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Spherical Designs Definition

Definition - Spherical t-design

Unit sphere S
2 :=

{

x ∈ R
3 : |x| = 1

}

Standard Euclidean inner product x · y in R
3: |x|2 = x · x

ω2 = |S2| =
∫

S2 dω(x) = 4π

Set XN = {x1, . . . ,xN} ⊂ S
2

Space Pt ≡ Pt

(

S
2
)

of spherical polynomials of degree at most t

dim(Pt) = (t+ 1)2

Spherical t-design is a set XN of N points such that

1

N

N
∑

j=1

p(xj) =
1

4π

∫

S2

p(x)dω(x) ∀p ∈ Pt, (1)

XN equal weight N point quadrature rule with degree of precision t
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Spherical Designs Number of points

Spherical designs – Number of points

Delsarte, Goethals and Seidel (1977) [10]

For S
2

N ≥ N0(t) :=







(t+1)(t+3)
4 if t odd,

(t+2)2

4 if t even.

(2)

Bannai and Damerell (1979, 1980) [4, 5]

Tight spherical t-designs if achieve lower bounds
Cannot exist on S

2 except for t = 1, 2, 3, 5

Seymour and Zaslavsky (1984) [16]: Spherical t designs exist for N
sufficiently large

Bannai and Bannai (2009) [3] Survey on spherical designs and
algebraic combinatorics on spheres

Bondarenko, Radchenko and Viazovska (2010) [6] spherical t-designs
on S

d exist for N ≥ cdt
d
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Spherical Designs Number of points

Existence Results for S
2

Bajnok (1991) [2] construction with N = O(t3)

n points z1, . . . , zn, t-design on [−1, 1]
Regular m-gon at latitudes zj
N = mn point t-design if m ≥ t+ 1

Korevaar and Meyers (1993) [14] - Faraday Cage

N = O(t3)

Both depend on t-designs for interval [−1, 1]

Set of n points zj ∈ [−1, 1]:

2

n

n
∑

j=1

p(zj) =

∫ 1

−1

p(z)dz ∀p ∈ Pt([−1, 1])

Equal weights =⇒ n = O(t2) points
Survey Gautschi [11]

Tensor product constructions based on 1-D existence result

(Fields Institute – Sphere Arrangements) (Approximate) Spherical Designs November 14–18, 2011 5 / 31



Spherical Designs Conjectures

Evidence for S
2

Hardin and Sloane (1996) [13]

Summary of known results for S
2

Conjecture

N =
t2

2
(1 + o(1))

N = (t+ 1)2 = dim
(

Pt(S
2)

)

Start from extremal (maximum determinant) points
Sloan, Womersley (2004) [17]
Under-determined system of equations
Use interval methods to verify a nearby solution

Chen and Womersley (2006) [8]
Chen, Frommer, Lang (2009) [7]
An, Chen, Sloan, Womersley (2010) [1]
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Characterizations Nonlinear equations

Spherical designs – nonlinear equations

Delsarte, Goethals and Seidel (1977) [10]

XN = {x1, . . . ,xN} ⊂ S
2 is a spherical t-design if and only if

rℓ,k(XN ) :=
N

∑

j=1

Yℓ,k(xj) = 0 (3)

for k = 1, . . . , 2ℓ+ 1, ℓ = 1, . . . , t.

Spherical harmonics {Yℓ,k : k = 1, . . . , 2ℓ+ 1, ℓ = 0, 1, . . . , t}
Orthonormal basis for Pt(S

2)
Yℓ,k a spherical harmonic of degree ℓ

Constant (ℓ = 0) polynomial Y0,1 = 1/
√

4π not included in (3)

Integral of all spherical harmonics of degree ℓ ≥ 1 is zero
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Characterizations Variational characterizations

Polynomials with positive Legendre coefficients

Polynomial ψt ∈ Pt[−1, 1] with positive Legendre coefficients

ψt(z) :=
t

∑

ℓ=1

at,ℓPℓ(z), (4)

at,ℓ > 0 for ℓ = 1, . . . , t. (5)

Legendre polynomial Pℓ(z) for z ∈ [−1, 1]
∫ 1

−1
ψt(z)dz = 0

Variational form

At,N,ψ(XN ) :=
1

N2

N
∑

i=1

N
∑

j=1

ψt(xi · xj)

(Fields Institute – Sphere Arrangements) (Approximate) Spherical Designs November 14–18, 2011 8 / 31



Characterizations Variational characterizations

Spherical designs – variational characterizations

t ≥ 1, XN = {x1, . . . ,xN} ⊂ S
2, ψt as in (4), (5). Then

0 ≤ At,N,ψ(XN ) ≤
t

∑

ℓ=1

at,ℓ = ψt(1)

At,N,ψ :=
1

(ω2)N

∫

S2

· · ·
∫

S2

At,N,ψ(x1, . . . ,xN )dω(x1) · · · dω(xN ) =
ψt(1)

N
.

