On the Average Distance from the Fermat-Weber Center of a Planar Convex Body

Adrian Dumitrescu
Univ. of Wisconsin-Milwaukee ad@cs.uwm.edu
Minghui Jiang
Utah State University
mjiang@cc.usu.edu

Csaba D. Tóth
University of Calgary
cdtoth@ucalgary.ca

The Fermat-Weber point for a finite point set

Given n points, $q_{1}, q_{2}, \ldots, q_{n}$, in the plane, the Euclidean median, a.k.a. Fermat-, Torricellior Weber point, is the point that minimizes the sum of distances to the n points

$$
\min _{p \in \mathbb{R}^{2}} \sum_{i=1}^{n} \operatorname{dist}\left(p, q_{i}\right)
$$

The Fermat-Weber point for a finite point set

Given n points, $q_{1}, q_{2}, \ldots, q_{n}$, in the plane, the Euclidean median, a.k.a. Fermat-, Torricellior Weber point, is the point that minimizes the sum of distances to the n points

$$
\min _{p \in \mathbb{R}^{2}} \sum_{i=1}^{n} \operatorname{dist}\left(p, q_{i}\right)
$$

The Fermat-Weber point for a finite point set

Given n points, $q_{1}, q_{2}, \ldots, q_{n}$, in the plane, the Euclidean median, a.k.a. Fermat-, Torricellior Weber point, is the point that minimizes the sum of distances to the n points

$$
\min _{p \in \mathbb{R}^{2}} \sum_{i=1}^{n} \operatorname{dist}\left(p, q_{i}\right)
$$

For $n=3$ and 4, resp., Torricelli and Fagnano gave algebraic solutions for computing this point.
In general, it cannot be computed exactly for $n \geq 5$.
It can be approximated with arbitrary precision.

The study of the Weber point has a long history motivated by applications in facility location and computational statistics.

The continuous analogue of the Fermat-Weber point

Given a body Q in the plane, the Euclidean median or Fermat-Weber point, is the point that minimizes the average distance to the points in Q.

$$
\begin{gathered}
\min _{p \in \mathbb{R}^{2}} \mu_{Q}(p) \\
\mu_{Q}(p)=\frac{\int_{q \in Q} \operatorname{dist}(p, q) \mathrm{d} q}{\int_{q \in Q} 1 \mathrm{~d} q}=\frac{\int_{q \in Q} \operatorname{dist}(p, q) \mathrm{d} q}{\operatorname{area}(Q)} .
\end{gathered}
$$

The Fermat-Weber point is denoted $F W_{Q}$.
The minimum average distance is $\mu_{Q}^{*}=\mu_{Q}\left(F W_{Q}\right)$.
Intuitively, the Fermat-Weber point is an ideal location for a base station serving area Q, assuming uniform density in Q.

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_{Q}^{*} / \Delta(Q)$.

Conjecture:

$$
\frac{1}{6} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{1}{3}
$$

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_{Q}^{*} / \Delta(Q)$.

Conjecture:

$$
\frac{1}{6} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{1}{3}
$$

Let Q be a circular disk of radius $1, \Delta(Q)=2$. By symmetry, $F W_{Q}$ is the center of Q. In every sector, the average distance is $\frac{2}{3}$. So, we have $\mu_{Q}^{*} / \Delta(Q)=1 / 3$.

Average Distance versus Diameter

Let $\Delta(Q)$ denote the diameter of Q.

Carmi, Har-Peled, and Katz (2005) studied the ratio $\mu_{Q}^{*} / \Delta(Q)$.

Conjecture:

$$
\frac{1}{6} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{1}{3}
$$

Let $R(\varepsilon)$ be a rhombus with diagonals 1 and 2ε. By symmetry, $F W_{R(\varepsilon)}$ is the center of $R(\varepsilon)$. In each quadrant, the average distance from $F W_{R(\varepsilon)}$ goes to $\frac{1}{3}$ as $\varepsilon \rightarrow 0$. So, we have $\lim _{\varepsilon \rightarrow 0+} \mu_{R(\varepsilon)}^{*} / \Delta(R(\varepsilon))=1 / 6$.

