Equivelar Maps on the Klein Bottle, and a Higher Dimensional Generalization

Max Klambauer

University of Toronto

maximilian.klambauer@utoronto.ca

October 20, 2011

To my advisors,

Special thanks to my advisors: Isabel Hubard, Mark Mixer, Daniel Pellicer, Asia Weiss

Tessellations on the Klein Bottle

Figure: Fundamental regions of some tessellations by regular polygons on the Klein bottle

Glide Reflections and the Klein Bottle

A glide reflection is a reflection through an axis followed by a translation along the axis. The quotient of \mathbb{R}^2 under two glide reflections through parallel axes and with equal translational components is a klein bottle

Bit of Review

• Any isometry of \mathbb{R}^n is: Ax + b, where A is an $n \times n$ orthogonal matrix and b is a vector.

Bit of Review

- Any isometry of \mathbb{R}^n is: Ax + b, where A is an $n \times n$ orthogonal matrix and b is a vector.
- If \mathcal{T} is a tessellation and G is its group of symmetries, and $H \leq G$, then we can form the quotient \mathcal{T}/H

Bit of Review

- Any isometry of \mathbb{R}^n is: Ax + b, where A is an $n \times n$ orthogonal matrix and b is a vector.
- If \mathcal{T} is a tessellation and G is its group of symmetries, and $H \leq G$, then we can form the quotient \mathcal{T}/H
- The normalizer, N, of H in G is closely related to the symmetries of \mathcal{T}/H . If $\gamma \in N$ then γ induces a well defined action on \mathcal{T}/H which is a symmetry, and $\operatorname{Aut}(\mathcal{T}/H) \cong N/H$.

Glide Reflections Explicitly Written

The glide reflections from two slides ago are:

$$t_1(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (x) + \begin{pmatrix} 0 \\ h \end{pmatrix}$$
$$t_2(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (x) + \begin{pmatrix} w \\ h \end{pmatrix}$$

Glide Reflections Explicitly Written

The glide reflections from two slides ago are:

$$t_1(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (x) + \begin{pmatrix} 0 \\ h \end{pmatrix}$$
$$t_2(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} (x) + \begin{pmatrix} w \\ h \end{pmatrix}$$

Algebra and the Klein Bottle

 We can now begin to use the tools of linear algebra and a bit of group theory to examine quotients of tessellations.

Algebra and the Klein Bottle

- We can now begin to use the tools of linear algebra and a bit of group theory to examine quotients of tessellations.
- We first calculate the groups generated by t_1 and t_2 :

$$\langle t_1, t_2 \rangle = \left\{ \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}^{\beta} (x) + \begin{pmatrix} \alpha w \\ \beta h \end{pmatrix} | \alpha, \beta \in \mathbb{Z} \right\}$$

Isometries of \mathbb{R}^2 That Trivially Conjugate H

Next we calculate the isometries which conjugate $H = \langle t_1.t_2 \rangle$ trivially. We find they are:

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix} (x) + \begin{pmatrix} \frac{nw}{2} \\ v_2 \end{pmatrix}$$

Note: these are all isometries of \mathbb{R}^2 which satisfy $\gamma H \gamma^{-1} = H$. It's more economical to calculate this and restrict down to specific isometries of tessellations.

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T}/H)$. To do so:

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation \mathcal{T} and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal{T})$, we can go on to find the structure of $\operatorname{Aut}(\mathcal{T}/H)$. To do so:

• Find the normalizer, N, of H in $\mathrm{Sym}(\mathcal{T})$

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation $\mathcal T$ and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal T)$, we can go on to find the structure of $\operatorname{Aut}(\mathcal T/H)$. To do so:

- Find the normalizer, N, of H in $Sym(\mathcal{T})$
- Find representatives for the quotient N/H

We have enough now to begin finding symmetry groups of quotients of tessellations. So if we have a tessellation $\mathcal T$ and a subgroup of its symmetry group, $H \leq \operatorname{Sym}(\mathcal T)$, we can go on to find the structure of $\operatorname{Aut}(\mathcal T/H)$. To do so:

