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The thirteen spheres problem: proofs

K. Schütte, and B. L. van der Waerden (1953)

John Leech (1956) : two-page sketch of a proof

. . . It also misses one of the old chapters, about the “problem of the
thirteen spheres,” whose turned out to need details that we couldn’t
complete in a way that would make it brief and elegant.

Proofs from THE BOOK, M. Aigner, G. Ziegler, 2nd edition.

W. –Y. Hsiang (2001);
H. Maehara (2001, 2007);
K. Böröczky (2003);
K. Anstreicher (2004);
M. (2006)
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The Tammes problem

How must N congruent non-overlapping spherical caps be packed on
the surface of a unit sphere so that the angular diameter of spherical
caps will be as great as possible

Tammes PML (1930). “On the origin of number and arrangement of the
places of exit on pollen grains”. Diss. Groningen.
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The Tammes problem

Let X be a finite subset of S
2. Denote

ψ(X) := min
x,y∈X

{dist(x, y)}, where x 6= y.

Then X is a spherical ψ(X)-code.

Denote by dN the largest angular separation ψ(X) with |X| = N that
can be attained in S

2, i.e.

dN := max
X⊂S2

{ψ(X)}, where |X| = N.
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The Tammes problem

L. Fejes Tóth (1943) N = 3, 4, 6, 12,∞
K. Schütte, and B. L. van der Waerden (1951) N = 5, 7, 8, 9

L. Danzer (1963) N = 10, 11

R. M. Robinson (1961) N = 24

M. & T. (2010) N = 13
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dN

N dN

4 109.4712206
5 90.0000000
6 90.0000000
7 77.8695421
8 74.8584922
9 70.5287794
10 66.1468220
11 63.4349488
12 63.4349488
13 57.1367031

....... ..................
14 55.6705700
15 53.6578501
16 52.2443957
17 51.0903285
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Sphere Packing in a Sphere: Methods

I. Area inequalities. L. Fejes Tóth (1943); for d > 3 Coxeter (1963) and
Böröczky (1978)

II. Distance and irreducible graphs. Schütte, and van der Waerden
(1951); Danzer (1963); Leech (1956);...

III. LP and SDP. Delsarte et al (1977); Kabatiansky and Levenshtein
(1978);...
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Spherical codes

We say that X in S
d−1 is a spherical ϕ-code if for any x, y ∈ X, x 6= y,

we have dist(x, y) ≤ ϕ.

Denote by A(d, ϕ) the maximum cardinality of a ϕ-code in S
d−1.

In other words, A(d, ϕ) is the maximum cardinality of a sphere of
radius ϕ/2 packing in S

d−1.
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Fejes Tóth’s bound

Theorem (L. Fejes Tóth, 1943)

A(3, ϕ) ≤ 2π

∆(ϕ)
+ 2,

where

∆(ϕ) = 3 arccos

(

cosϕ

1 + cosϕ

)

− π,

i.e. ∆(ϕ) is the area of a spherical regular triangle with side length ϕ.
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Fejes Tóth’s bound

The Fejes Tóth bound is tight for n = 3, 4, 6 and 12. So for these n it
gives a solution of the Tammes problem. This bound is also tight
asymptotically.
However, for all other cases the Fejes Tóth upper bound is not tight.
For instance, for n = 13 this bound is 60.92◦ > 57.14◦.
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Coxeter’s bound

Theorem (Coxeter (1963) and Böröczky (1978))

A(d, ϕ) ≤ 2Fd−1(α)/Fd(α),

where
sec 2α = secϕ+ d− 2,

and the function F is defined recursively by

Fd+1(α) =
2

π

α
∫

arcsec(d)/2

Fd−1(β) dθ, sec 2β = sec 2θ − 2,

with the initial conditions F0(α) = F1(α) = 1.
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Coxeter’s bound

Coxeter’s bounds for kissing numbers k(d) = A(d, π/3) with
d = 4, 5, 6, 7, and 8 are
26, 48, 85, 146, and 244, respectively.