Motivation: Geometric Load Balancing

Aronov, Carmi, and Katz (2009):
Input: a convex body D and m points $p_{1}, p_{2}, \ldots, p_{m} \in D$ (facilities).
Objective: Subdivide D into m convex regions, $R_{1}, R_{2}, \ldots, R_{m}$, of equal area such that $\sum_{i=1}^{m} \mu_{p_{i}}\left(R_{i}\right)$ is minimal, where the cost function $\mu_{p_{i}}\left(R_{i}\right)$ is the average travel time from facility p_{i} to any location in its region R_{i}.

Aronov, Carmi, and Katz (2009) gave an $(8+\sqrt{2 \pi})$-factor approximation if D is an $n_{1} \times n_{2}$ rectangle for integers n_{1}, n_{2}.
This basic approximation bound is then used for several other cases, e.g. a convex fat domain D and m convex regions R_{i}.

Motivation: Geometric Load Balancing

Aronov, Carmi, and Katz (2009):
Input: a convex body D and m points $p_{1}, p_{2}, \ldots, p_{m} \in D$ (facilities).
Objective: Subdivide D into m convex regions, $R_{1}, R_{2}, \ldots, R_{m}$, of equal area such that $\sum_{i=1}^{m} \mu_{p_{i}}\left(R_{i}\right)$ is minimal, where the cost function $\mu_{p_{i}}\left(R_{i}\right)$ is the average travel time from facility p_{i} to any location in its region R_{i}.

Aronov, Carmi, and Katz (2009) gave an $(8+\sqrt{2 \pi})$-factor approximation if D is an $n_{1} \times n_{2}$ rectangle for integers n_{1}, n_{2}.
This basic approximation bound is then used for several other cases, e.g. a convex fat domain D and m convex regions R_{i}.

Conjecture:

Previous Bounds and New Results

$$
\frac{1}{6} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{1}{3} .
$$

Carmi, Har-Peled, Katz (2005): For every convex body $Q \subset \mathbb{R}^{2}, \frac{1}{7} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)}$.

Abu-Affash and Katz (2009):
For every convex body $Q \subset \mathbb{R}^{2}, \frac{4}{25} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)}$.
Dumitrescu, Jiang, and T. (2011):

For every convex body $Q \subset \mathbb{R}^{2}, \frac{1}{6}<\frac{\mu_{Q}^{*}}{\Delta(Q)}$.

Conjecture:

Previous Bounds and New Results

$$
\frac{1}{6} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{1}{3}
$$

Carmi, Har-Peled, Katz (2005): For every convex body $Q \subset \mathbb{R}^{2}, \frac{1}{7} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)}$.

Abu-Affash and Katz (2009):
For every convex body $Q \subset \mathbb{R}^{2}, \frac{4}{25} \leq \frac{\mu_{Q}^{*}}{\Delta(Q)}$.
Dumitrescu, Jiang, and T. (2011):

For every convex body $Q \subset \mathbb{R}^{2}, \frac{1}{6}<\frac{\mu_{Q}^{*}}{\Delta(Q)}$.
Abu-Affash and Katz (2009):
For every convex body $Q \subset \mathbb{R}^{2}, \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{2}{3 \sqrt{3}} \approx 0.3849$.
Dumitrescu, Jiang, and T. (2011):
For every convex body $Q \subset \mathbb{R}^{2}, \frac{\mu_{Q}^{*}}{\Delta(Q)} \leq \frac{2(4-\sqrt{3})}{13} \approx 0.3490$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

The Steiner symmetrization of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

The Steiner symmetrization of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

The Steiner symmetrization of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

The Steiner symmetrization of Q with respect to an axis ℓ constructs $S(Q, \ell)$ as follows: Each chord of Q orthogonal to ℓ is displaced along its line to a new position where it is symmetric with respect to ℓ.
Fact 1: Symmetrization preserves convexity.

