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The Fermat-Weber point for a finite point set

Given n points, q1,qo, . .., qn, in the plane,

the Euclidean median, a.k.a. Fermat-, Torricelli-
or Weber point, is the point that minimizes the
sum of distances to the n points
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The Fermat-Weber point for a finite point set

Given n points, q1,qo, . .., qn, in the plane,

the Euclidean median, a.k.a. Fermat-, Torricelli-
or Weber point, is the point that minimizes the
sum of distances to the n points

For n = 3 and 4, resp., Torricelli and Fagnano gave algebraic solutions
for computing this point.

In general, it cannot be computed exactly for n > 5.

It can be approximated with arbitrary precision.

The study of the Weber point has a long history motivated by applications
in facility location and computational statistics.



The continuous analogue of the Fermat-Weber point

Given a body @ in the plane,

the Euclidean median or Fermat-Weber point, is
the point that minimizes the average distance to
the points in Q.

min 1q(p),
() = Jeo dist(p.a)da [, dist(p, q)dg
HQtp Joeo 1 da area(Q)

The Fermat-Weber point is denoted ['TV,.
The minimum average distance is g, = uq(FWq).

Intuitively, the Fermat-Weber point is an ideal location for a base station
serving area (), assuming uniform density in Q).



Average Distance versus Diameter

Let A(Q) denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied
the ratio 115,/ A(Q).

Conjecture:
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Average Distance versus Diameter

Let A(Q) denote the diameter of ().

Carmi, Har-Peled, and Katz (2005) studied
the ratio 115,/ A(Q).

Conjecture:

Let @ be a circular disk of radius 1, A(Q) = 2.
4 By symmetry, FWW, is the center of Q).
In every sector, the average distance is 2.

3
So, we have g, /A(Q) = 1/3.



Average Distance versus Diameter

Let A(Q) denote the diameter of ().

Carmi, Har-Peled, and Katz (2005) studied
the ratio 115,/ A(Q).

Conjecture:
1o to 1
6~ A(Q) 3
Let R(c) be a rhombus with diagonals 1 and 2¢.
| By symmetry, F'Wp(. is the center of R(e).
I In each quadrant, the average distance
R(e) from F'Wg(.) goes to % as ¢ — 0.

So, we have lim. o /LE(E)/A(R(fj)) =1/6.



Motivation: Geometric Load Balancing

Aronov, Carmi, and Katz (2009):

Input: a convex body D and m points
D1, P2y - - -, Dm € D (facilities).

Objective: Subdivide D into m convex
regions, Ry, Ry, ..., R,,, of equal area such
that > """, 11, (R;) is minimal, where the cost
function i, (R;) is the average travel time
from facility p; to any location in its region R;.

Aronov, Carmi, and Katz (2009) gave an
(8 4+ v/2m)-factor approximation if D is an
n1 X ng rectangle for integers nq, no.

This basic approximation bound is then used
for several other cases, e.g. a convex fat do-
main D and m convex regions R;.
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Lo to 1
6~ AQ) ~ 3

Carmi, Har-Peled, Katz (2005):
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For every convex body @) C R?, = <

A(Q)

Abu-Affash and Katz (2009):
4 1
For every convex body (Q C R?, 5 < TQQ)'

Dumitrescu, Jiang, and T. (2011):

2 1 _ M
For every convex body Q C R, ¢ < NGE

Abu-Affash and Katz (2009):

For every convex body Q C R?, A“(%) < % ~ (.3849.

Dumitrescu, Jiang, and T. (2011):

For every convex body () C R?, A”(%) < 2(4I3ﬁ) ~ 0.3490.




Lower Bound for 117,/ A(Q)
The Steiner symmetrization of () with re-
spect to an axis ¢ constructs S(Q, ¢) as follows:
Each chord of () orthogonal to ¢ is displaced
along its line to a new position where it is sym-
metric with respect to /.
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Lower Bound for 117,/ A(Q)
The Steiner symmetrization of () with re-
spect to an axis ¢ constructs S(Q, ¢) as follows:
Each chord of () orthogonal to ¢ is displaced
along its line to a new position where it is sym-
metric with respect to /.

