On the Average Distance from the Fermat-Weber Center of a Planar Convex Body

Adrian Dumitrescu Univ. of Wisconsin—Milwaukee ad@cs.uwm.edu Minghui Jiang Utah State University mjiang@cc.usu.edu

<u>Csaba D. Tóth</u> University of Calgary cdtoth@ucalgary.ca

The Fermat-Weber point for a finite point set

Given n points, q_1, q_2, \ldots, q_n , in the plane, the *Euclidean median*, a.k.a. *Fermat-*, *Torricelli*or *Weber point*, is the point that minimizes the sum of distances to the n points

$$\min_{p \in \mathbb{R}^2} \sum_{i=1}^n \operatorname{dist}(p, q_i).$$

The Fermat-Weber point for a finite point set

Given n points, q_1, q_2, \ldots, q_n , in the plane, the *Euclidean median*, a.k.a. *Fermat-*, *Torricelli*or *Weber point*, is the point that minimizes the sum of distances to the n points

The Fermat-Weber point for a finite point set

Given n points, q_1, q_2, \ldots, q_n , in the plane, the *Euclidean median*, a.k.a. *Fermat-*, *Torricelli*or *Weber point*, is the point that minimizes the sum of distances to the n points

 $\min_{p \in \mathbb{R}^2} \sum_{i=1}^n \operatorname{dist}(p, q_i).$

For n=3 and 4, resp., Torricelli and Fagnano gave algebraic solutions for computing this point.

In general, it cannot be computed exactly for $n \geq 5$.

It can be approximated with arbitrary precision.

The study of the Weber point has a long history motivated by applications in facility location and computational statistics.

The continuous analogue of the Fermat-Weber point

Given a body Q in the plane, the *Euclidean median* or *Fermat-Weber point*, is the point that minimizes the average distance to the points in Q.

$$\mu_Q(p) = \frac{\int_{q \in Q} \operatorname{dist}(p, q) \mathrm{d}q}{\int_{q \in Q} 1 \, \mathrm{d}q} = \frac{\int_{q \in Q} \operatorname{dist}(p, q) \mathrm{d}q}{\operatorname{area}(Q)}.$$

min (m)

The Fermat-Weber point is denoted FW_Q . The minimum average distance is $\mu_Q^* = \mu_Q(FW_Q)$.

Intuitively, the Fermat-Weber point is an ideal location for a base station serving area Q, assuming uniform density in Q.

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_Q^*/\Delta(Q).$

Conjecture:

$$\frac{1}{6} \le \frac{\mu_Q^*}{\Delta(Q)} \le \frac{1}{3}.$$

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_Q^*/\Delta(Q)$.

Conjecture:

$$\frac{1}{6} \le \frac{\mu_Q^*}{\Delta(Q)} \le \frac{1}{3}$$

Let Q be a circular disk of radius 1, $\Delta(Q) = 2$. By symmetry, FW_Q is the center of Q. In every sector, the average distance is $\frac{2}{3}$. So, we have $\mu_Q^*/\Delta(Q) = 1/3$.

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_Q^*/\Delta(Q)$.

Conjecture:

$$\frac{1}{6} \le \frac{\mu_Q^*}{\Delta(Q)} \le \frac{1}{3}.$$

Let $R(\varepsilon)$ be a rhombus with diagonals 1 and 2ε . By symmetry, $FW_{R(\varepsilon)}$ is the center of $R(\varepsilon)$. In each quadrant, the average distance from $FW_{R(\varepsilon)}$ goes to $\frac{1}{3}$ as $\varepsilon \to 0$. So, we have $\lim_{\varepsilon \to 0+} \mu^*_{R(\varepsilon)} / \Delta(R(\varepsilon)) = 1/6$.

Motivation: Geometric Load Balancing

Aronov, Carmi, and Katz (2009): Input: a convex body D and m points $p_1, p_2, \ldots, p_m \in D$ (facilities). Objective: Subdivide D into m convex regions, R_1, R_2, \ldots, R_m , of equal area such that $\sum_{i=1}^m \mu_{p_i}(R_i)$ is minimal, where the cost function $\mu_{p_i}(R_i)$ is the average travel time from facility p_i to any location in its region R_i .

Aronov, Carmi, and Katz (2009) gave an $(8 + \sqrt{2\pi})$ -factor approximation if D is an $n_1 \times n_2$ rectangle for integers n_1, n_2 . This basic approximation bound is then used for several other cases, e.g. a convex fat domain D and m convex regions R_i .

