Equivelar Maps on the Klein Bottle, and a Higher Dimensional Generalization

Max Klambauer
University of Toronto
maximilian.klambauer@utoronto.ca

October 20, 2011

To my advisors,

Special thanks to my advisors: Isabel Hubard, Mark Mixer, Daniel Pellicer, Asia Weiss

Tessellations on the Klein Bottle

Figure: Fundamental regions of some tessellations by regular polygons on the Klein bottle

Glide Reflections and the Klein Bottle

A glide reflection is a reflection through an axis followed by a translation along the axis. The quotient of \mathbb{R}^{2} under two glide reflections through parallel axes and with equal translational components is a klein bottle

Bit of Review

- Any isometry of \mathbb{R}^{n} is: $A x+b$, where A is an $n \times n$ orthogonal matrix and b is a vector.

Bit of Review

- Any isometry of \mathbb{R}^{n} is: $A x+b$, where A is an $n \times n$ orthogonal matrix and b is a vector.
- If \mathcal{T} is a tessellation and G is its group of symmetries, and $H \leq G$, then we can form the quotient \mathcal{T} / H

Bit of Review

- Any isometry of \mathbb{R}^{n} is: $A x+b$, where A is an $n \times n$ orthogonal matrix and b is a vector.
- If \mathcal{T} is a tessellation and G is its group of symmetries, and $H \leq G$, then we can form the quotient \mathcal{T} / H
- The normalizer, N, of H in G is closely related to the symmetries of \mathcal{T} / H. If $\gamma \in N$ then γ induces a well defined action on \mathcal{T} / H which is a symmetry, and $\operatorname{Aut}(\mathcal{T} / H) \cong N / H$.

Glide Reflections Explicitly Written

The glide reflections from two slides ago are:

$$
\begin{aligned}
& t_{1}(x)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)(x)+\binom{0}{h} \\
& t_{2}(x)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)(x)+\binom{w}{h}
\end{aligned}
$$

Glide Reflections Explicitly Written

The glide reflections from two slides ago are:
$t_{1}(x)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)(x)+\binom{0}{h}$
$t_{2}(x)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)(x)+\binom{w}{h}$

Algebra and the Klein Bottle

- We can now begin to use the tools of linear algebra and a bit of group theory to examine quotients of tessellations.

Algebra and the Klein Bottle

- We can now begin to use the tools of linear algebra and a bit of group theory to examine quotients of tessellations.
- We first calculate the groups generated by t_{1} and t_{2} :

$$
\left\langle t_{1}, t_{2}\right\rangle=\left\{\left.\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)^{\beta}(x)+\binom{\alpha w}{\beta h} \right\rvert\, \alpha, \beta \in \mathbb{Z}\right\}
$$

Isometries of \mathbb{R}^{2} That Trivially Conjugate H

Next we calculate the isometries which conjugate $H=\left\langle t_{1}, t_{2}\right\rangle$ trivially. We find they are:

$$
\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right)(x)+\binom{\frac{n w}{2}}{v_{2}}
$$

Note: these are all isometries of \mathbb{R}^{2} which satisfy $\gamma H \gamma^{-1}=H$. It's more economical to calculate this and restrict down to specific isometries of tessellations.

Plan of Attack

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T} / H)$. To do so:

Plan of Attack

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T} / H)$. To do so:

- Find the normalizer, N, of H in $\operatorname{Sym}(\mathcal{T})$

Plan of Attack

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T} / H)$. To do so:

- Find the normalizer, N, of H in $\operatorname{Sym}(\mathcal{T})$
- Find representatives for the quotient N / H

Plan of Attack

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T} / H)$. To do so:

- Find the normalizer, N, of H in $\operatorname{Sym}(\mathcal{T})$
- Find representatives for the quotient N / H
- Make an isomorphism between N / H and some well known group, or a product of well known groups

Glide Reflections Through Hyperplanes

The group of glide reflections from before can be generalized to higher dimensions in an easy way to glide reflections through hyperplanes:

