direction as edges of the cubes, or
- First place try and place the twists as symmetries of the lattice.
- There are two non-equivalent ways of doing this:
- The axis of the twists can be in the same direction as edges of the cubes, or
- The axis of the twists can be in the direction of diagonals of the squares

Twistoids from the group $22 * \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+$

- First place try and place the twists as symmetries of the lattice.
- There are two non-equivalent ways of doing this:
- The axis of the twists can be in the same direction as edges of the cubes, or
- The axis of the twists can be in the direction of diagonals of the squares
- We treat both cases separately, and I will only mention the first case.

Projecting onto a plane perpendicular to twist axis

There are 12 distinct ways of placing the twists and glide reflection in this projection (up to duality)

Projecting onto a plane perpendicular to twist axis

There are 12 distinct ways of placing the twists and glide reflection in this projection (up to duality)

Projecting onto a plane perpendicular to twist axis

- We can describe the fundamental region using 3 parameters:

Projecting onto a plane perpendicular to twist axis

- We can describe the fundamental region using 3 parameters:
- k is the height of the twists,

Projecting onto a plane perpendicular to twist axis

- We can describe the fundamental region using 3 parameters:
- k is the height of the twists,
- a is the distance between the twist axis,

Projecting onto a plane perpendicular to twist axis

- We can describe the fundamental region using 3 parameters:
- k is the height of the twists,
- a is the distance between the twist axis,
- d is the distance from a twist to the wall of the glide reflection.

Projecting onto a plane perpendicular to twist axis

- We can describe the fundamental region using 3 parameters:
- k is the height of the twists,
- a is the distance between the twist axis,
- d is the distance from a twist to the wall of the glide reflection.
- There are 192 kad flags in the twistoid.

Symmetries of a Twistoid

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.
- The smallest translation up which is identity is by $2 k$, so the twistoid has a group of $2 k$ automorphisms induced by these translations.

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.
- The smallest translation up which is identity is by $2 k$, so the twistoid has a group of $2 k$ automorphisms induced by these translations.
- If the two twists are "the same", then there is another translation which interchanges the axis.

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.
- The smallest translation up which is identity is by $2 k$, so the twistoid has a group of $2 k$ automorphisms induced by these translations.
- If the two twists are "the same", then there is another translation which interchanges the axis.
- In this case we have a group of $4 k$ automorphisms of the twistoid which come from translations of the tessellation.

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.
- The smallest translation up which is identity is by $2 k$, so the twistoid has a group of $2 k$ automorphisms induced by these translations.
- If the two twists are "the same", then there is another translation which interchanges the axis.
- In this case we have a group of $4 k$ automorphisms of the twistoid which come from translations of the tessellation.
- What other symmetries of the twistoid might we have?

Symmetries of a Twistoid

- Translations in the same direction ("up") as the twist axis commute with the generators of G.
- The smallest translation up which is identity is by $2 k$, so the twistoid has a group of $2 k$ automorphisms induced by these translations.
- If the two twists are "the same", then there is another translation which interchanges the axis.
- In this case we have a group of $4 k$ automorphisms of the twistoid which come from translations of the tessellation.
- What other symmetries of the twistoid might we have?

Symmetries of a Twistoid

- In the non-orientable setting, strange things happen!

Symmetries of a Twistoid

- In the non-orientable setting, strange things happen!
- As an automorphism of the twistoid, the symmetry induced by translation up by k is equivalent to:

Symmetries of a Twistoid

- In the non-orientable setting, strange things happen!
- As an automorphism of the twistoid, the symmetry induced by translation up by k is equivalent to:
- reflection in the same wall as the generating glide refection
- half turn in the axis of the red twist
- half turn in the axis of the green twist

Symmetries of a Twistoid

- There are two other types of automorphisms of the twistoid that are not induced by translations of the tessellation.
- half turn with axis parallel to twists, in the center of the fundamental region
- half turn with axis perpendicular to twists, in the center of the "front" of the fundamental region.
- Thus the automorphism group of the twistoid can have at most 16k elements.
- From 192kad flags, we get 12ad flag orbits.

Small examples

- Like in the previous group, if you don't require polytopality, then you can have very small objects.
- Smallest twistoid for this group: one vertex, 3 "edges", 3 "squares", 1 "cube"

Small examples

- Like in the previous group, if you don't require polytopality, then you can have very small objects.
- Smallest twistoid for this group: one vertex, 3 "edges", 3 "squares", 1 "cube"
- has 3 flag orbits

Small examples

- Like in the previous group, if you don't require polytopality, then you can have very small objects.
- Smallest twistoid for this group: one vertex, 3 "edges", 3 "squares", 1 "cube"
- has 3 flag orbits
- Smallest polytopal twistoid for this group: parameters $k=2$, $a=1=d$

Small examples

- Like in the previous group, if you don't require polytopality, then you can have very small objects.
- Smallest twistoid for this group: one vertex, 3 "edges", 3 "squares", 1 "cube"
- has 3 flag orbits
- Smallest polytopal twistoid for this group: parameters $k=2$, $a=1=d$
- 8 vertices, 24 edges, 24 squares, 8 cubes

Small examples

- Like in the previous group, if you don't require polytopality, then you can have very small objects.
- Smallest twistoid for this group: one vertex, 3 "edges", 3 "squares", 1 "cube"
- has 3 flag orbits
- Smallest polytopal twistoid for this group: parameters $k=2$, $a=1=d$
- 8 vertices, 24 edges, 24 squares, 8 cubes
- with 12 flag orbits.

The End

