Aperiodic Tilings: Notions and Properties

Michael Baake & Uwe Grimm

Faculty of Mathematics
University of Bielefeld, Germany

Department of Mathematics and Statistics The Open University, Milton Keynes, UK

Quasicrystals

Quasicrystals

Dan Shechtman

Wolf Prize in Physics 1999
Nobel Prize in Chemistry 2011

Periodic point sets

Definition: A (discrete) point set $\Lambda \subset \mathbb{R}^d$ is called *periodic*, when $t + \Lambda = \Lambda$ holds for some $t \neq 0$. It is called *crystallographic* when the group of periods, $\operatorname{per}(\Lambda) = \{t \in \mathbb{R}^d \mid t + \Lambda = \Lambda\}$, is a lattice.

Crystallographic restriction: If (t, M) is a Euclidean motion that maps a crystallographic point set $\Lambda \subset \mathbb{R}^d$ onto itself, the characteristic polynomial of M has integer coefficients only.

In particular, for $d \in \{2,3\}$, the possible rotation symmetries have order 1,2,3,4 or 6.

Non-periodic point sets

Definition: A discrete point set $\Lambda \subset \mathbb{R}^d$ is called *non-crystallographic* when $\operatorname{per}(\Lambda)$ is not a lattice, and *non-periodic* when $\operatorname{per}(\Lambda) = \{0\}$.

Examples:
$$\mathbb{Z} \setminus \{0\}$$

$$(\mathbb{Z}\setminus\{0\})\times\mathbb{Z}$$

Definition: The *hull* of a discrete point set Λ is defined as

$$\mathbb{X}(\Lambda) := \overline{\{t + \Lambda \mid t \in \mathbb{R}^d\}},$$

where the closure is taken in the local (rubber) topology.

Non-periodic point sets

Definition: A discrete point set $\Lambda \subset \mathbb{R}^d$ is called *aperiodic* when $\mathbb{X}(\Lambda)$ contains only non-periodic elements.

It is called *strongly aperiodic* when the remaining symmetry group of the hull is a finite group.

Aperiodic point sets

Silver mean substitution: $a\mapsto aba,\,b\mapsto a$ $(\lambda_{\mathrm{PF}}=1+\sqrt{2})$

Silver mean point set: $\Lambda = \left\{ x \in \mathbb{Z}[\sqrt{2}] \mid x' \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right] \right\}$

Model sets

$$\Lambda = \{x \in L \mid x^\star \in W \}$$
 (assumed regular)

with $W \subset \mathbb{R}^m$ compact, $\lambda(\partial W) = 0$

$$\widehat{\gamma} = \sum_{k \in L^{\circledast}} |A(k)|^2 \, \delta_k$$

with
$$L^\circledast = \pi(\mathcal{L}^*)$$
 (Fourier module of Λ)

and amplitude
$$A(k) = \frac{\operatorname{dens}(A)}{\operatorname{vol}(W)} \, \widehat{1_W}(-k^\star)$$

Ammann-Beenker tiling

$$L = \mathbb{Z}[\boldsymbol{\xi}]$$

$$L=\mathbb{Z}[\xi]$$
 $\mathcal{L}\sim\mathbb{Z}^4\subset\mathbb{R}^2\times\mathbb{R}^2$ O: octagon

$$\xi = \exp(2\pi i/8)$$

$$\phi(8) = 4$$

$$\xi = \exp(2\pi i/8)$$
 $\phi(8) = 4$ *-map: $\xi \mapsto \xi^3$

$$\Lambda_{AB} = \left\{ x \in \mathbb{Z}1 + \mathbb{Z}\xi + \mathbb{Z}\xi^2 + \mathbb{Z}\xi^3 \mid x^* \in O \right\}$$

Ammann-Beenker tiling

physical space

internal space

Ammann-Beenker tiling

Aperiodic tilings

Aperiodic tilings

Many examples with hierarchical structure (see below).