Fact 2: Symmetrization preserves area,

$$
\operatorname{area}(Q)=\operatorname{area}(S(Q, \ell))
$$

Fact 3: The Fermat-Weber center of $S(Q, \ell)$ lies on the symmetry axis ℓ.
Lemma: If ℓ is parallel or orthogonal to a diagonal of Q, then the symmetrization with respect to ℓ preserves the diameter

$$
\Delta(Q)=\Delta(S(Q, \ell))
$$

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: Let Q be a convex body, and let $Q^{\prime}=S(Q, \ell)$. Then $\mu_{Q^{\prime}}^{*} \leq \mu_{Q}^{*}$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: Let Q be a convex body, and let $Q^{\prime}=S(Q, \ell)$. Then $\mu_{Q^{\prime}}^{*} \leq \mu_{Q}^{*}$.

Let $p=F W_{Q}$ and let p^{\prime} be its projection to the axis of symmetrization. We show

$$
\mu_{Q^{\prime}}^{*} \leq \mu_{Q^{\prime}}\left(p^{\prime}\right) \leq \mu_{Q}(p)=\mu_{Q}^{*} .
$$

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: Let Q be a convex body, and let $Q^{\prime}=S(Q, \ell)$. Then $\mu_{Q^{\prime}}^{*} \leq \mu_{Q}^{*}$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: Let Q be a convex body, and let $Q^{\prime}=S(Q, \ell)$. Then $\mu_{Q^{\prime}}^{*} \leq \mu_{Q}^{*}$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

Assume $\Delta(Q)=2$.
By symmetry, point $F W_{Q}$ is the origin $(0,0)$.
The average distance from the origin is the same in each quadrant.

We partition one quadrant into pieces, and show that for some $\delta>0$,

- in one large piece T_{0}, the average distance from the origin is at least $\frac{1}{3}+\delta$;
- in most pieces Q_{i}, the average distance from the origin is at least $\frac{1}{3}$ times area $\left(Q_{i}\right)$;
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

Assume $\Delta(Q)=2$.
By symmetry, point $F W_{Q}$ is the origin $(0,0)$.
The average distance from the origin is the same in each quadrant.

We partition one quadrant into pieces, and show that for some $\delta>0$,

- in one large piece T_{0}, the average distance from the origin is at least $\frac{1}{3}+\delta$;
- in most pieces Q_{i}, the average distance from the origin is at least $\frac{1}{3}$ times area $\left(Q_{i}\right)$;
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

Assume $\Delta(Q)=2$.
By symmetry, point $F W_{Q}$ is the origin $(0,0)$.
The average distance from the origin is the same in each quadrant.

We partition one quadrant into pieces, and show that for some $\delta>0$,

- in one large piece T_{0}, the average distance from the origin is at least $\frac{1}{3}+\delta$;
- in most pieces Q_{i}, the average distance from the origin
is at least $\frac{1}{3}$ times area $\left(Q_{i}\right)$;
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

Assume $\Delta(Q)=2$.
By symmetry, point $F W_{Q}$ is

We partition one quadrant into pieces, and show that for some $\delta>0$,

- in one large piece T_{0}, the average distance from the origin is at least $\frac{1}{3}+\delta$;
- in most pieces Q_{i}, the average distance from the origin
is at least $\frac{1}{3}$ times area $\left(Q_{i}\right)$;
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Lower Bound for $\mu_{Q}^{*} / \Delta(Q)$

Lemma: If Q is a convex body, symmetric in both coordinate axes, then

Assume $\Delta(Q)=2$.
By symmetry, point $F W_{Q}$ is the origin $(0,0)$.
The average distance from the origin is the same in each quadrant.

We partition one quadrant into pieces, and show that for some $\delta>0$,

- in one large piece T_{0}, the average distance from the origin is at least $\frac{1}{3}+\delta$;
- in most pieces Q_{i}, the average distance from the origin
is at least $\frac{1}{3}$ times area $\left(Q_{i}\right)$;
- the total area of the remaining pieces is less than $\delta \cdot \operatorname{area}(Q)$.