- ullet Find the normalizer, N, of H in $\mathrm{Sym}(\mathcal{T})$
- Find representatives for the quotient N/H
- ullet Make an isomorphism between N/H and some well known group, or a product of well known groups

Glide Reflections Through Hyperplanes

The group of glide reflections from before can be generalized to higher dimensions in an easy way to glide reflections through hyperplanes:

$$t_{2i-1}(x) = egin{pmatrix} 1 & & & & & 0 \\ & \ddots & & & & \\ & & -1 & & & \\ 0 & & & \ddots & & \\ & & & \ddots & & \\ & & & -1 & & & \\ & & & & \ddots & & \\ & & & -1 & & & \\ 0 & & & & 1 \end{pmatrix} (x) + egin{pmatrix} 0 \\ \vdots \\ h \end{pmatrix}$$

The General Element of H

The general $t \in H$ has the form:

where, $\chi(\epsilon) = \Sigma \epsilon_i \bmod 2$ or $\frac{1-\det A}{2}$

Another Look at the Klein Bottle

Fundamental Regions in Higher Dimensions

The fundamental region is:

$$R = \{(\lambda_1 w_1, \dots, \lambda_{n-1} w_{n-1}, \lambda_n h) | \lambda_1, \dots \lambda_{n-1} \in [0, \frac{1}{2}], \lambda_n \in [0, 2] \}$$

ie:
$$\forall h_1, h_2 \in H, (h_1R)^o \cap (h_2R)^0 = \emptyset \Leftrightarrow h_1 \neq h_2$$

Fundamental Regions in Higher Dimensions

The fundamental region is:

$$R = \{(\lambda_1 w_1, \dots, \lambda_{n-1} w_{n-1}, \lambda_n h) | \lambda_1, \dots \lambda_{n-1} \in [0, \frac{1}{2}], \lambda_n \in [0, 2] \}$$

ie: $\forall h_1, h_2 \in H, (h_1R)^o \cap (h_2R)^0 = \emptyset \Leftrightarrow h_1 \neq h_2$ it's difficult to convey the identifications on the boundary even in 3 dimensions on a slide - to the black board

Calulating the Symmetry Group

We begin by finding the trivial conjugators of the matrix group that appeared in $H=\langle t_1,\ldots,t_{2n-2}\rangle$

$$\begin{pmatrix} \pm 1 & & & \\ & \pm 1 & & \\ & & \ddots & \\ & & & \pm 1 \\ & & & 1 \end{pmatrix}$$

The The trivial conjugators of these matrices are the permutation matrices that leave the last element fixed, and the co-ordinate reflection matrices. After working out which translations are allowed and how representatives behave together, we get:

Calulating the Symmetry Group

We begin by finding the trivial conjugators of the matrix group that appeared in $H=\langle t_1,\ldots,t_{2n-2}\rangle$

$$\begin{pmatrix} \pm 1 & & & & \\ & \pm 1 & & & \\ & & \ddots & & \\ & & & \pm 1 & \\ & & & & 1 \end{pmatrix}$$

The The trivial conjugators of these matrices are the permutation matrices that leave the last element fixed, and the co-ordinate reflection matrices. After working out which translations are allowed and how representatives behave together, we get:

$$\operatorname{Aut}(\mathcal{T}/H) \cong D_{2(2h)} \times (C_2^k \wr \Omega)$$

• It still needs to be shown that \mathcal{T}/H is a polytope (or if it isn't in some cases, what are those cases)

- It still needs to be shown that \mathcal{T}/H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^4 to consider.

- It still needs to be shown that \mathcal{T}/H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^4 to consider.
- Other ways of lining up tessellations with hyper cubes has yet to be explored in depth.

- It still needs to be shown that \mathcal{T}/H is a polytope (or if it isn't in some cases, what are those cases)
- Only tessellations by cubes and hyper-cubes have been considered thus far. There are the regular tessellations 3.3.4.3 and 3.4.3.3 of \mathbb{R}^4 to consider.
- Other ways of lining up tessellations with hyper cubes has yet to be explored in depth.

Thanks

Thank you for listening