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A system of non-overlapping, nowhere accumulat-
ing open convex discs contained in a parallel strip is
said to form a [ayer. The permeability p of the layer is
defined by the quotient

p=w/inf,

where w is the width of the strip, [ is the length of a
path connecting the two edges of the strip avoiding all
members of the layer, and the infimum extends over
all paths of this kind.



Theorem (LFT). The permeability of a layer of
congruent circles is at least \/27/2m = 0.82699. . ., and
the permeability of a layer of squares is at least 2/3.

Both bounds are sharp.









Given a convex disc D, let ps(D) be the infimum
of the permeabilities by similar copies of D and let
pe(D) be the infimum of the permeabilities by congru-
ent copies of D). It is an interesting question which
convex discs D share the property with the parallelo-
grams that ps(D) = p.(D). The circle is not among
such discs.









Placing in the gaps bounded by four circles very
small circles arranged in a hexagonal lattice we can
enforce a greater detour, obtaining a layer of circles
with permeability
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We can enforce even a greater detour if we replace
the small circles in the gaps by circles arranged in this
new arrangement. Iterating this process we get a layer
of circles with permeability

0.82349.

By a modification of this construction Danzer im-
proved this bound to

0,82231.









At a point where we first or last meet a circle
the sin of the angle of the tangent of the circle with a
horizontal line is equal to the permeability of the small
circles.






Given a packing of uniformly bounded congruent
(similar) copies of a convex disc D and two points out-
side the discs at distance d from one another, is it true
that the two points can be joined by a path travel-
ing outside the discs of the packing and having length

oy +o(d) (5457 + o(d))?



The first result in this direction was achieved by
Janos Pach who used a mean-value argument to show
that in a packing of open squares with side-lengths not
exceeding 1, any two points lying outside the squares
at distance d from one another can be connected by a
path avoiding the squares and having length at most

%d+4\/3+1.



Later I improved the bound for the length of the
path to Sd“ which cannot be improved for odd values
of d. Moreover, in a packing of open unit circles, any
two points lying outside the circles at distance d from
one another can be connected by a path avoiding the

circles and having length at most jﬂ—(d 2) +



Consider a packing P of unit circles. Let p be a
point outside the circles and let d be a unit vector.
We construct an infinite path emanating from p in the
direction d.















Lemma (LFT).Consider a path emanating from
p in the direction d. For a point q on the path let [(q)
be the length of the arc of the path between p and q and
let 5(q) be the inner product of d and the vector pg. If
q is an endpoint of a diameter of a circle perpendicular
to d or lies on a straight segment that is part of the

path, then



Let eq be the line through b perpendicular to the
direction d. b divides eq into two half-lines e} and e3.
We choose the notation so that the direction of ej is
obtained from d by a rotation of 90° in the counter-
clockwise direction.
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Observation. Let a and b be two points outside
the circles. If there 1s a direction d and two paths,
one emanating from a in the direction d, and another
emanating from b in the direction —d which intersect,
then it 1s possible to compose from them a path from a
to b whose length s at most

2T
\/—2_7(d—2)+7T.



In E™ we use coordinates xzi,...,T,_1,Yy, O
(x,y), for short. Let H denote the coordinate hyper-
plane y = 0. For a ball B in R™ we define the function
Ip(x), x € H as follows. If the line

l(x) = {(x,9), —00 <y < oo}

intersects the boundary of B in two points, let Ip(x)
be the length of the shortest arc on the boundary of B
between the two points of intersection. Let [g(x) =0
otherwise. Define \,, as

An = [y lBn(x) dx,

where B™ denotes the unit ball in £™.



We write V(B™) = k,, for the volume of the unit
ball and o,, for its surface area.

Given an arrangement 4 of convex bodies and
a domain D in E", the inner density and the outer

density of A relative to D is defined as

dinn <A’ D) N ﬁ AE%CD V(A)

and

1
Ayt (A, D) = —— V(A).
RSP

respectively.



The upper density of the arrangement A is defined
as
dy (A) = limsup doy (A, 7B™).

r—00

With these definitions we can state our main result as
follows.



Theorem. Let P be a packing of open balls in E™
with radit not exceeding 1 and upper density 6. Then
any two points lying outside the balls at distance d from

one another can be connected by a path avoiding the
balls and of length at most

(1—6+220)d+ O(Vd).



Recall that

We have




We obtain that

In view of this and the celebrated result of Hales

that the density of congruent balls in E° is at most

% we get the following corollaries.



Corollary 1. Two points at distance d from one
another lying outside the members of a packing of open
circles with radii at most 1 can be connected by a path
avoiding the circles and having length at most

%d +O(WVd) < 1.27324d + O(Vd).



Corollary 2. In E? two points at distance d from
one another lying outside the members of a packing of
open balls with radii at most 1 can be connected by a
path avoiding the balls and of length at most

%d +O(Vd) < 1.1781d + O(Vd).



Corollary 3. In E? two points at distance d from
one another lying outside the members of a packing of
open unit balls can be connected by a path avoiding the
balls and of length at most
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) d+ O0(Vd) < 1.1319d + O(\Vd).



Remembering that I'(z) = 1/ 25 (2)*(1 + O(2)) it
follows that \
= =1+0(=3).
= 1+0(3)
This means that in E™, even for a packing of balls
with arbitrary but bounded radii, where the density
might be 1, we need not make a detour greater than

O(d/n) in order to connect two points lying at distance
d outside the balls by a path avoiding the balls.



Given any packing of open balls and two points
u and v outside the balls there is a natural way to
connect the two points by a path avoiding all balls. If
a ball B of the packing is intersected by the segment
uwv in two boundary points u(B) and v(B), let a(B)
be the shorter arc (one of the shortest arcs) of the
boundary of B between u(B) and v(B). The path to
which we shall refer as the natural path connecting u
and v is the union of all arcs a(B) for the balls of the
packing intersecting uv and the segments of the line
uv between u and v disjoint from the balls.



