

▶ A (Δ, D) -graph is a (finite) graph of maximum degree Δ and diameter D.

- $ightharpoonup A (\Delta, D)$ -graph is a (finite) graph of maximum degree Δ and diameter D.
- ightharpoonup A (k,g)-graph is a (finite) graph of degree k and girth g.

Moore Bound(s)

$$n(\Delta, D) \le M(\Delta, D) = \begin{cases} 1 + \Delta \frac{(\Delta - 1)^D - 1}{\Delta - 2}, & \text{if } \Delta > 2\\ 2D + 1, & \text{if } \Delta = 2 \end{cases}$$

Moore Bound(s)

$$n(\Delta, D) \leq M(\Delta, D) = \left\{ egin{array}{ll} 1 + \Delta rac{(\Delta - 1)^D - 1}{\Delta - 2}, & ext{if } \Delta > 2 \\ 2D + 1, & ext{if } \Delta = 2 \end{array}
ight.$$

$$n(k,g) \ge M(k,g) = \left\{ egin{array}{ll} 1 + k rac{(k-1)^{(g-1)/2} - 1}{k-2}, & g ext{ odd} \\ 2 rac{(k-1)^{g/2} - 1}{k-2}, & g ext{ even} \end{array}
ight.$$

Moore Bound(s)

$$n(\Delta, D) \leq M(\Delta, D) = \left\{ egin{array}{ll} 1 + \Delta rac{(\Delta - 1)^D - 1}{\Delta - 2}, & ext{if } \Delta > 2 \ 2D + 1, & ext{if } \Delta = 2 \end{array}
ight.$$

$$n(k,g) \ge M(k,g) = \left\{ egin{array}{ll} 1 + k rac{(k-1)^{(g-1)/2}-1}{k-2}, & g ext{ odd} \ 2 rac{(k-1)^{g/2}-1}{k-2}, & g ext{ even} \end{array}
ight.$$

Any (k,g)-graph whose order matches this "naive" bound is called

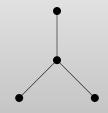
Moore graph

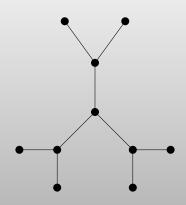
Cages and Extremal (Δ, D) -Graphs

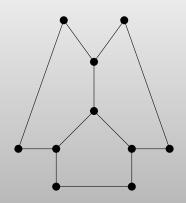
- $ightharpoonup n(\Delta, D) = \text{the order of a } largest (\Delta, D) \text{graph};$
- \triangleright n(k,g) = the order of a *smallest* (k,g)-graph;

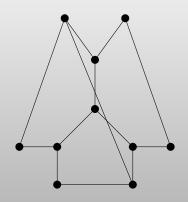
Cages and Extremal (Δ, D) -Graphs

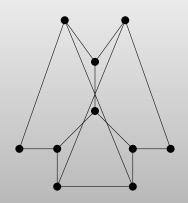
- \triangleright $n(\Delta, D) = \text{the order of a } largest (\Delta, D) \text{graph};$
- \triangleright n(k,g) = the order of a *smallest* (k,g)-graph;
- ▶ the largest (Δ, D) -graph is an **extremal** (Δ, D) -graph
- \blacktriangleright the smallest (k,g)-graph is a cage

