Circle Packings and Circle Arrangements: Searching for Common Ground

Ken Stephenson University of Tennessee

Workshop on Sphere Arrangements Fields Institute

November 2011

• Circle packing:

• Circle packing: bringing geometry to combinatorics

- Circle packing: bringing geometry to combinatorics
- A brief topical tour

- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations:

- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations: Flexibility versus Rigidity

- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations: Flexibility versus Rigidity
- Nature's Combinatorics

- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations: Flexibility versus Rigidity
- Nature's Combinatorics
- Possibilites

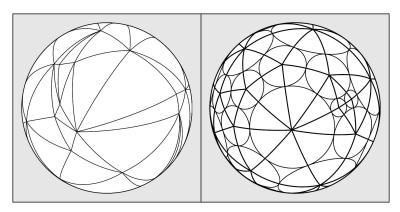
- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations: Flexibility versus Rigidity
- Nature's Combinatorics
- Possibilites
- F***'n Dynamics

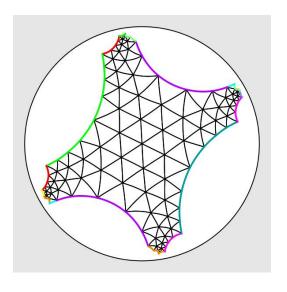
- Circle packing: bringing geometry to combinatorics
- A brief topical tour
- Manipulations: Flexibility versus Rigidity
- Nature's Combinatorics
- Possibilites
- F***'n Dynamics
- Summary

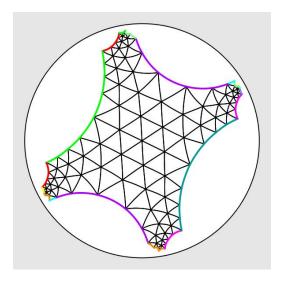
Circle Packing

Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

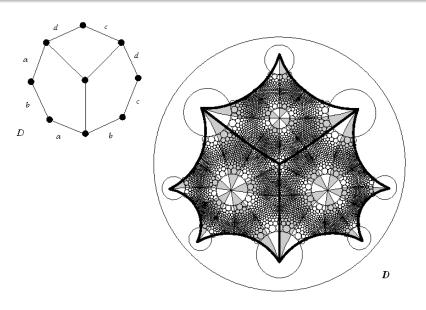
Circle Packing

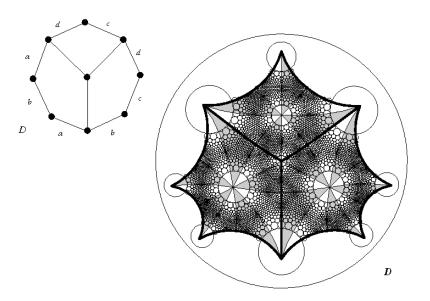

Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

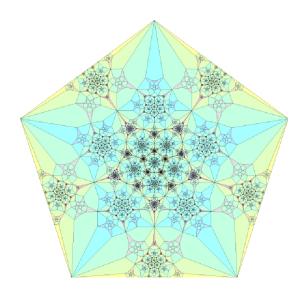

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing \widetilde{P} of the Riemann sphere, unique up to Möbius transformations.

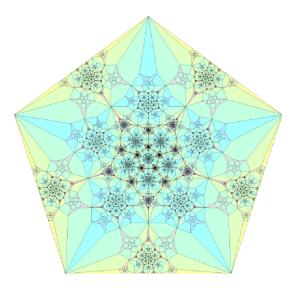

Circle Packing

Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

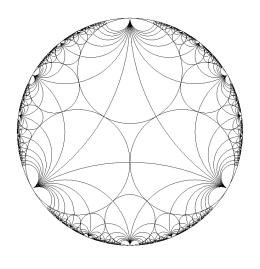

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing \widetilde{P} of the Riemann sphere, unique up to Möbius transformations.

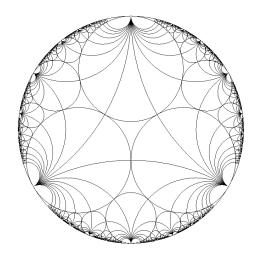


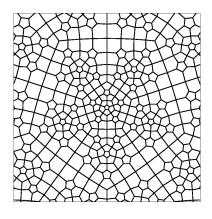

Pairs of pants



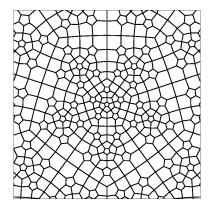
Discrete Gothendieck Dessin d'Enfants, Bowers and S.


