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Periodic point sets

Definition : A (discrete) point set Λ ⊂ R
d is called periodic,

when t + Λ = Λ holds for some t 6= 0. It is called
crystallographic when the group of periods,
per(Λ) = {t ∈ R

d | t + Λ = Λ}, is a lattice.

Crystallographic restriction : If (t,M) is a Euclidean
motion that maps a crystallographic point set Λ ⊂ R

d onto
itself, the characteristic polynomial of M has integer
coefficients only.

In particular, for d ∈ {2, 3}, the possible rotation symmetries
have order 1, 2, 3, 4 or 6.
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Non-periodic point sets

Definition : A discrete point set Λ ⊂ R
d is called

non-crystallographic when per(Λ) is not a lattice, and
non-periodic when per(Λ) = {0}.

Examples : Z \ {0}
(Z \ {0}) × Z

Definition : The hull of a discrete point set Λ is defined as

X(Λ) := {t + Λ | t ∈ Rd},

where the closure is taken in the local (rubber) topology.
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Non-periodic point sets

Definition : A discrete point set Λ ⊂ R
d is called aperiodic

when X(Λ) contains only non-periodic elements.

It is called strongly aperiodic when the remaining symmetry
group of the hull is a finite group.
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Aperiodic point sets
Silver mean substitution: a 7→ aba, b 7→ a (λPF = 1 +

√
2 )

Silver mean point set: Λ =
{
x ∈ Z[

√
2 ] | x′ ∈ [−

√
2

2
,
√

2

2
]
}
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Model sets

CPS:

R
d π

←−−− R
d × R

m
π
int−−−−→ R

m

∪ ∪ ∪ dense

π(L)
1−1
←−−−− L −−−−→ π

int
(L)

‖ ‖

L
⋆

−−−−−−−−−−−−−−−−−−−−→ L
⋆

Model set: Λ = {x ∈ L | x⋆ ∈ W } (assumed regular)

with W ⊂ R
m compact, λ(∂W ) = 0

Diffraction: γ̂ =
∑

k∈L⊛ |A(k)|2 δk

with L⊛ = π(L∗) (Fourier module of Λ)

and amplitude A(k) = dens(Λ)
vol(W ) 1̂

W
(−k⋆)
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Ammann-Beenker tiling
L = Z[ξ] L ∼ Z

4 ⊂ R
2 × R

2 O: octagon

ξ = exp(2πi/8) φ(8) = 4 ⋆-map: ξ 7→ ξ3

ΛAB =
{
x ∈ Z1 + Zξ + Zξ2 + Zξ3 | x⋆ ∈ O

}

1

ξ

ξ2

ξ3

1⋆

ξ⋆

ξ2⋆

ξ3⋆
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Ammann-Beenker tiling

physical space internal space
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Ammann-Beenker tiling
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Aperiodic tilings
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Aperiodic tilings

Many examples with hierarchical structure (see below).

Exception: The Kari-Culik prototile set
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Question
Is there a single shape that tiles space without gaps or
overlaps, but does not admit any periodic tiling?
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Question
Is there a single shape that tiles space without gaps or
overlaps, but does not admit any periodic tiling?
3D: Schmitt-Conway-Danzer ‘einstein’

2D: Penrose tiling (two tiles)

No monotile known — but Penrose’s 1 + ε + ε2 tiling
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The Taylor Tiling: Story
19 Feb 2010: Email from Joshua Socolar announcing

An aperiodic hexagonal tile
(joint preprint with Joan M. Taylor)
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The Taylor Tiling: Story
19 Feb 2010: Email from Joshua Socolar announcing

An aperiodic hexagonal tile
(joint preprint with Joan M. Taylor)

28 Feb 2010: Visit Joan Taylor in Burnie, Tasmania
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The Taylor Tiling: Story
19 Feb 2010: Email from Joshua Socolar announcing

An aperiodic hexagonal tile
(joint preprint with Joan M. Taylor)

based on Joan’s unpublished manuscript
Aperiodicity of a functional monotile

which is available (with hand-drawn diagrammes) from
http://www.math.uni-bielefeld.de/sfb701/

preprints/view/420

(slight difference in definition of matching rules)
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Joan Taylor
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Joan Taylor
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Joan Taylor
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Robinson’s tiling
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Robinson’s tiling
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Half-hex tiling
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Half-hex tiling

Fields Institute, Toronto, 20 October 2011 – p.15



Half-hex tiling
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Half-hex tiling
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Half-hex tiling
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Half-hex tiling
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Half-hex tiling
hexagonal tile

still admits periodic tilings of the plane
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Half-hex tiling
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Penrose’s1 + ε + ε
2 tiling

3 tiles: 1 + ε + ε2

‘key tiles’ encode matching rule information

proof of aperiodicity (Penrose)

the ε tile transmits information along edge
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The monotile
(figures from Socolar & Taylor An aperiodic hexagonal monotile)
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The monotile
(figures from Socolar & Taylor An aperiodic hexagonal monotile)

Fields Institute, Toronto, 20 October 2011 – p.17



Forced patterns
(figures from Socolar & Taylor An aperiodic hexagonal monotile)
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Filling the gaps
(figures from Socolar & Taylor An aperiodic hexagonal monotile)

Fields Institute, Toronto, 20 October 2011 – p.19



Filling the gaps
(figures from Socolar & Taylor An aperiodic hexagonal monotile)
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Filling the gaps
(figures from Socolar & Taylor An aperiodic hexagonal monotile)
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Composition-decomposition method
(Franz Gähler 1993)

method to show that matching rules (local rules)
enforce non-periodicity

based on inflation (self-similarity)

requirements:
Inflation rule has to respect matching rules:
Tiles that match must have decompositions
that match
In any admitted tiling, each tile can be composed,
together with part of its neighbours, to a
unique supertile
The supertiles inherit markings that enforce
equivalent matching rules

Fields Institute, Toronto, 20 October 2011 – p.20



Taylor’s substitution
(figures from Taylor’s manuscript Aperiodicity of a functional monotile)
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Taylor’s substitution
(figures from Taylor’s manuscript Aperiodicity of a functional monotile)
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Inflation tiling
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Inflation tiling
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Inflation tiling
Relation to Penrose’s 1 + ε + ε2 tiling:
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