It also proves that
A(4, π/5) = 120.
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Contact graphs

Let X be a finite set in S
2. The contact graph CG(X) is the graph with

vertices in X and edges (x, y), x, y ∈ X such that

dist(x, y) = ψ(X)
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Shift of a single vertex

Let X be a finite set in S
2. Let x ∈ X be a vertex of CG(X) with

deg(x) > 0, i.e. there is y ∈ X such that dist(x, y) = ψ(X). We say
that there exists a shift of x if x can be slightly shifted to x′ such that
dist(x′,X \ {x}) > ψ(X).
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Danzer’s flip

Danzer [1963] defined the following flip. Let x, y, z be vertices of CG(X)
with dist(x, y) = dist(x, z) = ψ(X). We say that x is flipped over yz if
x is replaced by its mirror image x′ relative to the great circle yz. We
say that this flip is Danzer’s flip if dist(x′,X \ {x, y, z}) > ψ(X).

y

x′ x

z

Oleg R. Musin (UTB) Packing of congruent spheres on a sphere
Fields Institute: November 15, 2011

/ 62



Irreducible contact graph

We say that the graph CG(X) is irreducible [Schütte - van der Waerden,
Fejes Tóth] (or jammed [Connelly]) if there are no shift of vertices.

If there are neither Danzer’s flips nor shifts of vertices, then we call
CG(X) as a (Danzer’s) irreducible graph.

Oleg R. Musin (UTB) Packing of congruent spheres on a sphere
Fields Institute: November 15, 2011

/ 62



Maximal graphs GN

Let X be a subset of S
2 with |X| = N . We say that CG(X) is maximal

if ψ(X) = dN and its number of edges is minimum. We denote this
graph by GN .
Actually, this definition does not assume that GN is unique. We use
this designation for some CG(X) with ψ(X) = dN .

Proposition. Let CG(X) be a maximal graph GN . Then for N ≥ 6
the graph CG(X) is irreducible.
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Properties of irreducible graphs

Let the graph CG(X) be irreducible. Then

1 CG(X) is a planar graph.

2 Degrees of CG(X) vertices can take only the values 0 (isolated
vertices), 3, 4, or 5.

3 All faces of CG(X) in S
2 are equilateral convex polygons of sides

length ψ(X).

4 All faces of CG(X) are polygons with at most ⌊2π/ψ(X)⌋ vertices.
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N=13

The contact graph Γ13 :=CG(P13) with ψ(P13) ≈ 57.1367◦

1
23

4 5

6

7

8

9

1011

12 13
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Tammes’ problem for N = 13

The value d = ψ(P13) can be found analytically.

2 tan

(

3π

8
− a

4

)

=
1 − 2 cos a

cos2 a

d = cos−1

(

cos a

1 − cos a

)

.

Thus, we have a ≈ 69.4051◦ and d ≈ 57.1367◦ .
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Tammes’ problem for N = 13

Theorem. The arrangement of 13 points P13 in S
2 is the best possible,

the maximal arrangement is unique up to isometry, and d13 = ψ(P13).
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Tammes’ problem for N = 13: graphs Γ
(i)
13

Γ
(0)
13 Γ

(1)
13 Γ

(2)
13 Γ

(3)
13

Figure: Graphs Γ
(i)
13 .
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Main lemmas

Lemma 1. G13 is isomorphic to Γ
(i)
13 with i = 0, 1, 2, or 3.

Lemma 2. G13 is isomorphic to Γ
(0)
13 and d13 = ψ(P13) ≈ 57.1367◦.
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Properties of G13

1 It is a planar graph with 13 vertices.

2 The degree of a vertex is 0,3,4, or 5.

3 All faces are polygons with m=3,4,5, or 6 vertices.

4 If there is an isolated vertex, then it lies in a hexagonal face.

5 No more than one vertex can lie in a hexagonal face.
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Proof of Lemma 1

The proof consists of two parts:
(I) Create the list L13 of all graphs with 13 vertices that satisfy 1–5;
(II) Using linear approximations and linear programming remove from
the list L13 all graphs that do not satisfy the geometric properties of
G13
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Proof of Lemma 1: The list L13

To create L13 we use the program plantri (Gunnar Brinkmann and
Brendan McKay). This program is the isomorph-free generator of
planar graphs, including triangulations, quadrangulations, and convex
polytopes.
The program plantri generates 94,754,965 graphs in L13. Namely, L13

contains 30,829,972 graphs with triangular and quadrilateral faces;
49,665,852 with at least one pentagonal face and with triangular and
quadrilaterals; 13,489,261 with at least one hexagonal face which do not
contain isolated vertices; 769,375 graphs with one isolated vertex, 505
with two isolated vertices, and no graphs with three or more isolated
vertices.
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Proof of Lemma 1

Let G be a graph from the list L13 .

Variables: d (the length of edges), angles of faces.

Equations and inequalities:

1 d > 57.13670.