Fact 1: Symmetrization preserves convexity.

Fact 2: Symmetrization preserves area,

area((Q)) = area(S(Q,1)).

Fact 3: The Fermat-Weber center of S(Q, ¢)
lies on the symmetry axis /.
Lemma: If £ is parallel or orthogonal to a diag-

onal of @), then the symmetrization with respect
to ¢ preserves the diameter

A(Q) = A(S(Q, 0)).
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Lemma: Let @ be a convex body, and let Q" = S(Q,¢). Then ug, < pg,.
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Let p = F'W; and let p’ be its projection
to the axis of symmetrization. We show

ey < g () < po(p) = 1o-

1 b o)
) = area(Q)/a /1 dist(p, (z,y))dy dz

v(r) f(@)

/ / dist(p', (z,y))dy dz
area(Q I(@)



Lower Bound for 11f,/A(Q)

Lemma: If () is a convex body, symmetric in both coordinate axes, then

1 1)

6 < m.
Assume A(Q) = 2. A
By symmetry, point FW¢ is (0,0)
the origin (0, 0).
The average distance from
the origin is the same in each
quadrant.

>
(0,0) (1,0)

We partition one quadrant into pieces, and show that for some ¢ > 0,
e in one large piece T}, the average distance from the origin is at least %+5;
e in most pieces ();, the average distance from the origin
is at least 3 times area((););
e the total area of the remaining pieces is less than § - area(Q).
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Upper Bound for 1, /A(Q)

Theorem (Jung, 1910): Every set S C R? of
diameter A(S) lies in ar disk of radius = - A(S).

V3
This bound is attained for the regular triangle.

For a convex body @ C R? of radius
A(Q), we approximate the Fermat-Weber
point with the center o of this disk.
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Upper Bound for 1, /A(Q)

Theorem (Jung, 1910): Every set S C R? of
diameter A(SS) lies in ar disk of radius \/%-A(S).
This bound is attained for the regular triangle.

For a convex body @ C R? of radius
A(Q), we approximate the Fermat-Weber

point with the center o of this disk. '

For fixed diameter A(Q), we have pp <
to(0). We deduce an upper bound for pig(0).
Partition () into n double sectors
Q1,Qs,...,Q, with a common apex o.

1(01u...00,) (0) < max(ug,(0),. .., 1, (0)).




Upper Bound for 1, /A(Q)

In a double sector ();, denote by = and y the
maximum distance from o in two opposite di-
rections. Assume w.l.o.g. y < z.

(By uniform continuity, = and y approximate the maximum distance

from o along any two opposite directions within the sector.)

O<y§x<— (Q) and r+y < AQ).

Q‘

Jyeo, dist(p.a)dg 2 43 44
11q,(0) = wea( Q) "3 Ei g
Under these constraints, (),(0) is maximized for
= A(Q)/v3 and yp = (1 — \%) A(Q). With n — oo, we get

2 :1:% +yo2(4 — \/§)
< 4 )
MQ(O) < m?xﬂQi( ) 3 %+ yg 13 (Q)’ Q.E.D.




Further Directions

In some applications, the cost of serving a location ¢ from a facility at
point p is dist”(p, q) for some exponent x > 1, rather than dist(p, q).

For a convex body Q C R?, let

) fqu dist"(p, q) dg
:UJQ(p) - area(@)

The proof of our lower bound carries over for this variant and shows

that gy /A%(Q) > m for any convex body ) C R?, and this

bound is the best possible.

and pf = inf{u(p) : p € R*}.

For the upper bound, the picture is not so clear:

115/ A(Q) is conjectured to be maximal for the circular disk.
However, there is a x > 1 such that pg'/A"(Q) cannot be maximal
for the disk (e.g., a regular or a Reuleaux triangle).



