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I A (∆,D)-graph is a (finite) graph of maximum degree ∆ and
diameter D.

I A (k , g)-graph is a (finite) graph of degree k and girth g .
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Moore Bound(s)

n(∆,D) ≤ M(∆,D) =

{
1 + ∆ (∆−1)D−1

∆−2 , if ∆ > 2

2D + 1, if ∆ = 2

n(k , g) ≥ M(k , g) =

{
1 + k (k−1)(g−1)/2−1

k−2 , g odd

2 (k−1)g/2−1
k−2 , g even

Any (k , g)-graph whose order matches this “naive” bound is called
a

Moore graph.
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Cages and Extremal (∆,D)-Graphs

I n(∆,D) = the order of a largest (∆,D)-graph;

I n(k , g) = the order of a smallest (k, g)-graph;

I the largest (∆,D)-graph is an extremal (∆,D)-graph

I the smallest (k, g)-graph is a cage
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Constructing a (3, 5)-cage
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(3, 5)-cage
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Constructing a (4, 7)-cage
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The Big Question:

Does Efficiency Necessarily
Imply Beauty?

Are cages necessarily highly symmetric?

The case of the Petersen graph suggests that cages should be both
vertex-transitive and have large vertex-stabilizers.
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Known Cages of Degree 3

girth 5 6 7 8 9 10 11 12
order 10 14 24 30 58 70 112 126
# of cages 1 1 1 1 18 3 1 1
# of sym’s 120 336 32 1440 ≤ 24 ≤ 120 64 12,096
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Small Cayley (k , g)-Graphs

girth degree 3 degree 4

Lower Best Cayley Lower Best Cayley
Bound Graph Cage Bound Graph Cage

5 10 10 50 19 19 24
6 14 14 14 26 26 26
7 24 24 30 67 67 72
8 30 30 42 80 80 96
9 58 58 60 162 275

10 70 70 96 243 384 410
11 112 112 192 486
12 126 126 162 728 728
13 202 272 272
14 258 384 406
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Vertex-Transitive (k , g)-Graphs

Theorem (Nedela, Škoviera)

For every k ≥ 2, g ≥ 3, there exists a vertex-transitive
(k , g)-graph.

Theorem (Exoo, RJ, Širáň)

For every k ≥ 2, g ≥ 3, there exists a Cayley (k , g)-graph.

Proof.

I using (infinite) Cayley maps of Šiagiová and Watkins in
combination with the fact that automorphism groups of
Cayley maps are residually finite

I adding a g -cycle to a graph of girth at least g constructed by
Biggs

I constructing Cayley graphs from 1- and 2-factorizations of
(k , g)-graphs
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For every k ≥ 2, g ≥ 3, there exists a Cayley (k , g)-graph.

Proof.

I using (infinite) Cayley maps of Šiagiová and Watkins in
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Graphs to Groups

Theorem
Let G be a k-regular graph of girth g whose edge set can be
partitioned into a family F of k1 1-factors, Fi , 1 ≤ i ≤ k1, and k2

oriented 2-factors Fi , k1 + 1 ≤ i ≤ k1 + k2 (where k1 + 2k2 = k).
If ΓF is the finite permutation group acting on the set V (G )
generated by the set

X = {δFi
| 1 ≤ i ≤ k1} ∪ {σFi

| k1 + 1 ≤ i ≤ k1 + k2} ∪
{σ−1

Fi
| k1 + 1 ≤ i ≤ k1 + k2},

then the Cayley graph Cay(ΓF ,X ) is k-regular of girth at least g .
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Graphs to Groups

F1 : {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}

σF1 = (1, 6) (2, 7) (3, 8) (4, 9) (5, 10)

F2 : {1, 2, 3, 4, 5}, {6, 8, 10, 7, 9}
σF2 = (1, 2, 3, 4, 5) (6, 8, 10, 7, 9)

ΓF = 〈σF1 , σF2〉 ∼= Z5 × D5
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Smallest (3, 5)-Cayley Graph

Figure: Smallest Cayley (3, 5)-graph
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Groups to Graphs

Theorem
Let Cay(Γ,X ) be a k-regular graph of girth g. Suppose that Γ has
a permutation representation γ → σγ , γ ∈ Γ, on a set V , satisfying
the property that no non-reversing product of the permutations σx ,
x ∈ X , of length smaller that g fixes a vertex v ∈ V , and for every
v ∈ V , the images σx(v) are all different. Then the graph GΓ with
vertex set V and edge set E = {{v , σx(v)} | v ∈ V , x ∈ X} is
k-regular of girth g.
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Figure: A Cayley Graph of the group (Z4 × Z2 × Z2) oφ Z3
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Figure: The McGee Graph
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Girth of Cayley Graphs of Solvable Groups

Theorem (Conder, Exoo,RJ)

If Γ is a solvable group with derived series of length n, then the
girth g of any Cayley graph Cay(Γ,X ) of degree at least 3 is
bounded from above as follows:

g ≤ 4, if n = 1,
g ≤ 14 · 4n−2, if n ≥ 2.