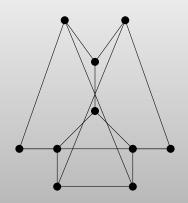




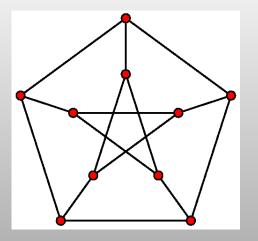




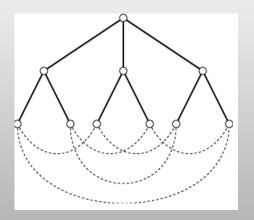




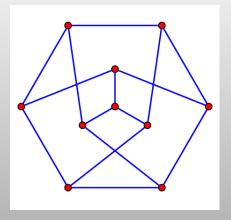
(3,5)-cage

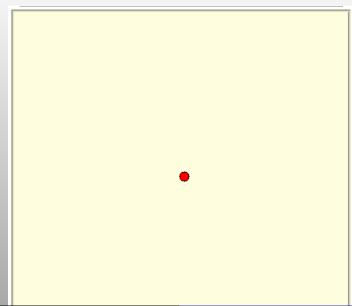


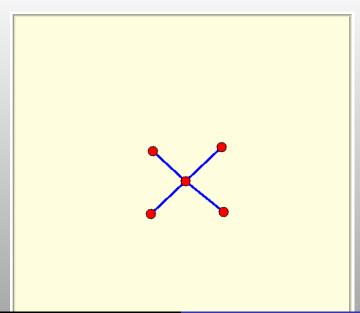
$\overline{(3,5)}$ -cage

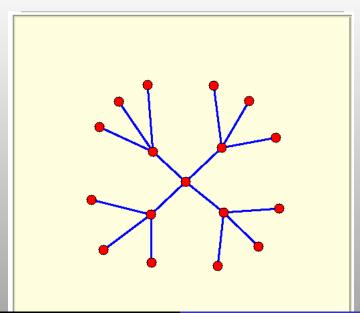


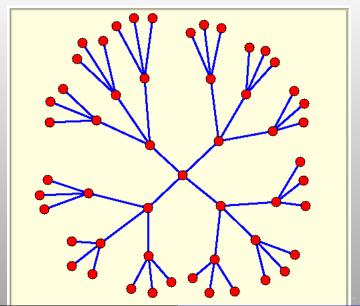
(3,5)-cage











The Big Question:

Does Efficiency Necessarily Imply Beauty?

The Big Question:

Does Efficiency Necessarily Imply Beauty?

Are cages necessarily highly symmetric?

The Big Question:

Does Efficiency Necessarily Imply Beauty?

Are cages necessarily highly symmetric?

The case of the Petersen graph suggests that cages should be both vertex-transitive and have large vertex-stabilizers.

Known Cages of Degree 3

girth	5	6	7	8	9	10	11	12
order	10	14	24	30	58	70	112	126
# of cages	1	1	1	1	18	3	1	1
# of sym's	120	336	32	1440	≤ 24	≤ 120	64	12,096

Small Cayley (k, g)-Graphs

girth		degree 3		degree 4			
	Lower	Best	Cayley	Lower	Best	Cayley	
	Bound	Graph	Cage	Bound	Graph	Cage	
5	10	10	50	19	19	24	
6	14	14	14	26	26	26	
7	24	24	30	67	67	72	
8	30	30	42	80	80	96	
9	58	58	60	162	275		
10	70	70	96	243	384	410	
11	112	112	192	486			
12	126	126	162	728	728		
13	202	272	272				
14	258	384	406				

Theorem (Nedela, Škoviera)

For every $k \ge 2$, $g \ge 3$, there exists a vertex-transitive (k,g)-graph.

Theorem (Nedela, Škoviera)

For every $k \ge 2$, $g \ge 3$, there exists a vertex-transitive (k,g)-graph.

Theorem (Exoo, RJ, Širáň)

For every $k \ge 2$, $g \ge 3$, there exists a Cayley (k, g)-graph.

Theorem (Nedela, Škoviera)

For every $k \ge 2$, $g \ge 3$, there exists a vertex-transitive (k,g)-graph.

Theorem (Exoo, RJ, Širáň)

For every $k \geq 2$, $g \geq 3$, there exists a Cayley (k,g)-graph.

Proof.

 using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite

Theorem (Nedela, Škoviera)

For every $k \ge 2$, $g \ge 3$, there exists a vertex-transitive (k,g)-graph.

Theorem (Exoo, RJ, Širáň)

For every $k \ge 2$, $g \ge 3$, there exists a Cayley (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by **Biggs**

Theorem (Nedela, Škoviera)

For every $k \ge 2$, $g \ge 3$, there exists a vertex-transitive (k,g)-graph.

