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The Fermat-Weber point for a finite point set

Given n points, q1, q2, . . . , qn, in the plane,
the Euclidean median, a.k.a. Fermat-, Torricelli-
or Weber point, is the point that minimizes the
sum of distances to the n points

min
p∈R2

n∑
i=1

dist(p, qi).
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The Fermat-Weber point for a finite point set

Given n points, q1, q2, . . . , qn, in the plane,
the Euclidean median, a.k.a. Fermat-, Torricelli-
or Weber point, is the point that minimizes the
sum of distances to the n points

min
p∈R2

n∑
i=1

dist(p, qi).

For n = 3 and 4, resp., Torricelli and Fagnano gave algebraic solutions
for computing this point.
In general, it cannot be computed exactly for n ≥ 5.
It can be approximated with arbitrary precision.

The study of the Weber point has a long history motivated by applications
in facility location and computational statistics.



The continuous analogue of the Fermat-Weber point

Given a body Q in the plane,
the Euclidean median or Fermat-Weber point, is
the point that minimizes the average distance to
the points in Q.

min
p∈R2

µQ(p),

µQ(p) =

∫
q∈Q dist(p, q)dq∫

q∈Q 1 dq
=

∫
q∈Q dist(p, q)dq

area(Q)
.

Intuitively, the Fermat-Weber point is an ideal location for a base station
serving area Q, assuming uniform density in Q.

FWQ

The Fermat-Weber point is denoted FWQ.
The minimum average distance is µ∗Q = µQ(FWQ).

Q



Average Distance versus Diameter

Let ∆(Q) denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied
the ratio µ∗Q/∆(Q).

Conjecture:

1

6
≤

µ∗Q
∆(Q)

≤ 1

3
.

FWQ

∆(Q)



Average Distance versus Diameter

Let ∆(Q) denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied
the ratio µ∗Q/∆(Q).

Conjecture:

1

6
≤

µ∗Q
∆(Q)

≤ 1

3
.

FWQ

∆(Q)

Let Q be a circular disk of radius 1, ∆(Q) = 2.
By symmetry, FWQ is the center of Q.
In every sector, the average distance is 2

3 .
So, we have µ∗Q/∆(Q) = 1/3.

FWQ



Average Distance versus Diameter

Let ∆(Q) denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied
the ratio µ∗Q/∆(Q).
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Let R(ε) be a rhombus with diagonals 1 and 2ε.
By symmetry, FWR(ε) is the center of R(ε).
In each quadrant, the average distance

from FWR(ε) goes to 1
3 as ε→ 0.

So, we have limε→0+ µ
∗
R(ε)/∆(R(ε)) = 1/6.

R(ε)



Motivation: Geometric Load Balancing

Input: a convex body D and m points
p1, p2, . . . , pm ∈ D (facilities).
Objective: Subdivide D into m convex
regions, R1, R2, . . . , Rm, of equal area such
that

∑m
i=1 µpi(Ri) is minimal, where the cost

function µpi(Ri) is the average travel time
from facility pi to any location in its region Ri.

Aronov, Carmi, and Katz (2009) gave an
(8 +

√
2π)-factor approximation if D is an

n1 × n2 rectangle for integers n1, n2.
This basic approximation bound is then used
for several other cases, e.g. a convex fat do-
main D and m convex regions Ri.

Aronov, Carmi, and Katz (2009):

p1

p2

p3

p4

p5
p6
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Previous Bounds and New ResultsConjecture:

1
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Carmi, Har-Peled, Katz (2005):

For every convex body Q ⊂ R2, 1
7 ≤

µ∗Q
∆(Q) .

Abu-Affash and Katz (2009):

For every convex body Q ⊂ R2, 4
25 ≤

µ∗Q
∆(Q) .

Dumitrescu, Jiang, and T. (2011):

For every convex body Q ⊂ R2, 1
6 <

µ∗Q
∆(Q) .
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Carmi, Har-Peled, Katz (2005):

For every convex body Q ⊂ R2, 1
7 ≤

µ∗Q
∆(Q) .

Abu-Affash and Katz (2009):

For every convex body Q ⊂ R2, 4
25 ≤

µ∗Q
∆(Q) .

Dumitrescu, Jiang, and T. (2011):

For every convex body Q ⊂ R2, 1
6 <

µ∗Q
∆(Q) .

Abu-Affash and Katz (2009):

For every convex body Q ⊂ R2,
µ∗Q

∆(Q) ≤
2

3
√

3
≈ 0.3849.

Dumitrescu, Jiang, and T. (2011):

For every convex body Q ⊂ R2,
µ∗Q

∆(Q) ≤
2(4−

√
3)

13 ≈ 0.3490.



Lower Bound for µ∗Q/∆(Q)
The Steiner symmetrization of Q with re-
spect to an axis ` constructs S(Q, `) as follows:
Each chord of Q orthogonal to ` is displaced
along its line to a new position where it is sym-
metric with respect to `.

`

Q



Lower Bound for µ∗Q/∆(Q)
The Steiner symmetrization of Q with re-
spect to an axis ` constructs S(Q, `) as follows:
Each chord of Q orthogonal to ` is displaced
along its line to a new position where it is sym-
metric with respect to `.

