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Preamble

This lecture will concentrate on recent developments with

regard to these questions:

What is the largest number of automorphisms of

• a compact orientable surface of given genus g > 1 ?

• a compact non-orientable surface of given genus p > 2 ?

Given a finite group G, what is the smallest genus of faithful

actions of G on

• compact orientable surfaces?

• compact orientable surfaces, preserving orientation?

• compact non-orientable surfaces?



Background: definitions

Here, by ‘surface’ we mean a surface with local structure,

or 2-manifold, which may be orientable or non-orientable.

By an automorphism of such a surface X we mean a home-

omorphism that preserves the local structure; in the ori-

entable case, this might preserve or reverse orientation.

Any group G of automorphisms of such a surface X is iso-

morphic to a quotient of a Fuchsian group (in the orientation-

preserving case) or a non-Euclidean crystallographic group

(abbreviated to NEC group, in the other cases).



Background: long-known theorems

The groups acting on the sphere and torus (orientable of
genus 0 and 1) and the projective plane and Klein bottle
(non-orientable of genus 1 and 2) are completely classified.

Let G be a group of automorphisms of a compact orientable
surface of genus g > 1. Then:

• |G| ≤ 84(g − 1) if G preserves orientation [Hurwitz 1893]

• |G| ≤ 168(g − 1) if G has orientation-reversing elements.

Similarly, if G is a group of automorphisms of a compact
non-orientable surface of genus p > 2, then:

• |G| ≤ 84(p− 2) [Singerman 1971].

Also these bounds are sharp for certain values of g and p.



Maximum possible orders: Hurwitz groups

Groups meeting the Hurwitz bound |G| ≤ 84(g−1) are all

quotients of the ordinary (2,3,7) triangle group, generated

by two elements x and y satisfying x2 = y3 = (xy)7 = 1.

Among these Hurwitz groups are the alternating groups An
for all but a few n, many families of groups of Lie type, and

12 of the 26 sporadic simple groups (including the Monster).

But: the Hurwitz bound is very rarely achieved ... in fact for

genus up to 11905 the bound is met only for g = 3, 7,

14, 17, 118, 129, 146, 385, 411, 474, 687, 769, 1009,

1025, 1459, 1537, 2091, 2131, 2185, 2663, 3404, 4369,

4375, 5433, 5489, 6553, 7201, 8065, 8193, 8589, 11626

and 11665 [MC (1985)].



NEC groups and signatures

An non-Euclidean crystallographic group (or NEC group) Γ

is a co-compact discrete subgroup of the group of orientation-

preserving or -reversing isometries of the hyperbolic plane H.

Each such group has a finite presentation in terms of various

kinds of generators (elliptic elements, reflections, hyperbolic

elements, glide reflections etc.), which are subject to known

defining relations.

The entire presentation can be encoded by a set of data

called the signature of Γ, which takes the form

σ(Γ) =
(
γ; ±; [m1, ...,mr]; {(n11, ..., n1s1

), ..., (nk1, ..., nks1
)}
)
.



Riemann-Hurwitz formula

The area of a fundamental region for the NEC group Γ with
given signature is µ(Γ) = 2πξ(Γ), where

ξ(Γ) = αγ + k − 2 +
r∑

i=1

(
1−

1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1−

1

nij

)
,

with α = 2 if the sign is + and α = 1 otherwise.

If Λ is a subgroup of finite index in Γ, then Λ is also an NEC
group, and its area is given by the Riemann-Hurwitz formula

µ(Λ) = |Γ:Λ| · µ(Γ), or, equivalently, ξ(Λ) = |Γ:Λ| · ξ(Γ).

In particular, if Λ C Γ and Γ/Λ = G, then ξ(Λ) = |G|ξ(Γ), so
for given ξ(Λ) > 0 we maximise |G| by minimising ξ(Γ).



How to find bounds for ‘non-Hurwitz’ genera?

Need to find families of groups with presentations giving

surface actions with large order to genus ratio.