Theorem (Exoo, RJ, Širáň)

For every $k \ge 2$, $g \ge 3$, there exists a Cayley (k, g)-graph.

Proof.

- using (infinite) Cayley maps of Šiagiová and Watkins in combination with the fact that automorphism groups of Cayley maps are residually finite
- adding a g-cycle to a graph of girth at least g constructed by **Biggs**
- constructing Cayley graphs from 1- and 2-factorizations of (k,g)-graphs

Theorem

Let G be a k-regular graph of girth g whose edge set can be partitioned into a family \mathcal{F} of k_1 1-factors, F_i , $1 < i < k_1$, and k_2 oriented 2-factors F_i , $k_1 + 1 \le i \le k_1 + k_2$ (where $k_1 + 2k_2 = k$). If $\Gamma_{\mathcal{F}}$ is the finite permutation group acting on the set V(G)generated by the set

$$X = \{ \delta_{F_i} \mid 1 \le i \le k_1 \} \cup \{ \sigma_{F_i} \mid k_1 + 1 \le i \le k_1 + k_2 \} \cup \{ \sigma_{F_i}^{-1} \mid k_1 + 1 \le i \le k_1 + k_2 \},$$

then the Cayley graph $Cay(\Gamma_{\mathcal{F}}, X)$ is k-regular of girth at least g.

Theorem

Let G be a k-regular graph of girth g whose edge set can be partitioned into a family \mathcal{F} of k_1 1-factors, F_i , $1 \le i \le k_1$, and k_2 oriented 2-factors F_i , $k_1 + 1 \le i \le k_1 + k_2$ (where $k_1 + 2k_2 = k$). If $\Gamma_{\mathcal{F}}$ is the finite permutation group acting on the set V(G)generated by the set

$$X = \{ \delta_{F_i} \mid 1 \le i \le k_1 \} \cup \{ \sigma_{F_i} \mid k_1 + 1 \le i \le k_1 + k_2 \} \cup \{ \sigma_{F_i}^{-1} \mid k_1 + 1 \le i \le k_1 + k_2 \},$$

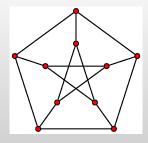
then the Cayley graph $Cay(\Gamma_{\mathcal{F}}, X)$ is k-regular of girth at least g.

Theorem

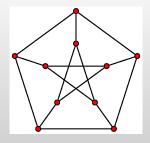
Let G be a k-regular graph of girth g whose edge set can be partitioned into a family \mathcal{F} of k_1 1-factors, F_i , $1 < i < k_1$, and k_2 oriented 2-factors F_i , $k_1 + 1 \le i \le k_1 + k_2$ (where $k_1 + 2k_2 = k$). If $\Gamma_{\mathcal{F}}$ is the finite permutation group acting on the set V(G)generated by the set

$$X = \{ \delta_{F_i} \mid 1 \le i \le k_1 \} \cup \{ \sigma_{F_i} \mid k_1 + 1 \le i \le k_1 + k_2 \} \cup \{ \sigma_{F_i}^{-1} \mid k_1 + 1 \le i \le k_1 + k_2 \},$$

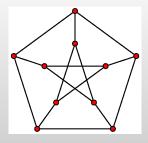
then the Cayley graph $Cay(\Gamma_{\mathcal{F}}, X)$ is k-regular of girth at least g.



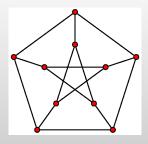
 $F_1: \{1,6\}, \{2,7\}, \{3,8\}, \{4,9\}, \{5,10\}$



 $F_1: \{1,6\}, \{2,7\}, \{3,8\}, \{4,9\}, \{5,10\}$ $\sigma_{F_1} = (1,6)(2,7)(3,8)(4,9)(5,10)$



 $F_1: \{1,6\}, \{2,7\}, \{3,8\}, \{4,9\}, \{5,10\}$ $\sigma_{F_1} = (1,6)(2,7)(3,8)(4,9)(5,10)$ $F_2: \{1, 2, 3, 4, 5\}, \{6, 8, 10, 7, 9\}$

