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Definition - Spherical t-design

Unit sphere §? := {x e R?: |x| = 1}

Standard Euclidean inner product x -y in R3: [x|? = x - x

wy = [S?] = [q dw(x) = 4m

Set Xy = {x1,...,xy} CS?

Space P; = PP; (S?) of spherical polynomials of degree at most ¢
o dim(P;) = (t + 1)2

Spherical t-design is a set Xy of N points such that

e 6 6 ¢ ¢

(]

1 & 1
¥ ) = 3 [peodetx)  woer

o XN equal weight N point quadrature rule with degree of precision ¢
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Spherical designs — Number of points

@ Delsarte, Goethals and Seidel (1977) [10]

o For S?
EDEES) e ¢ odd,
N > No(t) == (2)

% if t even.

@ Bannai and Damerell (1979, 1980) [4, 5]

@ Tight spherical t-designs if achieve lower bounds
o Cannot exist on S? except fort = 1,2,3,5

@ Seymour and Zaslavsky (1984) [16]: Spherical ¢ designs exist for N
sufficiently large

@ Bannai and Bannai (2009) [3] Survey on spherical designs and
algebraic combinatorics on spheres

@ Bondarenko, Radchenko and Viazovska (2010) [6] spherical ¢-designs
on S% exist for N > ¢4t
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Existence Results for S?

@ Bajnok (1991) [2] construction with N = O(¢3)
e n points z1,..., 2y, t-design on [—1,1]
o Regular m-gon at latitudes z;
o N = mmn point t-design if m > ¢+ 1

o Korevaar and Meyers (1993) [14] - Faraday Cage
o N=0()

@ Both depend on t-designs for interval [—1, 1]
o Set of n points z; € [—1,1]:

n 1

o Equal weights = n = O(¢?) points
o Survey Gautschi [11]

@ Tensor product constructions based on 1-D existence result
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Spherical Designs Conjectures

Evidence for S?

@ Hardin and Sloane (1996) [13]

o Summary of known results for S?

o Conjecture
2

N= % (1+0(1))

o N = (t+1)? = dim (P,(S?))
o Start from extremal (maximum determinant) points
Sloan, Womersley (2004) [17]

o Under-determined system of equations

o Use interval methods to verify a nearby solution
o Chen and Womersley (2006) [8]
@ Chen, Frommer, Lang (2009) [7]
@ An, Chen, Sloan, Womersley (2010) [1]
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Spherical designs — nonlinear equations

Delsarte, Goethals and Seidel (1977) [10]
Xy = {x1,...,xny} C S? is a spherical t-design if and only if

rek(XN) ZYM X;) (3)

fork=1,...,20+1, (¢=1,...,t.

@ Spherical harmonics {Y;, :k=1,...,20+1, £=0,1,...,t}
o Orthonormal basis for P;(S?)
@ Y7, a spherical harmonic of degree ¢

@ Constant (¢ = 0) polynomial Yy 1 = 1/v/47m not included in (3)
@ Integral of all spherical harmonics of degree ¢ > 1 is zero
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(G ETEla P Z Il  Variational characterizations

Polynomials with positive Legendre coefficients

@ Polynomial v, € P;[—1, 1] with positive Legendre coefficients

t

2) = arePy(z), (4)
=1

Gt7g>0 for £=1,...,t. (5)

° Legendre polynomial P;(z) for z € [—1,1]
) f 1 'l/}t dZ =0
@ Variational form

At Ny (AN) = 555 ZZ?/%

=1 j=1
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Characterizations Variational characterizations

Spherical designs — variational characterizations

t>1, Xn = {x1,...,xy} CS? ¢ asin (4), (5). Then

t
0 < ANy (XN) SZ age = Pi(1

¢
Apny = @ /S2 e /52 Ay Ny (X150 XN )dw(xy) - - dw(xy) = %(1).

Xn is a spherical design if and only if
At,N,w(XN) = 0.

@ Weighted sum of squares, strictly positive coefficients

Ar t 0 20+1 )
At Ny (XN) = N2 m > (rep(Xn)) (6)
k=1

@ A ny(AN) =0 <= AN spherlcal t-design
@ Global min A; y,(Xn) > 0 = no spherical t-design with N points
(Approximate) Spherical Designs
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Characterizations Variational characterizations

Specific cases

@ Grabner and Tichy (1993) [12]

wt(Z) = Zt + Zt_l — a,;o

% t odd,
@0 =3 1

) t even.