Take an NEC group Γ with small hyperbolic area 2πξ(Γ), and

look for a suitable family of smooth finite quotients Γ/Λk (of

Γ by torsion-free normal subgroups Λk), of increasing order.

Can do this using computational methods, such as the new

low index normal subgroups algorithm, which finds all normal

subgroups K of up to a given finite index in Γ (and hence

all quotients Γ/K of up to given finite order).



Lower bounds on upper bounds

In the 1960s, Accola and Maclachlan showed that the largest

number of orientation-preserving automorphisms of a com-

pact Riemann surface of given genus g > 1 is at least 8(g+1),

and that this bound is sharp for infinitely many values of g.

The corresponding surfaces are reflexible, so a lower bound

for the largest number of all automorphisms of an orientable

surface of given genus g > 1 is 16(g+1), and again this is

sharp for infinitely many g.

For non-orientable surfaces of genus p > 2, the best known

bound is 4p automorphisms [Conder et al, 2003], but it is

not yet known whether this is sharp for infinitely many p.



Census of large group actions (for small genus)

Computational methods have recently enabled creation of

complete lists of the largest groups of automorphisms of

• compact orientable surfaces of genus 2 to 300

• as above, preserving orientation

• compact non-orientable surfaces of genus 3 to 200.

The list for orientable surface actions corrects and extends

a partial census by P.R. Hewitt (1989) for genus 2 to 26.

The non-orientable case was a little harder, involving more

possibilities for the signature (of the NEC group Γ), 2010/11.



Orientable case, preserving orientation

g Max Signature

2 48 [2,3,8]
3 168 [2,3,7]
4 120 [2,4,5]
5 192 [2,3,8]
6 150 [2,3,10]
7 504 [2,3,7]
8 336 [2,3,8]
9 320 [2,4,5]

10 432 [2,3,8]

. . .

g Max Signature

292 6984 [2,3,12]
293 4672 [2,4,8]
294 2376 [2,4,297]
295 7056 [2,3,12]
296 2376 [2,4,594]
297 7104 [2,3,12]
298 3888 [2,3,72]
299 4768 [2,4,8]
300 4056 [2,3,52]

Note: In almost all small cases, the largest group action has
a triangle group signature [p, q, r] = (0; +; [p, q, r]; {−}), but
for genus g = 126 it has signature (0; +; [2,2,2,3]; {−}).



Orientable case, allowing orientation reversal

g Max Signature

2 96 [2,3,8]∗

3 336 [2,3,7]∗

4 240 [2,4,5]∗

5 384 [2,3,8]∗

6 300 [2,3,10]∗

7 1008 [2,3,7]∗

8 672 [2,3,8]∗

9 640 [2,4,5]∗

10 720 [2,4,5]∗

. . .

g Max Signature

292 6984 [2,3,12]
293 4800 [2,4,150]∗

294 4752 [2,4,297]∗

295 14112 [2,3,12]∗

296 4752 [2,4,594]∗

297 7104 [2,3,12]
298 7776 [2,3,72]∗

299 4800 [2,4,600]∗

300 8112 [2,3,52]∗

In most cases, the maximum occurs for signature [p, q, r]∗ =
(0; +; [−]; {(p, q, r)}) for some p, q, r; in some it is the same
as before; and in others for signature (0; +; [−]; {(2,2,2,3)}).



Non-orientable case [much more tricky/interesting]

p Max Signature

3 12 [2,2,2,3]∗

4 48 [2,4,6]∗

5 120 [2,4,5]∗

6 160 [2,4,5]∗

7 120 [2,4,6]∗

8 504 [2,3,7]∗

9 336 [2,3,8]∗

10 192 [2,4,6]∗

..

p Max Signature

193 1560 [2,4,195]∗

194 2304 [2,6,6]∗, [2,2,2,3]∗

195 1158 (0; +; [2,3]; {(1)})
196 1584 [2,4,198]∗

197 2184 [2,4,14]∗

198 2352 [2,2,2,3]∗

199 1608 [2,4,201]∗

200 2640 [2,4,10]∗

In most cases, the maximum occurs for signature [2, q, r]∗,
or [2,2,2, s]∗ = (0; +; [−]; {(2,2,2, s)}) for s = 3 or 4, or
(0; +; [2,3]; {(1)}), or (0; +; [2]; {(2,4)}). In the excep-
tional case of genus 87, it occurs for signature [2,2,2,87]∗.