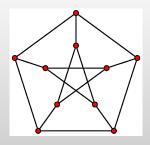


$$F_1: \{1,6\}, \{2,7\}, \{3,8\}, \{4,9\}, \{5,10\}$$

$$\sigma_{F_1} = (1,6) (2,7) (3,8) (4,9) (5,10)$$

$$F_2: \{1,2,3,4,5\}, \{6,8,10,7,9\}$$

$$\sigma_{F_2} = (1,2,3,4,5) (6,8,10,7,9)$$



$$F_1: \{1,6\}, \{2,7\}, \{3,8\}, \{4,9\}, \{5,10\}$$

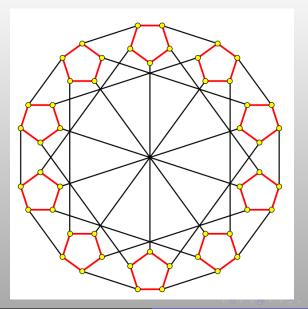
$$\sigma_{F_1} = (1,6) (2,7) (3,8) (4,9) (5,10)$$

$$F_2: \{1,2,3,4,5\}, \{6,8,10,7,9\}$$

$$\sigma_{F_2} = (1,2,3,4,5) (6,8,10,7,9)$$

$$\Gamma_{\mathcal{F}} = \langle \sigma_{F_1}, \sigma_{F_2} \rangle \cong \mathbb{Z}_5 \times \mathbb{D}_5$$

Smallest (3,5)-Cayley Graph



Groups to Graphs

Theorem

Let $Cay(\Gamma, X)$ be a k-regular graph of girth g. Suppose that Γ has a permutation representation $\gamma \to \sigma_{\gamma}$, $\gamma \in \Gamma$, on a set V, satisfying the property that no non-reversing product of the permutations σ_{x} , $x \in X$, of length smaller that g fixes a vertex $v \in V$, and for every $v \in V$, the images $\sigma_x(v)$ are all different. Then the graph G_{Γ} with vertex set V and edge set $E = \{\{v, \sigma_x(v)\} \mid v \in V, x \in X\}$ is k-regular of girth g.

Groups to Graphs

Theorem

Let $Cay(\Gamma, X)$ be a k-regular graph of girth g. Suppose that Γ has a permutation representation $\gamma \to \sigma_{\gamma}$, $\gamma \in \Gamma$, on a set V, satisfying the property that no non-reversing product of the permutations σ_{x} , $x \in X$, of length smaller that g fixes a vertex $v \in V$, and for every $v \in V$, the images $\sigma_x(v)$ are all different. Then the graph G_{Γ} with vertex set V and edge set $E = \{\{v, \sigma_x(v)\} \mid v \in V, x \in X\}$ is k-regular of girth g.

Groups to Graphs

Theorem

Let $Cay(\Gamma, X)$ be a k-regular graph of girth g. Suppose that Γ has a permutation representation $\gamma \to \sigma_{\gamma}$, $\gamma \in \Gamma$, on a set V, satisfying the property that no non-reversing product of the permutations σ_{x} , $x \in X$, of length smaller that g fixes a vertex $v \in V$, and for every $v \in V$, the images $\sigma_x(v)$ are all different. Then the graph G_Γ with vertex set V and edge set $E = \{\{v, \sigma_x(v)\} \mid v \in V, x \in X\}$ is k-regular of girth g

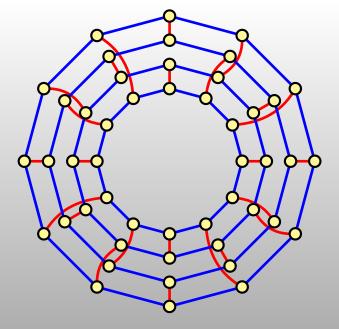


Figure: A Cayley Graph of the group $(\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes_{\phi} \mathbb{Z}_3$