2 For each vertex sum of its angles = 2π.

3 For a triangle: u = arccos (cos d/(1 + cos d)).

4 For a quadrilateral: an explicit equation.

5 For a pentagon: an approximation by linear inequalities.

6 For an empty hexagon: an approximation by linear inequalities.

7 For a hexagon with an isolated vertex: an approximation by linear
inequalities.
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Proof of Lemma 1: Quadrilateral

a

b

c

d
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u1

u
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Proof of Lemma 1: Feasible solutions of the system

1 Do linear estimations of equations.

2 Using LP find a convex region containing a possible solution.

3 Using a region do more precise linear approximations and go back
to steps 1,2.

4 If a region becomes empty – system is unfeasible.

5 if a region is still not empty split it into two parts, and go back to
steps 1–5.

6 If all regions (after splitting) become empty – system if unfeasible.
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Proof of Lemma 2

u18

u16

u14

u10

u7

u6
u9

u5

u12 u11
u8

u3

u2
u1
u4

u13

u0

u0

u15 56.95 57 57.05 57.1 57.15 57.2 57.25 57.3 57.35
64

66

68

70

72

74

76

d=δ
13

 ≈ 57.1367°

u=a
13

 ≈ 69.4051°

u
18

(d)
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Research directions

1 Danzer (1963) considered (Danzer’s) irreducible graphs with
N ≤ 10 vertices. We plan to verify and extend Danzer’s
classification for N up to 13.

2 We plan to consider maximal and other irreducible graphs for the
Tammes problem with N = 14 and higher.

3 We will also explore the applicability of the methods discussed here
to solve the Tammes problem for N = 14 and higher.

4 We plan to extend the concept of irreducible graphs for packing
equal circles into two-dimensional manifolds. In according to
Daniel Usikov the case of a flat torus is especially interesting for
the problem of “super resolution of images”.

5 Connelly considered rigidity of circles packings from the point of
view of the theory of tensegrity structures. An interesting
follow-up project is extending these ideas to combinatorial
structure of irreducible graphs.
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Irreducible graphs for N=7

N dmin dmax

1∗ 1.34978 1.35908
2 ∗ ∗ 1.35908 1.35908
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Irreducible graphs for N=8

N dmin dmax

1 1.17711 1.18349
6∗ 1.28619 1.30653
8∗ 1.23096 1.30653

12 ∗ ∗ 1.30653 1.30653

Oleg R. Musin (UTB) Packing of congruent spheres on a sphere
Fields Institute: November 15, 2011

/ 62



Irreducible graphs for N=9

N dmin dmax

4 1.14099 1.14143
7∗ 1.22308 1.23096
8 1.10525 1.14349
11 1.17906 1.18106
13 1.15448 1.17906
15 1.17906 1.17906

18 ∗ ∗ 1.23096 1.23096
20 1.15032 1.18106
21∗ 1.10715 1.14342
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Irreducible graphs for N=9
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Irreducible graphs for N=10
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Irreducible graphs for N=10
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Irreducible graphs for N=10
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SDP: Papers

1. A. Schrijver, New code upper bounds from the Terwilliger algebra
and semidefinite programming, IEEE Trans. Inform. Theory 51 (2005),
2859–2866.
2. D. C. Gijswijt, A. Schrijver, and H. Tanaka, New upper bounds for
nonbinary codes based on the Terwilliger algebra and semidefinite
programming, JCTA 113(8), 2006, p.1719–1731.
3. C. Bachoc and F. Vallentin, New upper bounds for kissing numbers
from semidefinite programming, JAMS. 21 (2008), 909-924.
4. C. Bachoc and F. Vallentin, Semidefinite programming, multivariate
orthogonal polynomials, and codes in spherical caps,math.MG/0610856.
5. C. Bachoc and F. Vallentin, Optimality and uniqueness of the
(4,10,1/6) spherical code, JCTA 116 (2008), 195-204.
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SDP: Papers

6. O. R. Musin, Bounds for codes by semidefinite programming, Proc.
Steklov Inst. Math. 263 (2008), 134-149.

7. O. R. Musin, Multivariable positive definite functions on spheres,
arXiv:math.MG/0701083.
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LP and SDP: History

Laplace and Legendre (1782-1785): n = 3.

Gegenbauer (1880s): all n

Schoenberg (1942); Bochner (1941)

Wang (1952): M = Sn,RPn,CPn,QPn,CayP2
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History

Delsarte (1972); Sidelnikov (1974); Delsarte - Goethals - Seidel (1977);
Kabatiansky - Levenshtein (1978)

Levenshtein (1979); Odlyzko - Sloane (1979):
k(8) = 240; k(24) = 196560; k(n) ≤ 25, 46, 82, 140, 240 for
n = 4, 5, 6, 7, 8.