Exception: The Kari-Culik prototile set

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

3D: Schmitt-Conway-Danzer 'einstein'

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

3D: Schmitt-Conway-Danzer 'einstein'

2D: Penrose tiling (two tiles)

Is there a single shape that tiles space without gaps or overlaps, but does not admit any periodic tiling?

3D: Schmitt-Conway-Danzer 'einstein'

2D: Penrose tiling (two tiles)

No monotile known — but Penrose's $1 + \varepsilon + \varepsilon^2$ tiling

The Taylor Tiling: Story

19 Feb 2010: Email from Joshua Socolar announcing

An aperiodic hexagonal tile

(joint preprint with Joan M. Taylor)

The Taylor Tiling: Story

19 Feb 2010: Email from Joshua Socolar announcing *An aperiodic hexagonal tile*(joint preprint with Joan M. Taylor)

28 Feb 2010: Visit Joan Taylor in Burnie, Tasmania

The Taylor Tiling: Story

19 Feb 2010: Email from Joshua Socolar announcing *An aperiodic hexagonal tile*(joint preprint with Joan M. Taylor)

based on Joan's unpublished manuscript

Aperiodicity of a functional monotile

which is available (with hand-drawn diagrammes) from

http://www.math.uni-bielefeld.de/sfb701/ preprints/view/420

(slight difference in definition of matching rules)

Joan Taylor

Joan Taylor

Joan Taylor

Robinson's tiling

Robinson's tiling

hexagonal tile

still admits periodic tilings of the plane

Penrose's $1 + \varepsilon + \varepsilon^2$ tiling

- 3 tiles: $1 + \varepsilon + \varepsilon^2$
- 'key tiles' encode matching rule information
- proof of aperiodicity (Penrose)
- ullet the ε tile transmits information along edge

The monotile

(figures from Socolar & Taylor An aperiodic hexagonal monotile)

The monotile

Forced patterns

Filling the gaps

Filling the gaps

Filling the gaps

Composition-decomposition method

(Franz Gähler 1993)

- method to show that matching rules (local rules) enforce non-periodicity
- based on inflation (self-similarity)
- requirements:
 - Inflation rule has to respect matching rules: Tiles that match must have decompositions that match
 - In any admitted tiling, each tile can be composed, together with part of its neighbours, to a unique supertile
 - The supertiles inherit markings that enforce equivalent matching rules

Taylor's substitution

(figures from Taylor's manuscript *Aperiodicity of a functional monotile*)

Taylor's substitution

(figures from Taylor's manuscript *Aperiodicity of a functional monotile*)

Inflation tiling

Inflation tiling

Inflation tiling

Relation to Penrose's $1 + \varepsilon + \varepsilon^2$ tiling:

References

- M. Baake and U. Grimm, Theory of Aperiodic Order: A Mathematical Invitation (CUP, Cambridge), in preparation.
- F. Gähler, Matching rules for quasicrystals: The composition-decomposition method, J. Non-Cryst. Solids 153& 154 (1993) 160–164.
- B. Grünbaum and G.C. Shephard, Tilings and Patterns (Freeman, New York, 1987).
- Penrose, Remarks on tiling: Details of a $(1 + \varepsilon + \varepsilon^2)$ -aperiodic set, in: *The Mathematics of Long-Range Aperiodic Order*, ed. R.V. Moody (Kluwer, Dordrecht, 1997) pp. 467–497.
- D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984) 1951–1953.
- J.E.S. Socolar and J.M. Taylor, An aperiodic hexagonal tile, J. Combin. Th. A 118 (2011) 2207–2231.
- J.E.S. Socolar and J.M. Taylor, Forcing nonperiodicity with a single tile, preprint arXiv:1009.1419 (2010).
- J.M. Taylor, Aperiodicity of a functional monotile, preprint Bielefeld CRC 701: 0-015 (2010), available via http://www.math.uni-bielefeld.de/sfb701/preprints/view/420