We shall use the following obvious fact

Observation. The length of the natural path con-
necting two points at distance d outside the members
of a ball packing is at most 5d.



Let P be a packing of balls with radii at most
1, and let @ and b two points outside the balls. We
choose the coordinate system so that a is the origin

and b = (0,d).



y=d
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() is the cube of side length
s=Vd
in H centered at the origin and
R={(xy)|xe@,0<y<d}.

Q™" is the cube of side length s + 4 concentric and
homothetic with () and

R ={(x,y)|xe@Q", 0<y<d},
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P consist of those balls of P that are contained in
the parallel strip bounded by the hyper planes y = 0
and y = d and which intersect the box R.



Y
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S(x) is the segment with the endpoints (x,0) and
(x,d).






Let a(x) and b(x) be the points of S(x)\ (UpecpB)
closest to the hyper plane H and to the hyper plane
y = d, respectively.
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Let P(x) denote the natural path between a(x)
and b(x) and let L(x) denote its length. Further, let
Li(x) and Lo(x) be the total length of straight seg-
ments and circular arcs on P(x), respectively.
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For each x € (Q* we construct a path joining a to
b as follows.

Connect a and a(x), as well as b and b(x) by a
shortest path avoiding all members of P. Let P(x) be
the union of these two paths and P(x).
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The distance from a to a(x), as well as the dis-
tance from b to b(x) is at most |x| + 2. Using Ob-
servation 1 we conclude that the length of P(x) is at
most

(x| +2) + L(x),

hence the length [(a,b) of the shortest path from a to
b avoiding the balls of ‘P satisfies the inequality

l(a,b) < L(x) + 7(]x| +2) .



We have

s”_ll(a,b):/ I(a,b)dx <
Q

IA

/(L( )4 (|x| + 2)) dx <
Q

IA

/ L(x)dx + U
0 2



Let

F=|])BnR, G=R\F,
BeP

F*=|J) B, and G*=R*\F"
BEP



Then we have



Next we make the following

Observation 2. The inner density of an arrange-
ment relative to a space-filling domain cannot exceed
the upper density of the arrangement.



It follows that V(F*) < §V(R*), and since 2= < 1

n

we have

Kn

/L( Vdx < V(G*) + 2V (F*) <
Q

IA

(1-0+22)V(R*) =
(1—04222)d(s +4)" ! =
(1—0+42220)ds" ' + O(ds"?).



Substituting this bound for [, L(x) dx into (1) we
get

s"H(a,b) < (1 -6+ %f)ds”_l +O0(ds™?).
Remembering that s = v/d we get

[(a,b) < (1 =0+ 220)d+ O(Vd).



Let K be a convex body and u a unit vector in
E™. We choose the coordinate system so that u points
in the direction of the y axis. As before, Let H denote
the coordinate hyperplane y = 0.

We define the function i (x,u), x € H as follows.
If the line I(x) = {(x,y), —00 < y < oo} intersects the
boundary of K in two points, let [x (x,u) be the length
of the shortest arc on the boundary of B between the
two points of intersection. Let [x(x,u) = 0 otherwise.
Define A\ (u) as

Ax(u) = [ Ik (x,u)dx

and let
Ax = min Ag (u).



The argument we used for packings of balls can
be repeated for packings of uniformly bounded similar
copies of K with upper density 0 showing that in such
a packing any two points at distance d from one an-
other lying outside the members of a packing can be
connected by a path remaining in uncovered part of
the space and of length at most

(1 =0+ $g50)d+ O(Vd).



If compact sets cover the space, then the set of
points that are covered at least twice is connected.
Thus the shortest path problems we considered for
packings have their natural dual counterparts concern-
ing shortest paths within the part of the space covered
at least wtice by the members of a covering. We em-
phasize the problem about the paths within the region
covered at least twice by the members of a covering by
unit circles.
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The figure shows that for values of d close to
2(v/3+1), 3= —1,0,1..., the length of the shortest
path between two points at distance d can be close to
V2d+2.889. ... Is this the worth case? Does there ex-
ist a constant c such that for all coverings of the plane
by closed unit circles any two points situated at dis-
tance d from one another and covered by at least two
circles can be connected by a path of length v/2d + ¢
traveling within at least doubly covered part of the
plane? Can a covering by incongruent circles force us
to a greater detour than a covering by congruent cir-
cles?



There are two special types of paths in the region
covered at least twice by circles: one that uses only
boundary arcs of the circles, and another type that
travels along the sides of the Dirichlet cells. Prove or
disprove the following conjectures.



There is a constat ¢y such that if closed unit cir-
cles cover the plane and a and b are two points at
distance d apart, both lying on the boundary of some
of the circles, then a and b can be connected by a path
whose length is at most 7d/2 + ¢; and which uses only
boundary arcs of the circles.

There is a constat ¢ such that if closed unit circles
cover the plane and a and b are two points at distance d
apart, both lying on the boundary of the Dirichlet cell
of some of the circles, then a and b can be connected
by a path whose length is at most v/2d + ¢; and which
uses only boundary arcs of the Dirichlet cells.



D.R. Baggett and Andras Bezdek confirmed the
second conjecture for lattice-coverings. For arbitrary
coverings with unit circles Edgardo Roldan-Pensado
showed that two points at distance d apart lying in
at least doubly covered part of the plane can be con-
nected by a path that remains in the part of the plane
covered at least twice and whose length is at most
(/3 + +/(3))d + ¢ for some constant ¢ < 17.