Motivation: Geometric Load Balancing

Aronov, Carmi, and Katz (2009): Input: a convex body D and m points $p_1, p_2, \ldots, p_m \in D$ (facilities). Objective: Subdivide D into m convex regions, R_1, R_2, \ldots, R_m , of equal area such that $\sum_{i=1}^m \mu_{p_i}(R_i)$ is minimal, where the cost function $\mu_{p_i}(R_i)$ is the average travel time from facility p_i to any location in its region R_i .

Aronov, Carmi, and Katz (2009) gave an $(8 + \sqrt{2\pi})$ -factor approximation if D is an $n_1 \times n_2$ rectangle for integers n_1, n_2 . This basic approximation bound is then used for several other cases, e.g. a convex fat domain D and m convex regions R_i .

Conjecture:

Previous Bounds and New Results

Carmi, Har-Peled, Katz (2005): For every convex body $Q \subset \mathbb{R}^2$, $\frac{1}{7} \leq \frac{\mu_Q^*}{\Delta(Q)}$.

Abu-Affash and Katz (2009): For every convex body $Q \subset \mathbb{R}^2$, $\frac{4}{25} \leq \frac{\mu_Q^*}{\Delta(Q)}$.

Dumitrescu, Jiang, and T. (2011): For every convex body $Q \subset \mathbb{R}^2$, $\frac{1}{6} < \frac{\mu_Q^*}{\Delta(Q)}$.

Conjecture:

Previous Bounds and New Results

Carmi, Har-Peled, Katz (2005): For every convex body $Q \subset \mathbb{R}^2$, $\frac{1}{7} \leq \frac{\mu_Q^*}{\Delta(Q)}$.

Abu-Affash and Katz (2009): For every convex body $Q \subset \mathbb{R}^2$, $\frac{4}{25} \leq \frac{\mu_Q^*}{\Delta(Q)}$.

Dumitrescu, Jiang, and T. (2011): For every convex body $Q \subset \mathbb{R}^2$, $\frac{1}{6} < \frac{\mu_Q^*}{\Delta(Q)}$.

Abu-Affash and Katz (2009): For every convex body $Q \subset \mathbb{R}^2$, $\frac{\mu_Q^*}{\Delta(Q)} \leq \frac{2}{3\sqrt{3}} \approx 0.3849$.

Dumitrescu, Jiang, and T. (2011): For every convex body $Q \subset \mathbb{R}^2$, $\frac{\mu_Q^*}{\Delta(Q)} \leq \frac{2(4-\sqrt{3})}{13} \approx 0.3490$.

The **Steiner symmetrization** of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ .

P

The **Steiner symmetrization** of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ .

The **Steiner symmetrization** of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ .

The **Steiner symmetrization** of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ .

Fact 1: Symmetrization preserves convexity.

Fact 2: Symmetrization preserves area, $\operatorname{area}(Q) = \operatorname{area}(S(Q, \ell)).$

Fact 3: The Fermat-Weber center of $S(Q, \ell)$ lies on the symmetry axis ℓ .

Lemma: If ℓ is parallel or orthogonal to a diagonal of Q, then the symmetrization with respect to ℓ preserves the diameter

 $\Delta(Q) = \Delta(S(Q, \ell)).$

Lemma: Let Q be a convex body, and let $Q' = S(Q, \ell)$. Then $\mu_{Q'}^* \leq \mu_Q^*$.

Lemma: Let Q be a convex body, and let $Q' = S(Q, \ell)$. Then $\mu_{Q'}^* \leq \mu_Q^*$.

Let $p = FW_Q$ and let p' be its projection to the axis of symmetrization. We show

 $\mu_{Q'}^* \le \mu_{Q'}(p') \le \mu_Q(p) = \mu_Q^*.$

Lemma: Let Q be a convex body, and let $Q' = S(Q, \ell)$. Then $\mu_{Q'}^* \leq \mu_Q^*$.

Lemma: Let Q be a convex body, and let $Q' = S(Q, \ell)$. Then $\mu_{Q'}^* \leq \mu_Q^*$.