Stephenson

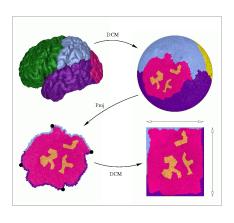


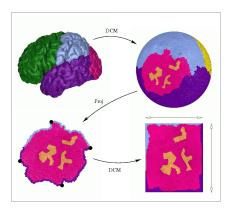

Knot complements, Brian Rushton


Stephenson

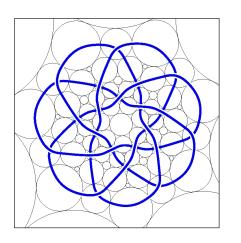


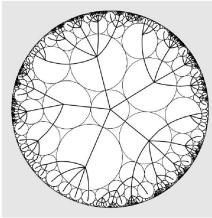
Farey triangulation

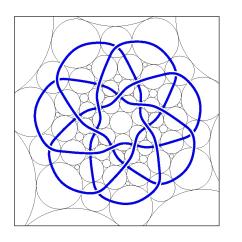


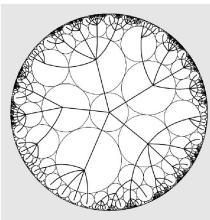


Subdivision rules, Cannon/Floyd/Parry

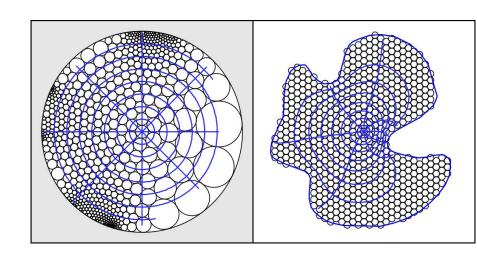


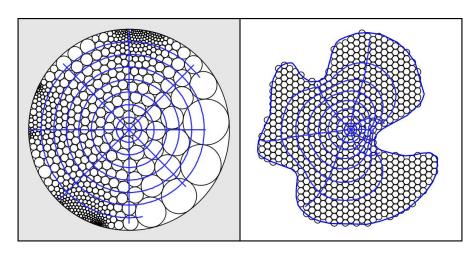

Subdivision rules, Cannon/Floyd/Parry Conformal tilings, Bowers and S.

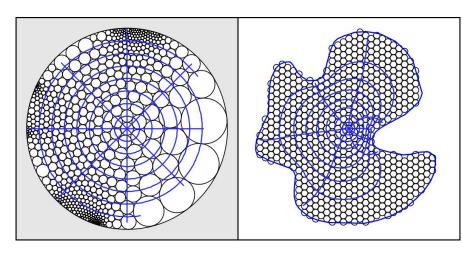




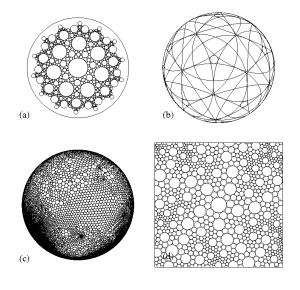
Brain imaging: Sumners, Rothenberg, Hurdal, Bowers, S., et al

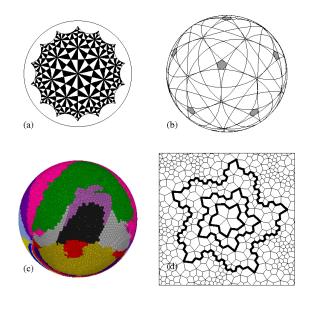


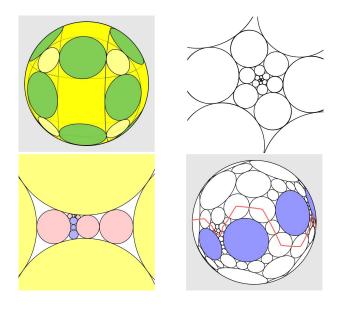




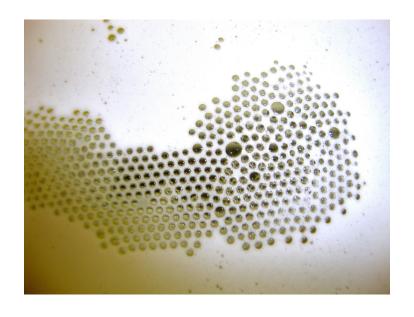
Knot embeddings, Morwen Thistlethwaite; tree embeddings



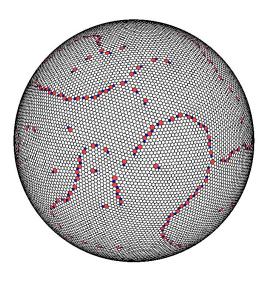


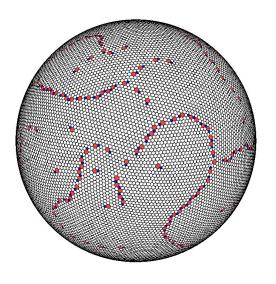

Conformal geometry

Conformal geometry— the main thrust of circle packing since Bill Thurston introduced it









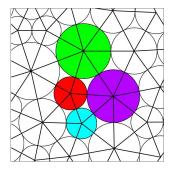
Sphere Packing: Possibilities?