XN is a spherical design if and only if

At,N,ψ(XN ) = 0.

Weighted sum of squares, strictly positive coefficients

At,N,ψ(XN ) =
4π

N2

t
∑

ℓ=1

at,ℓ
2ℓ+ 1

2ℓ+1
∑

k=1

(rℓ,k(XN ))2 (6)

At,N,ψ(XN ) = 0 ⇐⇒ XN spherical t-design

Global min At,N,ψ(XN ) > 0 =⇒ no spherical t-design with N points
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Characterizations Variational characterizations

Specific cases

Grabner and Tichy (1993) [12]

ψt(z) = zt + zt−1 − at,0 (7)

at,0 =

{

1
t t odd,

1
t+1 t even.

Cohn and Kumar (2007) [9]

ψt(z) = (1 + z)t − 2t

t+ 1
. (8)

Sloan and Womersley (2009) [18]

ψt(z) =
1

4π
P

(1,0)
t (z) − 1 =

t
∑

ℓ=1

(2ℓ+ 1)Pℓ(z) (9)

P
(1,0)
t Jacobi polynomial
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Characterizations Evaluating At,N,ψ(XN )

Evaluating At,N,ψ(XN)

Matrix Ψ: Ψij = ψt(xi · xj), i, j = 1, . . . , N

Spherical harmonic basis matrix Y of size (t+ 1)2 − 1 by N :

Y = [Yℓ,k(xj)] , ℓ = 1, . . . , t, k = 1, . . . , 2ℓ+ 1; j = 1, . . . , N,

Spherical t-design ⇐⇒ (t+ 1)2 − 1 equations (3)

r := Ye = 0,

Diagonal matrix D of weights from (6)

Ψ = (4π)YT
DY

D = diag

(

at,ℓ
2ℓ+ 1

, k = 1, . . . , 2ℓ+ 1, ℓ = 1, . . . , t

)

Any symmetric positive definite D possible

Minimize

At,N,ψ(XN ) =
1

N2
e
T
Ψe =

4π

N2
e
T
Y
T
DYe =

4π

N2
r
T
Dr
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Characterizations Evaluating At,N,ψ(XN )

Evaluating At,N,ψ(XN) using Ψ

N by N matrix Ψij = ψt(xi · xj)
Constant diagonal elements ψt(1) =

∑t
ℓ=1 at,ℓ

Matrix Ψ for at,ℓ = 2ℓ+ 1 ⇐⇒ D = I

Advantages: simple, (trivially) parallel

Issue: cancelation errors in summing off diagonal elements
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Systems of nonlinear equations Standard results

Standard results

System of equations r(x) = 0, r : R
n → R

m

n variables, m equations
Under-determined m < n
Well-determined m = n
Over-determined m > n

Sum of squares f(x) = rT (x)r(x) =
∑m

j=1 rj(x)
2

f(x) ≥ 0 for all x, f(x∗) = 0 ⇐⇒ r(x∗) = 0

x∗ global minimizer f(x∗) > 0 ⇐⇒ no solution exists
x∗ local minimizer f(x∗) > 0 =⇒ ?

Derivatives
Jacobian J ∈ R

m×n: Jij(x) = ∂ri(x)
∂xj

, i = 1, . . . ,m, j = 1, . . . , n

Gradient ∇f(x) = 2JT r ∈ R
n

Hessian ∇2f(x) = 2JTJ + 2
∑m

i=1 ri∇2ri ∈ R
n×n

Newton’s method: Correction d : Jd + r ≈ 0

x∗ : r(x∗) = 0, J∗ full rank =⇒ quadratic convergence if start
sufficiently close
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Systems of nonlinear equations Examples

Degrees of freedom

Spherical parametrization, normalization =⇒ n = 2N − 3 variables

m = dim(Pt) − 1 = (t+ 1)2 − 1 equations

Threshold n ≥ m =⇒

N ≥ N1(t) :=
⌈

(t+ 1)2)/2
⌉

+ 1

Sum of squares for t = 19, varying N (N1(19) = 201)

100 110 120 130 140 150 160 170 180 190 200 210

10
−15

10
−10

10
−5

10
0

Number of points N

Minima of spherical design objective A
L,N

 for L = 19
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Systems of nonlinear equations Examples

Example: t = 32, N = N1(32) = 546

m = 1088, n = 1089, under-determined

Iterations: f → 4.8 × 10−6, σm = 1.16 × 10−4, κ = 2.3 × 106

0 20 40 60 80 100 120 140
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Iteration