Cohn, Elkies, Kumar (2003, 2004): Rn

M. (2003): k(4) = 24; Pfender (2005); M. (9/2006): SDP

Schrijver (2005): Hn; Gijswijt, Schrijver, and Tanaka (2006);
Bachoc and Vallentin (8/2006, 10/2006): Sn, m = 1.

M. (1/2007): Sn−1, 0 ≤ m ≤ n− 2.
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Zonal spherical functions

With any compact 2-point-homogeneous space M are associated the
zonal spherical functions Φk(t), k = 0, 1, 2, . . . , and the distance
function τ(x, y), where x, y ∈ M.
For all continuous compact M and for all currently known finite cases:
Φk(t) is a polynomial of degree k.

If M = Hamming space, then Φk(t) is the Krawtchouk polynomial
Kk(t, n).

If M = unit sphere Sn−1 ⊂ Rn, then the corresponding zonal spherical

function Φk(t) is the Gegenbauer (or ultraspherical) polynomial G
(n)
k (t).
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The main property for zonal spherical functions is called
“positive-definite degenerate kernels" or p.d.k. This property first was
discovered by Bochner (general spaces) and independently for spherical
spaces by Schoenberg:

Let M be a 2-point-homogeneous space. Then for any integer k ≥ 0 and
for any finite C = {xi} ⊂M the matrix

(

Φk(τ(xi, xj))
)

is positive
semidefinite.
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I’m considered two extensions of Delsarte’s method via semidefinite
programming (SDP).

The first approach shows that using as variables power sums of
distances this problem can be considered as a finite semidefinite
programming problem. This method allows to improve some upper
bounds. (See details: O.R. Musin, Bounds for codes by semidefinite
programming, arXiv:math.CO/0609155)

The second approach extends the Bachoc -Vallentin method for
spherical codes. In particular, an extension of Schoenberg’s theorem for
multivariate Gegenbauer polynomials has been proved. (O.R. Musin,
Multivariate positive definite functions on spheres, arxiv:math/0701083
)

Oleg R. Musin (UTB) Packing of congruent spheres on a sphere
Fields Institute: November 15, 2011

/ 62



Multivariate Gegenbauer polynomials

Let 0 ≤ m ≤ n− 2, t ∈ R, u,v ∈ Rm for m > 0, and u = v = 0 for
m = 0. Then the following polynomial in 2m+ 1 variables of degree k
in t is well defined:

G
(n,m)
k (t,u,v) :=

= (1 − |u|2)k/2 (1 − |v|2)k/2G
(n−m)
k

(

t− 〈u,v〉
√

(1 − |u|2)(1 − |v|2)

)

.
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p.d. functions

We say that f(u,v) is positive semidefinite and write f � 0 if

f(u,v) =
∑

i

hi(u)hi(v)
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p.d. functions on spheres

Theorem. Let 0 ≤ m ≤ n− 2. Let Q = {q1, . . . , qm} ⊂ Sn−1 with
rank(Q) = m. Let e1, . . . , em be an orthonormal basis of the linear space
with the basis q1, . . . , qm, and let LQ denotes the linear transformation
of coordinates.
Then F ∈ psd(Sn−1, Q) if and only if

F (t,u,v) =

∞
∑

k=0

fk(u,v)G
(n,m)
k (t, LQ(u), LQ(v)),

where fk(u,v) � 0 for all k ≥ 0.
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Let x = {xij}, where 1 ≤ i < j ≤ m+ 2, and −1 ≤ xij ≤ cos θ.

Let A be a symmetric m+ 2 ×m+ 2 matrix such that all aii = 1, and
aij = xij for i < j.

Let
Dm(θ) = {x : A � 0}.
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Let C be an (n,M, θ) spherical code.

Split Cm+2 into subsets {Cω} where Cω with ω = (i1, . . . , ik) contains
all m+ 2-element sets (c1, . . . , c1, . . . , ck, . . . , ck), ci ∈ C with
|{cs}| = is.

Denote q(ω) := |Cω|/M .

If (c1, c2, . . . , cm+2) ∈ Cm+2, then xij = 〈ci, cj〉.
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Theorem. Let f(x) − f0 be a symmetric m-p.d. function on Sn−1,
where f0 > 0, 0 ≤ m ≤ n− 2. Suppose

f(y) ≤ Bω, for all y ∈ Dω(θ), d(ω) < m+ 2,

and
f(x) ≤ 0 for all x ∈ Dm(θ).