The General Element of H

The general $t \in H$ has the form:

$$
\left(\begin{array}{ccccc}
(-1)^{\epsilon_{1}} & & & & \\
& (-1)^{\epsilon_{2}} & & & \\
& & \ddots & & \\
& & & (-1)^{\epsilon_{n-1}} & \\
& & & & 1
\end{array}\right)(x)+\left(\begin{array}{c}
\alpha_{1} w_{1} \\
\alpha_{2} w_{2} \\
\vdots \\
\alpha_{n-1} w_{n-1} \\
(2 \beta+\chi(\epsilon)) h
\end{array}\right)
$$

where, $\chi(\epsilon)=\Sigma \epsilon_{i} \bmod 2$ or $\frac{1-\operatorname{det} A}{2}$

Another Look at the Klein Bottle

Fundamental Regions in Higher Dimensions

The fundamental region is:

$$
\begin{aligned}
& \quad R=\left\{\left(\lambda_{1} w_{1}, \ldots, \lambda_{n-1} w_{n-1}, \lambda_{n} h\right) \mid \lambda_{1}, \ldots \lambda_{n-1} \in\left[0, \frac{1}{2}\right], \lambda_{n} \in[0,2]\right\} \\
& \text { ie: } \forall h_{1}, h_{2} \in H,\left(h_{1} R\right)^{\circ} \cap\left(h_{2} R\right)^{0}=\emptyset \Leftrightarrow h_{1} \neq h_{2}
\end{aligned}
$$

Fundamental Regions in Higher Dimensions

The fundamental region is:

$$
R=\left\{\left(\lambda_{1} w_{1}, \ldots, \lambda_{n-1} w_{n-1}, \lambda_{n} h\right) \mid \lambda_{1}, \ldots \lambda_{n-1} \in\left[0, \frac{1}{2}\right], \lambda_{n} \in[0,2]\right\}
$$

ie: $\forall h_{1}, h_{2} \in H,\left(h_{1} R\right)^{\circ} \cap\left(h_{2} R\right)^{0}=\emptyset \Leftrightarrow h_{1} \neq h_{2}$
it's difficult to convey the identifications on the boundary even in 3 dimensions on a slide - to the black board

Calulating the Symmetry Group

We begin by finding the trivial conjugators of the matrix group that appeared in $H=\left\langle t_{1}, \ldots, t_{2 n-2}\right\rangle$

$$
\left(\begin{array}{ccccc}
\pm 1 & & & & \\
& \pm 1 & & & \\
& & \ddots & & \\
& & & \pm 1 & \\
& & & & 1
\end{array}\right)
$$

The The trivial conjugators of these matrices are the permutation matrices that leave the last element fixed, and the co-ordinate reflection matrices. After working out which translations are allowed and how representatives behave together, we get:

Calulating the Symmetry Group

We begin by finding the trivial conjugators of the matrix group that appeared in $H=\left\langle t_{1}, \ldots, t_{2 n-2}\right\rangle$

$$
\left(\begin{array}{ccccc}
\pm 1 & & & & \\
& \pm 1 & & & \\
& & \ddots & & \\
& & & \pm 1 & \\
& & & & 1
\end{array}\right)
$$

The The trivial conjugators of these matrices are the permutation matrices that leave the last element fixed, and the co-ordinate reflection matrices. After working out which translations are allowed and how representatives behave together, we get:

$$
\operatorname{Aut}(\mathcal{T} / H) \cong D_{2(2 h)} \times\left(C_{2}^{k} \imath \Omega\right)
$$

Future Work

- It still needs to be shown that \mathcal{T} / H is a polytope (or if it isn't in some cases, what are those cases)

Future Work

- It still needs to be shown that \mathcal{T} / H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^{4} to consider.

Future Work

- It still needs to be shown that \mathcal{T} / H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^{4} to consider.
- Other ways of lining up tessellations with hyper cubes has yet to be explored in depth.

Future Work

- It still needs to be shown that \mathcal{T} / H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^{4} to consider.
- Other ways of lining up tessellations with hyper cubes has yet to be explored in depth.

Thanks

Thank you for listening