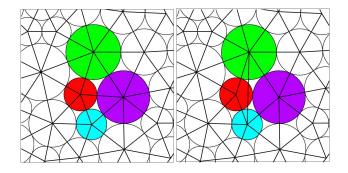
Sphere Packing: Possibilities?

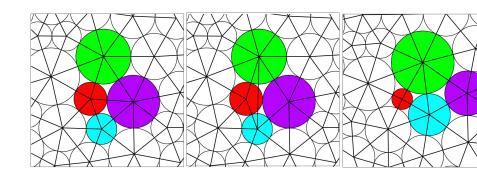
Point distributions

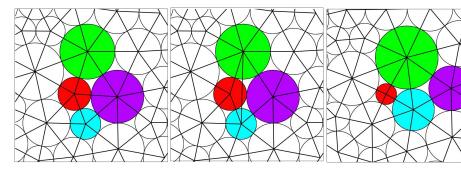
Random combinatorics

- Random combinatorics
- Dual circles

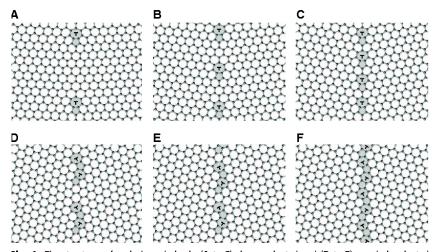

- Random combinatorics
- Dual circles
- Hex Refinement


- Random combinatorics
- Dual circles
- Hex Refinement
- Symmetry


- Random combinatorics
- Dual circles
- Hex Refinement
- Symmetry
- Brooks Parameters


- Random combinatorics
- Dual circles
- Hex Refinement
- Symmetry
- Brooks Parameters
- Flipping Edges

- Random combinatorics
- Dual circles
- Hex Refinement
- Symmetry
- Brooks Parameters
- Flipping Edges Scripts


Scripts

Graphene

GSR_Examples.xmd

Graphene

GSR_Examples.xmd

Fig. 1. The structures of grain boundaries in (**A** to **C**) zigzag-oriented and (**D** to **F**) armchair-oriented graphene sheets with varying mismatch angles.

Stephenson

Circle packings impose geometry on triangulations:

Opportunities:

- Opportunities:
 - That geometry is "spontaneous"

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D
 - Combinatorics are triangulations

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D
 - Combinatorics are triangulations
 - Nice pictures

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D
 - Combinatorics are triangulations
 - Nice pictures— subject to "stimulus generalization"

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D
 - Combinatorics are triangulations
 - Nice pictures— subject to "stimulus generalization"
- So,

- Opportunities:
 - That geometry is "spontaneous"
 - That geometry is "conformal" in nature
 - CirclePack is an experimental testbench
 - Rich topical connections
- Challenges:
 - Restriction to 2D
 - Combinatorics are triangulations
 - Nice pictures— subject to "stimulus generalization"
- So, how does "circle" packing connect with "sphere" packing???

 My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.
- For a general overview, see Notices of the AMS, December 2003, cover article

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.
- For a general overview, see Notices of the AMS, December 2003, cover article
- Gratefully acknowledge support of the NSF.

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.
- For a general overview, see Notices of the AMS, December 2003, cover article
- Gratefully acknowledge support of the NSF.
- "Introduction to Circle Packing: the Theory of Discrete Analytic Functions", Camb. Univ. Press, 2005.

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.
- For a general overview, see Notices of the AMS, December 2003, cover article
- Gratefully acknowledge support of the NSF.
- "Introduction to Circle Packing: the Theory of Discrete Analytic Functions", Camb. Univ. Press, 2005.

Thanks to the Institute and Organizers,

- My web site, www.math.utk.edu/~kens: links to images, papers, and a bibliography (in need of updating).
- CirclePack: Java Version, J1.0, is available.
- For a general overview, see Notices of the AMS, December 2003, cover article
- Gratefully acknowledge support of the NSF.
- "Introduction to Circle Packing: the Theory of Discrete Analytic Functions", Camb. Univ. Press, 2005.

Thanks to the Institute and Organizers, and thanks for your attention!