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

- in one large piece T_0 , the average distance from the origin is at least $\frac{1}{3} + \delta$;
- in most pieces Q_i, the average distance from the origin is at least ¹/₃ times area(Q_i);
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

- in one large piece T_0 , the average distance from the origin is at least $\frac{1}{3} + \delta$;
- in most pieces Q_i, the average distance from the origin is at least ¹/₃ times area(Q_i);
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

- in one large piece T_0 , the average distance from the origin is at least $\frac{1}{3} + \delta$;
- in most pieces Q_i, the average distance from the origin is at least ¹/₃ times area(Q_i);
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

- in one large piece T_0 , the average distance from the origin is at least $\frac{1}{3} + \delta$;
- in most pieces Q_i, the average distance from the origin is at least ¹/₃ times area(Q_i);
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

- in one large piece T_0 , the average distance from the origin is at least $\frac{1}{3} + \delta$;
- in most pieces Q_i, the average distance from the origin is at least ¹/₃ times area(Q_i);
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Theorem (Jung, 1910): Every set $S \subset \mathbb{R}^2$ of diameter $\Delta(S)$ lies in ar disk of radius $\frac{1}{\sqrt{3}} \cdot \Delta(S)$. This bound is attained for the regular triangle.

For a convex body $Q \subset \mathbb{R}^2$ of radius $\Delta(Q)$, we approximate the Fermat-Weber point with the center o of this disk.

Theorem (Jung, 1910): Every set $S \subset \mathbb{R}^2$ of diameter $\Delta(S)$ lies in ar disk of radius $\frac{1}{\sqrt{3}} \cdot \Delta(S)$. This bound is attained for the regular triangle.

For a convex body $Q \subset \mathbb{R}^2$ of radius $\Delta(Q)$, we approximate the Fermat-Weber point with the center o of this disk.

For fixed diameter $\Delta(Q)$, we have $\mu_Q^* \leq \mu_Q(o)$. We deduce an upper bound for $\mu_Q(o)$. Partition Q into n double sectors Q_1, Q_2, \ldots, Q_n with a common apex o.

 $\mu_{(Q_1\cup\ldots\cup Q_n)}(o) \leq \max(\mu_{Q_1}(o),\ldots,\mu_{Q_n}(o)).$

In a double sector Q_i , denote by x and y the maximum distance from o in two opposite directions. Assume w.l.o.g. $y \leq x$.

(By uniform continuity, x and y approximate the maximum distance from o along any two opposite directions within the sector.)

$$0 < y \le x \le \frac{1}{\sqrt{3}} \cdot \Delta(Q) \quad \text{and} \quad x + y \le \Delta(Q).$$
$$\mu_{Q_i}(o) = \frac{\int_{q \in Q_i} \operatorname{dist}(p, q) \mathrm{d}q}{\operatorname{area}(Q)} \approx \frac{2}{3} \cdot \frac{x^3 + y^3}{x^2 + y^2}.$$

Under these constraints, $\mu_{Q_i}(o)$ is maximized for

$$x_0 = \Delta(Q)/\sqrt{3}$$
 and $y_0 = \left(1 - \frac{1}{\sqrt{3}}\right)\Delta(Q)$. With $n \to \infty$, we get

$$\mu_Q(o) \le \max_i \mu_{Q_i}(o) \le \frac{2}{3} \cdot \frac{x_0^3 + y_0^3}{x_0^2 + y_0^2} \frac{2(4 - \sqrt{3})}{13} \cdot \Delta(Q), \qquad \text{Q.E.D.}$$

Further Directions

In some applications, the cost of serving a location q from a facility at point p is $\operatorname{dist}^{\kappa}(p,q)$ for some exponent $\kappa \geq 1$, rather than $\operatorname{dist}(p,q)$.

For a convex body $Q \subset \mathbb{R}^2$, let

$$\mu_Q^{\kappa}(p) = \frac{\int_{q \in Q} \operatorname{dist}^{\kappa}(p, q) \, \mathrm{d}q}{\operatorname{area}(Q)} \quad \text{and} \quad \mu_Q^{\kappa*} = \inf\{\mu_Q^{\kappa}(p) : p \in \mathbb{R}^2\}.$$

The proof of our lower bound carries over for this variant and shows that $\mu_Q^{\kappa*}/\Delta^{\kappa}(Q) > \frac{1}{(\kappa+2)2^{\kappa}}$ for any convex body $Q \subset \mathbb{R}^2$, and this bound is the best possible.

For the upper bound, the picture is not so clear: $\mu_Q^*/\Delta(Q)$ is conjectured to be maximal for the circular disk. However, there is a $\kappa \geq 1$ such that $\mu_Q^{\kappa*}/\Delta^{\kappa}(Q)$ cannot be maximal for the disk (e.g., a regular or a Reuleaux triangle).