Specifically, if Cay(Γ,X ) is a Cayley graph of a solvable group Γ of
derived length n and of degree at least 3, |X | ≥ 3. Then

g ≤ 44, if n = 3 and X contains at least three inv’s,
g ≤ 48, if n = 3, and X contains at least two distinct non-inv’s,
g ≤ 50, if n = 3, and X consists of one inv and one non-inv,
g ≤ 148, if n = 4 and and X contains at least three inv’s,
g ≤ 168, if n = 4, and X contains at least two distinct non-inv’s.
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Girth of Cayley Graphs of Nilpotent Groups

Theorem (Conder, Exoo, RJ)

If Γ is a nilpotent group of nilpotency class n, then the girth g of
any Cayley graph Cay(Γ,X ) of degree at least 3 is bounded from
above as follows:

g ≤ 4, if n = 1,
g ≤ 8, if n = 2,
g ≤ (n + 1)2, if n ≥ 3.
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Non-Solvable Groups

I If G has a faithful representation on n vertices than the girth
of any Cay(G ,X ) such that X contains a non-involution is
bounded from above by the maximal order of elements in Sn.

I If G has a faithful representation on n vertices than the girth
of any Cay(G ,X ) such that X contains an involution is
bounded from above by 6n (almost proved).

Robert Jajcay, Indiana State University robert.jajcay@indstate.eduRestricting the Degree/Diameter and Cage Problems to Vertex-Transitive Graphs



Non-Solvable Groups

I If G has a faithful representation on n vertices than the girth
of any Cay(G ,X ) such that X contains a non-involution is
bounded from above by the maximal order of elements in Sn.

I If G has a faithful representation on n vertices than the girth
of any Cay(G ,X ) such that X contains an involution is
bounded from above by 6n (almost proved).

Robert Jajcay, Indiana State University robert.jajcay@indstate.eduRestricting the Degree/Diameter and Cage Problems to Vertex-Transitive Graphs



The Order of Vertex-Transitive (k , g)-Graphs

Theorem (RJ, Širáň)

Let G be a vertex-transitive graph of degree k and girth
g = pr > k, where p is an odd prime and r ≥ 1. If G is not a
Moore graph (that is, |V (G )| > M(k , g)), and g is relatively prime
to all the integers in the union⋃

0≤i≤k
L(k, g , i),

where L(k, g , 0) = {M(k, g) + 1,M(k , g) + 2, . . . ,M(k , g) + k},
and L(k, g , i) =
{k(k − 1)(g−1)/2 − ik, k(k − 1)(g−1)/2 − ik + 1, . . . ,
k(k − 1)(g−1)/2 − ik + i − 1}, i > 0,
then the order of G is at least M(k, g) + k + 1.
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The Order of Vertex-Transitive (k , g)-Graphs

Corollary

For every σ > 0, there exists a pair of parameters (k , g) with the
property that every Cayley (k , g)-graph Cay(G ,X ) satisfies

|V (Cay(G ,X ))| −M(k , g) > σ

But the degree may have to be increasing.

So far.
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Cayley (∆,D)-Graphs

Recall:
A (∆,D)-graph is of maximum degree ∆ and diameter d .

If Γ is vertex-transitive, ∆ is the degree of all the vertices of Γ.

Theorem (Exoo, RJ, Mačaj, Širáň)

For every ∆ ≥ 2,D ≥ 1, there exists a Cayley (∆,D)-graph.

All the examples are circulants, i.e., Cayley graphs of cyclic groups
of girth 4.
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I The difference δ = M(∆,D)− |V (G )| is ≥ 1 for all
parameters (∆,D) not allowing for a Moore graph

I It is called the defect of G
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The Defect of Cayley (∆,D)-Graphs

Theorem (Exoo, RJ, Mačaj, Širáň)

Let σ > 0 and ∆ > 2 be fixed. Then there exist infinitely many
(∆,D) pairs with the property that each vertex-transitive
(∆,D)-graph Γ satisfies

δ(Γ) > σ

Corollary

There exists a sequence of extremal cubic Cayley (3, d)-graphs
whose defects increase to infinity.

Corollary

There exists a sequence of cubic Cayley (3, g)-cages whose defects
increase to infinity.
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Diameter of Cayley Graphs from A Group Theoretical
Point of View

Fact:
It follows from the Moore bound that the diameter of any regular
graph is bounded from below by the log of its order.

Theorem (Babai, Kantor and Lubotzky)

There is a constant C such that every non-abelian finite simple
group G has a set S of seven generators for which
d(G ,S) ≤ C log |G | .

Theorem (Kantor)

I If n ≥ 10, then there exists a trivalent Cayley graph for
G = PSL(n, q) whose diameter is O(log |G |).

I For n large enough, there exist trivalent Cayley graphs of Sn
and An whose diameter is O(log n!).
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THANK YOU.
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