`

Q



Lower Bound for µ∗Q/∆(Q)
The Steiner symmetrization of Q with re-
spect to an axis ` constructs S(Q, `) as follows:
Each chord of Q orthogonal to ` is displaced
along its line to a new position where it is sym-
metric with respect to `.

`

Q

S(Q, `)



Lower Bound for µ∗Q/∆(Q)
The Steiner symmetrization of Q with re-
spect to an axis ` constructs S(Q, `) as follows:
Each chord of Q orthogonal to ` is displaced
along its line to a new position where it is sym-
metric with respect to `.

`

Q

S(Q, `)

Fact 1: Symmetrization preserves convexity.

Fact 2: Symmetrization preserves area,
area(Q) = area(S(Q, `)).

Fact 3: The Fermat-Weber center of S(Q, `)
lies on the symmetry axis `.

Lemma: If ` is parallel or orthogonal to a diag-
onal of Q, then the symmetrization with respect
to ` preserves the diameter

∆(Q) = ∆(S(Q, `)).



Lemma: Let Q be a convex body, and let Q′ = S(Q, `). Then µ∗Q′ ≤ µ∗Q.

Q

Q′
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Lemma: Let Q be a convex body, and let Q′ = S(Q, `). Then µ∗Q′ ≤ µ∗Q.

Q

Q′

Let p = FWQ and let p′ be its projection
to the axis of symmetrization. We show

µ∗Q′ ≤ µQ′(p
′) ≤ µQ(p) = µ∗Q.

p

p′
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µQ(p) =
1

area(Q)

∫ b

a

∫ g(x)

f(x)

dist(p, (x, y))dy dx

µQ′(p
′) =

1

area(Q′)

∫ b

a

∫ g(x)−f(x)
2

f(x)−g(x)
2

dist(p′, (x, y))dy dx
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Lemma: If Q is a convex body, symmetric in both coordinate axes, then

1

6
<

µ∗Q
∆(Q)

.

(0, 0) (1, 0)

(0, b)

Assume ∆(Q) = 2.
By symmetry, point FWQ is
the origin (0, 0).
The average distance from
the origin is the same in each
quadrant.

We partition one quadrant into pieces, and show that for some δ > 0,
• in one large piece T0, the average distance from the origin is at least 1

3 +δ;
• in most pieces Qi, the average distance from the origin

is at least 1
3 times area(Qi);

• the total area of the remaining pieces is less than δ · area(Q).

Lower Bound for µ∗Q/∆(Q)
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Upper Bound for µ∗Q/∆(Q)

Theorem (Jung, 1910): Every set S ⊂ R2 of
diameter ∆(S) lies in ar disk of radius 1√

3
·∆(S).

This bound is attained for the regular triangle.

For a convex body Q ⊂ R2 of radius
∆(Q), we approximate the Fermat-Weber
point with the center o of this disk.

o

S
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Q

o

For fixed diameter ∆(Q), we have µ∗Q ≤
µQ(o). We deduce an upper bound for µQ(o).
Partition Q into n double sectors
Q1, Q2, . . . , Qn with a common apex o.

µ(Q1∪...∪Qn)(o) ≤ max(µQ1
(o), . . . , µQn(o)).

Q1



Upper Bound for µ∗Q/∆(Q)

Q In a double sector Qi, denote by x and y the
maximum distance from o in two opposite di-
rections. Assume w.l.o.g. y ≤ x.

(By uniform continuity, x and y approximate the maximum distance

from o along any two opposite directions within the sector.)

x
o

y

0 < y ≤ x ≤ 1√
3
·∆(Q) and x+ y ≤ ∆(Q).

µQi(o) =

∫
q∈Qi dist(p, q)dq

area(Q)
≈ 2

3
· x

3 + y3

x2 + y2
.

Under these constraints, µQi(o) is maximized for

x0 = ∆(Q)/
√

3 and y0 =
(

1− 1√
3

)
∆(Q). With n→∞, we get

µQ(o) ≤ max
i
µQi(o) ≤

2

3
· x

3
0 + y3

0

x2
0 + y2

0

2(4−
√

3)

13
·∆(Q),

Q.E.D.



Further Directions

In some applications, the cost of serving a location q from a facility at
point p is distκ(p, q) for some exponent κ ≥ 1, rather than dist(p, q).

For a convex body Q ⊂ R2, let

µκQ(p) =

∫
q∈Q distκ(p, q) dq

area(Q)
and µκ∗Q = inf{µκQ(p) : p ∈ R2}.

The proof of our lower bound carries over for this variant and shows
that µκ∗Q /∆

κ(Q) > 1
(κ+2)2κ for any convex body Q ⊂ R2, and this

bound is the best possible.

For the upper bound, the picture is not so clear:
µ∗Q/∆(Q) is conjectured to be maximal for the circular disk.
However, there is a κ ≥ 1 such that µκ∗Q /∆

κ(Q) cannot be maximal
for the disk (e.g., a regular or a Reuleaux triangle).