Upper Bound for $\mu_{Q}^{*} / \Delta(Q)$

Theorem (Jung, 1910): Every set $S \subset \mathbb{R}^{2}$ of diameter $\Delta(S)$ lies in ar disk of radius $\frac{1}{\sqrt{3}} \cdot \Delta(S)$. This bound is attained for the regular triangle.

For a convex body $Q \subset \mathbb{R}^{2}$ of radius $\Delta(Q)$, we approximate the Fermat-Weber point with the center o of this disk.

Upper Bound for $\mu_{Q}^{*} / \Delta(Q)$

Theorem (Jung, 1910): Every set $S \subset \mathbb{R}^{2}$ of diameter $\Delta(S)$ lies in ar disk of radius $\frac{1}{\sqrt{3}} \cdot \Delta(S)$. This bound is attained for the regular triangle.

For a convex body $Q \subset \mathbb{R}^{2}$ of radius $\Delta(Q)$, we approximate the Fermat-Weber point with the center o of this disk.

For fixed diameter $\Delta(Q)$, we have $\mu_{Q}^{*} \leq$ $\mu_{Q}(o)$. We deduce an upper bound for $\mu_{Q}(o)$. Partition Q into n double sectors $Q_{1}, Q_{2}, \ldots, Q_{n}$ with a common apex o.

$$
\mu_{\left(Q_{1} \cup \ldots \cup Q_{n}\right)}(o) \leq \max \left(\mu_{Q_{1}}(o), \ldots, \mu_{Q_{n}}(o)\right)
$$

In a double sector Q_{i}, denote by x and y the maximum distance from o in two opposite directions. Assume w.l.o.g. $y \leq x$.
(By uniform continuity, x and y approximate the maximum distance from o along any two opposite directions within the sector.)

$$
0<y \leq x \leq \frac{1}{\sqrt{3}} \cdot \Delta(Q) \quad \text { and } \quad x+y \leq \Delta(Q)
$$

$$
\mu_{Q_{i}}(o)=\frac{\int_{q \in Q_{i}} \operatorname{dist}(p, q) \mathrm{d} q}{\operatorname{area}(Q)} \approx \frac{2}{3} \cdot \frac{x^{3}+y^{3}}{x^{2}+y^{2}} .
$$

Under these constraints, $\mu_{Q_{i}}(o)$ is maximized for
$x_{0}=\Delta(Q) / \sqrt{3}$ and $y_{0}=\left(1-\frac{1}{\sqrt{3}}\right) \Delta(Q)$. With $n \rightarrow \infty$, we get

$$
\mu_{Q}(o) \leq \max _{i} \mu_{Q_{i}}(o) \leq \frac{2}{3} \cdot \frac{x_{0}^{3}+y_{0}^{3}}{x_{0}^{2}+y_{0}^{2}} \frac{2(4-\sqrt{3})}{13} \cdot \Delta(Q)
$$

Further Directions

In some applications, the cost of serving a location q from a facility at point p is $\operatorname{dist}^{\kappa}(p, q)$ for some exponent $\kappa \geq 1$, rather than $\operatorname{dist}(p, q)$.

For a convex body $Q \subset \mathbb{R}^{2}$, let

$$
\mu_{Q}^{\kappa}(p)=\frac{\int_{q \in Q} \operatorname{dist}^{\kappa}(p, q) \mathrm{d} q}{\operatorname{area}(Q)} \quad \text { and } \quad \mu_{Q}^{\kappa *}=\inf \left\{\mu_{Q}^{\kappa}(p): p \in \mathbb{R}^{2}\right\}
$$

The proof of our lower bound carries over for this variant and shows that $\mu_{Q}^{\kappa *} / \Delta^{\kappa}(Q)>\frac{1}{(\kappa+2) 2^{\kappa}}$ for any convex body $Q \subset \mathbb{R}^{2}$, and this bound is the best possible.

For the upper bound, the picture is not so clear:
$\mu_{Q}^{*} / \Delta(Q)$ is conjectured to be maximal for the circular disk.
However, there is a $\kappa \geq 1$ such that $\mu_{Q}^{\kappa *} / \Delta^{\kappa}(Q)$ cannot be maximal for the disk (e.g., a regular or a Reuleaux triangle).