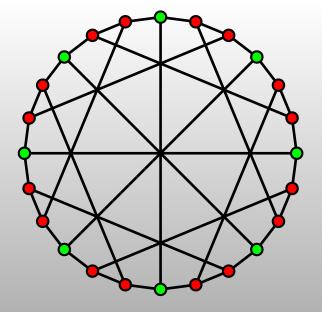


Figure: The McGee Graph

Girth of Cayley Graphs of Solvable Groups

Theorem (Conder, Exoo, RJ)

If Γ is a solvable group with derived series of length n, then the girth g of any Cayley graph $Cay(\Gamma, X)$ of degree at least 3 is bounded from above as follows:

$$g \le 4$$
, if $n = 1$, $g \le 14 \cdot 4^{n-2}$, if $n \ge 2$.

Girth of Cayley Graphs of Solvable Groups

Theorem (Conder, Exoo, RJ)

If Γ is a solvable group with derived series of length n, then the girth g of any Cayley graph $Cay(\Gamma, X)$ of degree at least 3 is bounded from above as follows:

$$g \le 4$$
, if $n = 1$, $g \le 14 \cdot 4^{n-2}$, if $n \ge 2$.

Specifically, if $Cay(\Gamma, X)$ is a Cayley graph of a solvable group Γ of derived length n and of degree at least 3, |X| > 3. Then g < 44, if n = 3 and X contains at least three inv's. $g \le 48$, if n = 3, and X contains at least two distinct non-inv's, g < 50, if n = 3, and X consists of one inv and one non-inv. g < 148, if n = 4 and and X contains at least three inv's, g < 168, if n = 4, and X contains at least two distinct non-inv's.

Girth of Cayley Graphs of Nilpotent Groups

Theorem (Conder, Exoo, RJ)

If Γ is a nilpotent group of nilpotency class n, then the girth g of any Cayley graph $Cay(\Gamma, X)$ of degree at least 3 is bounded from above as follows:

```
if n = 1.
g \leq 4
g \leq 8, if n = 2,
g < (n+1)^2, if n > 3.
```

Non-Solvable Groups

▶ If G has a faithful representation on n vertices than the girth of any Cay(G,X) such that X contains a non-involution is bounded from above by the maximal order of elements in \mathbb{S}_n .

Non-Solvable Groups

- ▶ If G has a faithful representation on n vertices than the girth of any Cay(G,X) such that X contains a non-involution is bounded from above by the maximal order of elements in \mathbb{S}_n .
- ▶ If G has a faithful representation on n vertices than the girth of any Cay(G,X) such that X contains an involution is bounded from above by 6n (almost proved).

Theorem (RJ, Širáň)

Let G be a vertex-transitive graph of degree k and girth $g = p^r > k$, where p is an odd prime and $r \ge 1$. If G is not a Moore graph (that is, |V(G)| > M(k,g)), and g is relatively prime to all the integers in the union

$$\bigcup_{0\leq i\leq k}\mathcal{L}(k,g,i),$$

where
$$\mathcal{L}(k,g,0) = \{M(k,g)+1,M(k,g)+2,\ldots,M(k,g)+k\}$$
, and $\mathcal{L}(k,g,i) = \{k(k-1)^{(g-1)/2}-ik,\ k(k-1)^{(g-1)/2}-ik+1,\ldots,\ k(k-1)^{(g-1)/2}-ik+i-1\},\ i>0,$ then the order of G is at least $M(k,g)+k+1$.

Corollary

For every $\sigma > 0$, there exists a pair of parameters (k, g) with the property that every Cayley (k, g)-graph Cay(G, X) satisfies

$$|V(\mathit{Cay}(G,X))| - M(k,g) > \sigma$$

Corollary

For every $\sigma > 0$, there exists a pair of parameters (k, g) with the property that every Cayley (k, g)-graph Cay(G, X) satisfies

$$|V(Cay(G,X))| - M(k,g) > \sigma$$

But the degree may have to be increasing.

Corollary

For every $\sigma > 0$, there exists a pair of parameters (k, g) with the property that every Cayley (k, g)-graph Cay(G, X) satisfies

$$|V(\mathit{Cay}(G,X))| - M(k,g) > \sigma$$

But the degree may have to be increasing.