Sum of squares

0 100 200 300 400 500 600 700 800 900 1000 1100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Local minimum, but close to zero

Jacobian at solution nearly singular

Other starting points give a global minimizer with f = 0
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Systems of nonlinear equations Examples

Spherical designs - numerical results

Aim: Use N = N1(t), =⇒ n = m, t odd, n = m+ 1, t even

Rounding error limits achievable accuracy in At,N

Both At,N,ψ(XN ), r
T
r order of rounding error =⇒ what confidence?

t = 100 =⇒ N1(t) = 5102, m = 10200, n = 10201

0 10 20 30 40 50 60 70 80 90 100
10

−17

10
−16

10
−15

10
−14

10
−13

Degree L of spherical L−design $A
L,N

$

Spherical design objective

0 10 20 30 40 50 60 70 80 90 100
10

−16

10
−15

10
−14

10
−13

Degree L of spherical L−design

Spherical design gradient norm

0 10 20 30 40 50 60 70 80 90 100
10

−30

10
−25

Sum of squares of SF residual

L for spherical L−design

0 10 20 30 40 50 60 70 80 90 100

10
−16

10
−14

10
−12

10
−10

Infnity norm of SF residual

L for spherical L−design
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Systems of nonlinear equations Examples

Condition numbers

Condition numbers of Jacobian J(x̂)

0 10 20 30 40 50 60 70 80 90 100
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Degree L of spherical L−design

Condition number of spherical harmonic Jacobian
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Systems of nonlinear equations Geometric properties

Mesh norm and Separation

Mesh norm (covering radius)

hXN
= max

x∈S2
min

j=1,...,N
dist (x, xj) ≥

ccov√
N

Stationary point of At,N,ψ(XN ) with hX < 1/(t+ 1)
=⇒ At,N,ψ(XN ) = 0
But hX < 1/(t+ 1) =⇒ N > c(t+ 1)2 where c > 4
Yudin [19] Mesh norm h given by largest zero zt = cos(h) of P (1,0)(z)
Reimer [15] extended to any positive weight cubature rule with degree
of precision t

Separation (twice packing radius)

δXN
= min

i6=j
dist ((, x)i , xj) ≤

cpack√
N

Union of two spherical t-designs is a spherical t-design
XN ∪QXN is 2N point spherical t-design with arbitrary separation
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Systems of nonlinear equations Geometric properties

Mesh ratio

Mesh ratio ρXN
=

2hXN

δXN

=
Covering radius

Packing radius
≥ 1

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
0

10
2

Minimum angle between points

Degree L of spherical L−design

 

 

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
0

10
2

Mesh norm (Covering radius)

Degree L of spherical L−design

 

 

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5
Mesh ratio = Covering radius / Packing radius

Degree L of spherical L−design

Minimum angle
π/(L+1)

Mesh norm
1.4142 π/(L+1)
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Systems of nonlinear equations Symmetric designs

Symmetric designs

N even, x ∈ XN ⇐⇒ −x ∈ XN
Equal weights, ℓ odd =⇒ Yℓ,k integrated exactly

Constraints from even degrees ≤ t, t odd

m =

(t−1)/2
∑

k=1

2(2k) + 1 =
(t− 1)(t + 2)

2

N = 2K points =⇒ 2K − 3 = N − 3 degrees of freedom

Degrees of freedom ≥ number of equations =⇒

N ≥ N2(t) := 2

⌈

(t− 1)(t+ 2) + 6

4

⌉

≥ (t− 1)(t+ 2)

2
+ 3

Slightly less than N1(t)

Roughly half storage for Jacobian and time
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Systems of nonlinear equations Extended precision calculations

Extended precision – Spherical designs

0 20 40 60 80 100 120 140

10
−30

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

Degree t

Spherical t−design with N = (t+2)2/2 + 1 points

 

 

|A
t,N

| − double precision

rT r − double precision
A

t,N
 − quad precision

(Fields Institute – Sphere Arrangements) (Approximate) Spherical Designs November 14–18, 2011 21 / 31



Systems of nonlinear equations Extended precision calculations

Extended precision – Symmetric spherical designs

0 20 40 60 80 100 120 140 160 180

10
−30

10
−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

Degree t

Symmetric spherical t−design with N = (t−1)(t+2)/2 + 3 points

 

 

|A
t,N

| − double precision

rT r − double precision
A

t,N
 − quad precision
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Systems of nonlinear equations Extended precision calculations

Extended precision – Refinement

Refine with Gauss-Newton steps in Quad precision
Store as 16 digit or 32 digit files