Symmetric genus and cross-cap number

Instead of asking for the largest group of automorphisms of a
surface of given genus, once can pose the inverse problem:

What is the smallest genus of those surfaces on which a
given group has a faithful action?

Formally, given a finite group G, Tucker (1980s) defined

• the symmetric genus σ(G) as the minimum genus of all
closed orientable surfaces on which G has a faithful action

• the strong symmetric genus σo(G) as the minimum genus
of those in which the action preserves orientation

• the symmetric cross-cap number σ̃(G) as the minimum
genus of all closed non-orientable surfaces on which G has
a faithful action.



Strong symmetric genus [concept due to Burnside]

This is now known for several families of groups, including:

• Cyclic groups: σo(Cn) = 0 for all n

• Dihedral groups: σo(Dn) = 0 for all n

• All finite abelian groups [Maclachlan (1965)]

• All known Hurwitz groups (σo(G) = |G|
84 + 1, optimal)

• Alternating groups An for all n [Conder (1984)]

• Symmetric groups Sn for all n [Conder (1984)]

• Groups PSL(2, q) for all q [Glover & Sjerve (1987)]

• All 26 sporadic finite simple groups [Woldar et al]

• Direct products Ck ×Dn [May & Zimmerman (2003)]

• Various finite reflection groups [Jackson (2004–)]

• All finite groups of order up to 127 [Conder/MAGMA]



Strong symmetric genus spectrum

May & Zimmerman (2003) proved that for all k, n ≥ 3,

σo(Ck ×Dn) =


1 + nk

(
1
2 −

1
2k −

1
lcm(k,n)

)
if k odd

1 + n(k − 2) if k even, n even

1 + nk
(

1
2 −

1
k −

1
lcm(k,n)

)
if k even, n odd.

The set of possible values covers almost all positive integers.

Corollary: the strong symmetric genus function is surjective

— i.e. the strong symmetric genus spectrum is complete.



Symmetric genus

This is more challenging. Nevertheless, the symmetric genus
σ(G) is known for several families of groups, including these:

• Spherical groups (groups acting on the sphere)

• Toroidal groups (groups acting on the torus)

• All finite abelian groups

• Simple groups G for which σo(G) is known

• Symmetric groups Sn for all n

• Groups PSL(2, q)× C2 and PGL(2, q)

• Some other groups G for which |G| = 168(σ(G)− 1)
[These are C2-extensions of certain Hurwitz groups]

• All finite groups of order up to 127

• All finite groups of symmetric genus 2 to 32.



Symmetric genus spectrum

Question: Is the symmetric genus function surjective?

Partial answer (from recent work by Conder & Tucker):

There exist families of groups G with

• |G| = 16n and σ(G) = 4n− 1 for all n ≥ 2

• |G| = 16n and σ(G) = 4n− 3 for all n ≥ 1

• |G| = 24n and σ(G) = 3n− 3 for all odd n ≥ 1

• |G| = 24n and σ(G) = 3n+ 1 for all odd n ≥ 11

• |G| = 48n and σ(G) = 9n− 7 for all odd n ≥ 1.

Hence the symmetric genus spectrum covers at least 8/9 of

the positive integers.



Example: family with symmetric genus 4n−1

Let G = 〈x, y |x4 = y4 = [x2, y] = [y2, x] = 1, (xy)2n = x2 〉.