@ Cohn and Kumar (2007) [9]

@ Sloan and Womersley (2009) [18]

Yi(z) =

21‘,
=(1+2)" - :
dil) = (L 2) = —
1 t
Pt E 2€+ 1 Pg
47 =

o Pt(l’o) Jacobi polynomial
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Evaluating Az, v, 4 (¥2v)
Evaluating A; ny(Xn)

@ Matrix ¥: ‘I’ij :’l[)t(Xl'-Xj), ,7=1,...,N
@ Spherical harmonic basis matrix Y of size (¢ + 1) — 1 by N:

Y = [Yir(xj)], L=1,....t k=1,...,20+1; j=1,...,N,
@ Spherical t-design <= (¢ + 1)?> — 1 equations (3)
r:= Ye =0,
@ Diagonal matrix D of weights from (6)

¥ = (47)Y'DY

D:diag< 1.t k:1,...,2€+1,€:1,...,t)

20+ 1’
@ Any symmetric positive definite D possible
@ Minimize
A 1 T dm T~T 47 T
LN (Xw) = 150’ We = el YIDYe = r' Dr

(Fields Institute — Sphere Arrangements) (Approximate) Spherical Designs November 14-18, 2011 11 /31



Evaluating A¢, v, (Xn)

Evaluating A n(

Xy) using ¥

o N by N matrix ¥;; = (x; - x;)

@ Constant diagonal

elements (1) = >0_, aze

@ Matrix W fora;p =20 +1 <= D=1

Matrix @ for L = 32, N = 546

600

500 -|

400

300

200~

100

100 !

o Advantages: simp

le, (trivially) parallel

@ lIssue: cancelation errors in summing off diagonal elements
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Systems of nonlinear equations Standard results

Standard results

System of equations r(z) =0, r:R" — R™
n variables, m equations

o Under-determined m < n

o Well-determined m =n

o Over-determined m > n

(]

o Sum of squares f(z) = r"(x)r(z) = 371, 7(x)?
o f(x)>0forallz, f(*) =0 < r(z*)=0
o x* global minimizer f(z*) > 0 <= no solution exists
o z* local minimizer f(z*) >0 =7
@ Derivatives
o Jacobian J € R™*™: J;;(x) = 631;;), i=1,....m,j=1,...,n
o Gradient Vf(z) =2JTr e R"
o Hessian V2f(z) =2JTJ+23" r;V?r, € RV
@ Newton's method: Correctiond: Jd +r~0

o x* :r(x*) =0, J* full rank = quadratic convergence if start
sufficiently close
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Systems of nonlinear equations Examples

Degrees of freedom

@ Spherical parametrization, normalization = n = 2N — 3 variables
o m =dim(P;) — 1= (¢t + 1)? — 1 equations

@ Threshold n > m —

N> Ni(t):=[(t+1)?)/2] +1
@ Sum of squares for t = 19, varying N (N1(19) = 201)

10°

(Fields Institute — Sphere Arrangements)

Minima of spherical design objective A, for L = 19

110 120 130 140 150 160 170 180 190
Number of points N
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E-ermples
Example: t =32, N = N;(32) = 546

@ m = 1088, n = 1089, under-determined
o lterations: f — 4.8 x 107%, 0, = 1.16 x 1074, kK = 2.3 x 10°

Sum of squares

#
*
[
*
%
%
%

TN

80 s
teration 10

@ Local minimum, but close to zero
@ Jacobian at solution nearly singular

@ Other starting points give a global minimizer with f =0
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Spherical designs - numerical results

@ Aim: Use N = Ny (t), = n = m,t odd,
@ Rounding error limits achievable accuracy in A; n

n=m-+1,t even

o Both A; x4 (Xy), r’r order of rounding error => what confidence?
o t =100 = Ny(t) = 5102, m = 10200, n = 10201

Spherical design objective

Sum of squares of SF residual

10” . . . . . - - - - - -
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Systems of inear equations Examples

Condition numbers

@ Condition numbers

of Jacobian J(%)

Condition number of spherical harmonic Jacobian
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Mesh norm and Separation

@ Mesh norm (covering radius)

. . Ccov
hxy =max min dist(x,x;) > ——

XESQ .]:177N \/N

o Stationary point of A; n.(Xn) with hx < 1/(t+ 1)

— At,N,w(XN) =0

But hx <1/(t+1) = N > ¢(t + 1)? where ¢ > 4

Yudin [19] Mesh norm h given by largest zero z; = cos(h) of P(1:0)(z)
Reimer [15] extended to any positive weight cubature rule with degree
of precision ¢

@ Separation (twice packing radius)

¢ ¢ ©

&
dxy = mindist ((,x);,x;) < “pack

i#£j ’ \/N

@ Union of two spherical t-designs is a spherical t-design
o Xy UQXy is 2N point spherical t-design with arbitrary separation
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Systems of Geometric properties

Mesh ratio

2hx,  Covering radius

Mesh ratio px, =

Oxy Packing radius
Minimum angle between points
2
10 T T T
*  Minimum angle
TH(L+1)
10° ﬁ%% )
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SymIRISE Qe
Symmetric designs

@ Neven, xe Xy < —xeXy

@ Equal weights, £ odd = Y}, integrated exactly
o Constraints from even degrees < ¢, t odd
(t=1)/2
t—1)(t+2
m = 2(2k) +1 = %
=1

N = 2K points = 2K — 3 = N — 3 degrees of freedom

Degrees of freedom > number of equations —-

+3

N > Ny(t) =2 {(fl)(t+2)+6-‘ S (t—1)(t+2)

4 - 2

(]

Slightly less than N1 (t)
@ Roughly half storage for Jacobian and time
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Bl @ieeion 6 ke
Extended precision — Spherical designs

(Fields Institute

-12

10

10
10
10

107?