0 20 40 60 80 100 120 140 160 180
10

−65

10
−60

10
−55

10
−50

10
−45

10
−40

10
−35

10
−30

10
−25

10
−20

10
−15

Symmetric spherical t−design rTr with N = (t−1)(t+2)/2 + 3 points

Degree t

 

 

Quad precision 32 digit data
Quad precision 16 digit data
Double precision 16 digit data
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Well-conditioned spherical designs

Well-conditioned spherical designs

When N is larger, eg N > N1(t), N ≥ (t+ 1)2

Use degrees of freedom to optimize other criteria

Optimization problem

max
XN⊂S2

min(N,(t+1)2)
∏

j=1

σj(Yt(XN ))

Subject to r(XN ) = 0

Spherical harmonic basis matrix Yt =

[

1
4πeT

Y

]

, (t+ 1)2 by N

Singular values

min(N,(t+1)2)
∑

j=1

σ2
j (Yt(XN )) =

N(t+ 1)2

4π
.
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Well-conditioned spherical designs

Example with one degree of freedom

Degree t = 22 =⇒ m = 528 equations

Number of points N = 266 =⇒ n = 529 variables

One degree of freedom

Continuation to follow spherical design constraint

0 2 4 6 8 10 12
489.7

489.72

489.74

489.76

489.78

489.8

489.82

489.84

489.86

489.88

489.9
Sum of log of singular values of Y: degree 22 with 266 points

Approximate arc length
0 2 4 6 8 10 12

1.83

1.835

1.84

1.845

1.85

1.855

1.86

1.865
Condition number of basis matrix Y: degree 22 with 266 points

Approximate arc length
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Worst case error

Worst case error

Cubature rule: nodes XN = {x1, . . . , xN}, weights w1, . . . , wN

QN (f) :=

N
∑

j=1

wjf(xj)

Approximate integral

I(f) :=

∫

Sd

f(x)dω(x)

Sobolev space H
s = H

s(Sd) of functions, norm ‖f‖Hs , s > d/2
Worst case cubature error

wce(QN ,H
s) := sup

‖f‖Hs≤1
|I(f) −QN (f)|

Positive weight rule with degree of precision t

c(d, s) N−s/d ≤ wce(QN ,H
s) ≤ C(d, s) t−s

Same order if N = O(td)
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Worst case error Approximate spherical designs

Approximate spherical designs

Sequence of N = N(t) point configurations.
As t→ ∞

sup
‖f‖Hs≤1

∣

∣

∣

∣

∣

∣

I(f) − |Sd|
N

N
∑

j=1

f(xj)

∣

∣

∣

∣

∣

∣

= O

(

1

ts

)

Key: For s > d/2 Sobolev space H
s
a with reproducing kernel

K(a; x, y) =

∞
∑

ℓ=1

a
(s)
ℓ Z(d, ℓ)P

(d)
ℓ (x · y)

a
(s)
ℓ define inner product in H

s
a

For d ≥ 2

Approximate spherical designs

1

N2

N
∑

i=1

N
∑

j=1

Kt(a, xi, xj) − a
(s)
0 = O

(

t−2s
)
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Worst case error Approximate spherical designs

Spherical design functions

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
10

−8

10
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10
−6

10
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10
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10
−3

10
−2

10
−1

10
0

Number of points N

Sums of squares / N2

 

 
Maximum determinant
Minimum energy
Generlaized spiral
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Worst case error Approximate spherical designs

Worst case error for s = 3/2

For d = 2, s = (d+ 1)/2 = 3/2: choose a(s) to get

Cui and Freeden generalized discrepancy

Sums of distances.

0 0.5 1 1.5 2 2.5

x 10
4

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Number of points N

(Worst case error) N3/4

 

 
Coulomb Energy (Riesz s = 1)
Maximum sum of distances
Generalized spiral (Bauer)
Spherical Design
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Conclusions

Conclusions

Good points: S
2

Numerical spherical t-designs for t = 1, . . . , 140
Equal weight cubature rule, degree of precision t with
N = (t+ 1)2/2 +O(1) points
Symmetric equal weight cubature rule, degree of precision t with
N = (t− 1)(t+ 2)/2 +O(1) points for t = 1, . . . , 181
Good geometric properties: mesh norm, separation
Larger N : Use degrees of freedom to satisfy other criteria
Approximate designs: more flexibility

Issues
Rounding errors in evaluating criteria, speed of extended precision
Convergence difficulties with close to singular Jacobians
No proof of nearby exact spherical designs when N < (t+ 1)2

No proof of existence for all t
There exist t-designs with N < N1(t); special symmetries
Calculation by optimization for each t, N
Point sets XN not nested
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