Then an (n,M, θ) spherical code satisfies

f0M
m+1 ≤

∑

ω

q(ω)BωM
d(ω)−1.
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m = 0 (Delsarte’s bound): f0M ≤ f(1).

m = 1 (the Bachoc-Vallentin bound):

f0M
2 ≤ f(1, 1, 1) + 3(M − 1)B(2,1).

m = 2

f0M
3 ≤ f(1)+4(M−1)B(3,1)+3(M−1)B(2,2)+6(M−1)(M−2)B(2,1,1).
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p.d. functions on Euclidean spaces

H
(n,m)
k (t, x, y,u,v) := (xy)k/2G

(n,m)
k (t′,u′,v′),

where

t′ =
t√
xy
, u′ =

u√
x
, v′ =

v√
y

Theorem

Let e1, . . . , en be an orthonormal basis of Rn, and let p1, . . . , pr be
points in Rn. Then for any k ≥ 0 and 0 ≤ m ≤ n− 2 the matrix
(

H
(n,m)
k (〈pi, pj〉, |pi|2, |pj |2, pi, pj)

)

is positive semidefinite.

Oleg R. Musin (UTB) Packing of congruent spheres on a sphere
Fields Institute: November 15, 2011

/ 62



H
n
k (A)

Let us consider the simplest case m = 0. Let

H
(n)
k (t, x, y) := H

(n,0)
k (t, x, y, 0, 0).

Now for any matrix A =
(

aij

)

� 0 of size M ×M we introduce a
matrix Hn

k (A) of size M ×M by

(

Hn
k (A)

)

ij
= H

(n)
k (aij , aii, ajj).

Note that
(

Hn
k (A)

)

ij
is a polynomial of degree k in aij, aii, ajj.

Since G
(n)
1 (t) = t, we have

Hn
1 (A) = A.
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H
n
2 (A)

G
(n)
2 (t) = (nt2 − 1)/(n − 1). Therefore,

(

Hn
2 (A)

)

ij
=
na2

ij − aiiajj

n− 1
.

Thus

Hn
2 (A) =

nA2 − aTa

n− 1
,

where
(A2)ij := a2

ij , a := (a11, a22, . . . , aMM ).
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p.d. constraints

Let X = [x1, x2, . . . , xM ] be a coordinate matrix in Rn. Let Y = XTX
be the Gramm matrix of X. It is well known fact: Y � 0 and
rank(Y ) ≤ n. Moreover, for any M ×M symmetric matrix Y (we
denote it by Y ∈ SM) with Y � 0, rank(Y ) ≤ n there exists a
coordinate matrix X in Rn such that Y = XTX.
For k = 1 we have: Hn

k (Y ) = Y � 0.

Theorem

Let Y ∈ SM . If Y � 0 and rank(Y ) ≤ n, then for all k = 1, 2, . . .

Hn
k (Y ) � 0.
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It is an interesting question: is converse fact holds? We considered it
for n = 2. In this case the converse theorem is correct. (However, we
are not sure that it holds for all n > 1.)

Theorem

Let Y ∈ SM . Suppose H2
k(Y ) � 0 for all k = 1, 2, . . . . Then

rank(Y ) ≤ 2, i.e. Y is a Gramm matrix of vectors in R2.
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sensor network localization

The Sensor Network Localization (SNL) problem was considered in [P.
Biswas, T.-C. Liang, T.-C. Wang, Y. Ye, Semidefinite programming
based algorithms for sensor network localization] with great details.
Proposition 1 in [Biswas et al] shows that: if 2M +M(M + 1)/2
distance pairs each of which has an accurate distance measure, then the
SNL problem via SDP has a unique feasible solution.
The SNL problem with measurement noises has no a unique feasible
solution. In this case the set of feasible solutions is a set of measure
greater than zero. To solve this problem in [Biswas et al] is considered
certain SDP relaxations.
For SNL we have rank(Y ) ≤ n. However, this constraint is not using in
current SDP algorithms. Our idea is to add some SDP relaxations of
the constraints: Hn

k (Y ) � 0 for k = 2, . . . , d.
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sensor network localization

For n = 2 (the most interesting dimension for SNL) our theorems show
that rank(Y ) ≤ 2 can be substitute by H2

k(Y ) � 0 for all k. So the first
step of an SDP relaxation (for any dimensions n) is to consider just first
d constraints.
The second step is: to find a reasonable SDP relaxation of Hn

k (Y ) � 0
for a given k.

Research problem: Based on further investigations of Steps 1 and 2 to
improve SDP algorithms for SNL.
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