24

18]

Spherical t-desi

ign with N = (t+2)2/2 + 1 points
T T T

T
L M’%ﬁ +++#m W W
- T s
L, T L + + 4
+ +
+ |A‘ N| - double precision| -
O " r - double precision
= ALN - quad precision
& » "
S " el - i
& e
5 W
*2% 4
o
Lt
I I I I I I
20 40 60 80 100 120 140
Degree t

(Approximate) Spherical Designs

November 14-18, 2011

21 /31



Bl @ieeion 6 ke
Extended precision — Symmetric spherical designs

(Fields Institute

-12

Symmetric spherical t-design with N = (t-1)(t+2)/2 + 3 points
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Bl @ieeion 6 ke
Extended precision — Refinement

@ Refine with Gauss-Newton steps in Quad precision
@ Store as 16 digit or 32 digit files

Symmetric spherical t-design rTrwith N = (t=1)(t+2)/2 + 3 points

*  Quad precision 32 digit data
10 " . 7x  Quad precision 16 digit data . n|
<1 Double precision 16 digit data

107 .
10 s
0% 1
10k ﬁW |
+
10t 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Degree t
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Well-conditioned spherical designs

@ When N is larger, eg N > Ni(t), N > (t+1)?
@ Use degrees of freedom to optimize other criteria

@ Optimization problem

min(N,(t+1)2)

e, | ACAY)

j=1
Subject to r(Xy) =0

1

T
o Spherical harmonic basis matrix Y; = l 47TY ] (t+1)2 by N

@ Singular values

. 2
min(N,(t+1)%) N(t+ 1)2

S (Yuan) =

J=1
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Well-conditioned spherical designs

Example with one degree of freedom

@ Degree t = 22 = m = 528 equations

@ Number of points N = 266 = n = 529 variables

@ One degree of freedom

o Continuation to follow spherical design constraint

‘Sum of log of singular values of Y: degree 22 with 266 points

48988

489,86

489.84f

89.82|

489.78[

480.761

48074

480.72

(Fields Institute — Sphere Arrangements)

6
Approximate arc length

Condition number of basis matrix Y: degree 22 with 266 points

Less

L8as|

L35

6
Approximate arc length
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Worst case error

Cubature rule: nodes X = {x1,...,xx}, weights wy,...,wy

N
Qn(f) =D wif(x))
j=1

Approximate integral
10)= || 70l

Sobolev space H* = H?*(S%) of functions, norm || f||ms, s > d/2
Worst case cubature error

wee(Qn, H?) := sup |I(f) — Qn(f)]

[l £llms <1
Positive weight rule with degree of precision t
e(d,s) N~/ < wee(Qn, H®) < C(d, s) t~°

Same order if N = O(t%)
(Fields Institute — Sphere Arrangements) (Approximate) Spherical Designs November 14-18, 2011
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Approximate spherical designs

Sequence of N = N(t) point configurations.

Ast — oo
87 & 1
sup I(f)*TZf(Xj) :O<t_s)
J

17 s <1 —

Key: For s > d/2 Sobolev space Hj with reproducing kernel

K(axy) =Y a0 2(d, )P, (x y)

=1
0 af) define inner product in H
@ Ford > 2

Approximate spherical designs

| NN
N2 Z ZKt(a,xi,xj) — a(()s) =0 (t*QS)

i=1 j=1
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Spherical design functions

Sums of squares / N>

10 T T T T

107

Wﬁﬁwmamuwxcm&::xcmwx 3

1 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Number of points N
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Worst case error for s = 3/2

For d =2, s = (d+1)/2 = 3/2: choose al®) to get

@ Cui and Freeden generalized discrepancy

@ Sums of distances.

0.9;

(Worst case error) N

Coulomb Energy (Riesz s = 1)
Maximum sum of distances
Generalized spiral (Bauer)
‘Spherical Design

&40 -

S

(Fields Institute — Sphere Arrangements)
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1 15
Number of points N «10°
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Conclusions

Conclusions

@ Good points: S?
@ Numerical spherical t-designs for t = 1,...,140
o Equal weight cubature rule, degree of precision t with
N = (t+1)?/2+ O(1) points
@ Symmetric equal weight cubature rule, degree of precision ¢ with
N=(t-1)(t+2)/2+ O(1) points for t =1,...,181
o Good geometric properties: mesh norm, separation
o Larger N: Use degrees of freedom to satisfy other criteria
@ Approximate designs: more flexibility
@ Issues
@ Rounding errors in evaluating criteria, speed of extended precision
Convergence difficulties with close to singular Jacobians
No proof of nearby exact spherical designs when N < (t + 1)2
No proof of existence for all ¢
There exist t-designs with N < N (t); special symmetries
Calculation by optimization for each t, N
Point sets Xy not nested
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