Here K = 〈x2, y2〉 ∼= V4 is central, of order 4, with quo-

tient G/K ∼= D2n, so |Vn| = 16n. Also |〈xy〉| = 4n, so

G is a smooth quotient of the NEC group with signature

(0; +; [4,4,4n]; {−}), and Riemann-Hurwitz gives the genus

of the action as 1 + 8n(1− 1/4− 1/4− 1/(4n)) = 4n− 1.

All involutions of G lie in K, so no action of G on an ori-

entable surface includes reflections. This fact and similar

observations make it easy to rule out actions on orientable

surfaces of smaller genera. Hence σ(G) = σo(G) = 4n− 1.



Symmetric genus spectrum (cont.)

The main difficulty in showing this spectrum is complete lies

with the integers congruent to 8 or 14 mod 18.

We have some families covering infinitely many integers in

each of these classes, but not all. But ...

Conjecture: For every integer g ≥ 5, there is a finite abelian

or metabelian group G with symmetric genus σ(G) = g.

Now all we have to do is work out the symmetric genus of

metabelian groups ... not so easy!!



Symmetric cross-cap number

Even less is known about the value of this parameter σ̃.

Study of σ̃(G) involves considering epimorphisms θ : Γ → G

with the property that θ maps the orientation-preserving

subgroup Γ+ onto G (rather than a subgroup of index 2).

It is known that σ̃(G) ≥ |G|84 + 2 whenever σ̃(G) 6= 1,2.

Groups for which this bound is achieved are sometimes called

H∗-groups [Singerman (1971)]. They include the alternating

groups An for all but finitely many n, PSL(2, q) for some

q, and certain other finite simple groups, as well as some

groups obtainable as extensions by these.



Symmetric cross-cap number (cont.)

May (2001) found the symmetric cross-cap number of all

finite abelian groups and dicyclic groups, and some others.

Etayo & Martinez (2008) showed that:

σ̃(Cm ×Dn) =



2 +mn−m− n if m and n are odd

2 + n(m−1) if m odd, n even, 2m ≤ n

2 +m(n−2) if m odd, n even, 2m > n

2 + n(m−2) if m ≡ 0 mod 4 and n odd

2 +mn if m and n are even.

Note: Cm ×Dn ∼= Cm
2
×D2n when m ≡ 2 mod 4 and n odd.



Symmetric cross-cap number (cont.)

There is no group G with symmetric cross-cap number 3.

[This was conjectured by Tucker, and proved by May (2001)]

Recent computations [by MC (2010)] give

• σ̃(G) for all finite groups of order up to 127

• All groups with symmetric cross-cap number 4 to 65.

It is also easy to show that for each positive integer k there

is an extension of Ck by S4 (of order 24k, with each odd

element of S4 conjugating every element of Ck to its inverse)

that has symmetric cross-cap number 3k − 2, achieved by

an action with signature (0; +; [−]; {(2,4,3n)}).



Symmetric cross-cap number spectrum

Some of the previous families of examples give these infinite
subsets of the spectrum of values of σ̃(G):

• All p ≡ 0,1 or 2 mod 4, p > 10, from G = Cm ×Dn
• All p ≡ 11 mod 12, from σ̃(C3 × C6n) = 12n− 1

• All p ≡ 1 mod 3, from σ̃(Ck · S4) = 3k − 2.

This leaves just the class of all p ≡ 3 mod 12. There is
no group with symmetric cross-cap number 3 (but all other
values between 4 and 100 are achievable).

Conjecture: For every integer p ≥ 4, there is a finite abelian
or metabelian group with symmetric cross-cap number p.



Summary of (still) open problems

Are there infinitely many positive integers p ≡ 3 mod 12 such

that the largest number of automorphisms of a compact

non-orientable surface of genus p is 4p?

For every positive integer g ≡ 2 mod 6, is there is a group

with symmetric genus g ? If so, then the symmetric genus

spectrum is complete.

For every positive integer p ≡ 3 mod 12, is there is a group

with symmetric cross-cap number p ? If so, the symmetric

cross-cap number can be any positive integer other than 3.



Thank You!