So far.

Recall:

A (Δ, D) -graph is of maximum degree Δ and diameter d.

Recall:

A (Δ, D) -graph is of maximum degree Δ and diameter d.

If Γ is vertex-transitive, Δ is the degree of all the vertices of Γ .

Recall:

A (Δ, D) -graph is of maximum degree Δ and diameter d.

If Γ is vertex-transitive, Δ is the degree of all the vertices of Γ .

Theorem (Exoo, RJ, Mačaj, Širáň)

For every $\Delta \geq 2$, $D \geq 1$, there exists a Cayley (Δ, D) -graph.

Recall:

A (Δ, D) -graph is of maximum degree Δ and diameter d.

If Γ is vertex-transitive, Δ is the degree of all the vertices of Γ .

Theorem (Exoo, RJ, Mačaj, Širáň)

For every $\Delta \geq 2$, $D \geq 1$, there exists a Cayley (Δ, D) -graph.

All the examples are circulants, i.e., Cayley graphs of cyclic groups of girth 4.

▶ The difference $\delta = M(\Delta, D) - |V(G)|$ is ≥ 1 for all parameters (Δ, D) not allowing for a Moore graph

- ▶ The difference $\delta = M(\Delta, D) |V(G)|$ is ≥ 1 for all parameters (Δ, D) not allowing for a Moore graph
- ▶ It is called the **defect** of *G*

The Defect of Cayley (Δ, D) -Graphs

Theorem (Exoo, RJ, Mačaj, Širáň)

Let $\sigma > 0$ and $\Delta > 2$ be fixed. Then there exist infinitely many (Δ, D) pairs with the property that each vertex-transitive (Δ, D) -graph Γ satisfies

$$\delta(\Gamma) > \sigma$$

The Defect of Cayley (Δ, D) -Graphs

Theorem (Exoo, RJ, Mačaj, Širáň)

Let $\sigma > 0$ and $\Delta > 2$ be fixed. Then there exist infinitely many (Δ, D) pairs with the property that each vertex-transitive (Δ, D) -graph Γ satisfies

$$\delta(\Gamma) > \sigma$$

Corollary

There exists a sequence of extremal cubic Cayley (3, d)-graphs whose defects increase to infinity.

The Defect of Cayley (Δ, D) -Graphs

Theorem (Exoo, RJ, Mačaj, Širáň)

Let $\sigma > 0$ and $\Delta > 2$ be fixed. Then there exist infinitely many (Δ, D) pairs with the property that each vertex-transitive (Δ, D) -graph Γ satisfies

$$\delta(\Gamma) > \sigma$$

Corollary

There exists a sequence of extremal cubic Cayley (3, d)-graphs whose defects increase to infinity.

Corollary

There exists a sequence of cubic Cayley (3, g)-cages whose defects increase to infinity.

Diameter of Cayley Graphs from A Group Theoretical Point of View

Fact:

It follows from the Moore bound that the diameter of any regular graph is bounded from below by the log of its order.

Diameter of Cayley Graphs from A Group Theoretical Point of View

Fact:

It follows from the Moore bound that the diameter of any regular graph is bounded from below by the log of its order.

Theorem (Babai, Kantor and Lubotzky)

There is a constant C such that every non-abelian finite simple group G has a set S of seven generators for which $d(G,S) \leq C \log |G|$.

Diameter of Cayley Graphs from A Group Theoretical Point of View

Fact:

It follows from the Moore bound that the diameter of any regular graph is bounded from below by the log of its order.

Theorem (Babai, Kantor and Lubotzky)

There is a constant C such that every non-abelian finite simple group G has a set S of seven generators for which $d(G,S) < C \log |G|$.

Theorem (Kantor)

- ▶ If n > 10, then there exists a trivalent Cayley graph for G = PSL(n, q) whose diameter is $O(\log |G|)$.
- For n large enough, there exist trivalent Cayley graphs of \mathbb{S}_n and \mathbb{A}_n whose diameter is $O(\log n!)$.

THANK YOU.