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A General Problem of Discretization

Given a d-dimensional compact metric space A (with metric m) and a
probability density function ρ(x) with respect to d-dimensional
Hausdorff measure on A, how can we generate a large number N of
points on A that are locally nice (well-separated and without big
‘holes’) and have (nearly) distribution ρ(x)?

One approach: Use weighted minimal energy points.

Question: How repulsive is repulsive enough?
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Riesz Potential and Energy

Fix x ∈ A.

For 0 < s <∞, the Riesz s-potential at the point y is:

ks(x , y) :=
1

m(x , y)s .

It is the energy required to place “a unit charge” at the point y in the
presence of a charge at the point x .

For most of the talk A ⊂ Rp and m(x , y) = |x − y | is the Euclidean
metric.

For s = p − 2, we get Newton potential.

For p = 3, s = 1, get Coulomb potential.
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Energy of a Point Set

Notation

Let ωN = {x1, x2, ..., xN} ⊂ A. For s > 0,

Es(ωN) :=
N∑

i=1

∑
j 6=i

1
m(xi , xj )s =

∑
i 6=j

ks(xi , xj )

is the Riesz s-energy of ωN .

As s → 0,
ks(x , y)− 1

s
→ log

(
1

m(x , y)

)
so we set

k0(x , y) := log
(

1
m(x , y)

)
, E0(ωN) :=

∑
i 6=j

k0(xi , xj ).
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N-Point Energy of a Set

For given infinite compact metric space (A,m), let

Es(A,N) := min {Es(ωN) : ωN ⊂ A, #ωN = N} .

Let ω∗N = ω∗N(A, s) ⊂ A satisfy

Es(ω∗N) = Es(A,N) .

ω∗N is called N-point equilibrium configuration for A or a set of minimal
s-energy points.

Es(ω∗N) ≤ Es(ωN) for any ωN ⊂ A, #ωN = N.

In general, ω∗N is not unique.
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Cases s = 0 and s =∞

Remark: For s = 0, minimal energy points maximize the product

N∏
i 6=j

m(xi , xj ) over all {xi}N
1 ⊂ A.

What about s =∞? For fixed ωN ⊂ A, as s →∞∑
i 6=j

1
m(xi , xj )s

1/s

→ 1
min{m(xi , xj ), i 6= j}

.

So as s →∞, minimal energy points become best-packing points,
i.e., they maximize the minimum distance between N points on A.
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Road Map

• Overview
• s < d : Connections to potential theory
• s ≥ d : d-rectifiable sets; Poppy Seed Bagel Theorem
• Add weight
• Minimum energy configurations on compact metric spaces
• Zeta functions, Cs,d , and Sphere-packings in Rd .

• Connections to analytic number theory
• Cohn-Elkies sphere-packing bounds. Open problem

Five points on S2
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Three problems on A = S2

1. Thomson problem: s = 1

Determine the minimum energy (ground state) configurations of N
electrons restricted to a sphere and interacting through the Coulomb
potential.

• N = 174 (near)
optimal points on
S2 for s = 1 energy

• Voronoi cells:
pentagons and
hexagons.
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Three problems on A = S2

2. Tammes problem: s →∞

Determine configurations of N points on S2 whose minimum pairwise
distance is maximal.

• N = 174 (near)
optimal points on
S2 for s = 4 energy

• Voronoi cells:
pentagons and
hexagons.
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Three problems on A = S2

3. # 7 of Smale’s 18 Problems for this Century: s = 0

Find {x1, . . . , xN} ⊂ S2 (in polynomial time in N) such that

E0({x1, . . . , xN}) ≤ E0(S2,N) +O(log N).

• N = 174 (near)
optimal points on
S2 for s = 0 energy

• Voronoi cells:
quadrilateral,
pentagon, hexagon,
heptagon.
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Three problems on A = S2

3. # 7 of Smale’s 18 Problems for this Century: s = 0

Find {x1, . . . , xN} ⊂ S2 (in polynomial time in N) such that

E0({x1, . . . , xN}) ≤ E0(S2,N) +O(log N).

• N = 1600 (near)
optimal points on
S2 for s = 0 energy

• Voronoi cells:
pentagon, hexagon,
heptagon.
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Asymptotics of E0(S2,N)

Known:
• Wagner (1989):
E0(S2,N) = −(1/2) log(4/e)N2 − (1/2)N log N +O(N)

• Rakhmanov, Saff, and Zhou (1994):
E0(S2,N) = −(1/2) log(4/e)N2 − (1/2)N log N + CN(N)
where −0.2255... < CN < −0.0469... for N sufficiently large.

Conjecture:
• Brauchart, H. and Saff (2011):

E0(S2N) = −(1/2) log(4/e)N2 − (1/2)N log N + CN +O(log N)

where
C = (1/2) log(4/e) + ζ ′L(0) = log 2√

3
+ 3 log

√
2π

Γ(1/3) = −0.0556...
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An Example: Torus (Bagel), N = 1000



main3

Classical Potential Theory (cf. books by Landkof or Mattila)

Case: A ⊂ Rp compact, d = dimH(A), s < d , and m(x , y) = |x − y |.

The limiting density is described by the Riesz s-energy equilibrium
measure µs that minimizes

Is(µ) :=

∫ ∫
1

|x − y |s
dµ(y)dµ(x)

over all probability measures supported on A.

That is,

νN :=
1
N

∑
x∈ω∗

N

δx
∗→ µs as N →∞,

where δx is unit point mass at x . Also,

lim
N→∞

Es(A,N)

N2 = Is(µs).
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N = 1000 points

s = 0.2 s = 1.0

s = 2.0 s = 4.0
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N = 4000 points

s = 0.2 s = 1.0

s = 2.0 s = 4.0
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What is known for s ≥ d = dimH(A)?

In this case, Is(µ) = +∞ for all such µ .

A function Φ : T → Rp, T ⊂ Rd , is a Lipschitz mapping if

|Φ(x)− Φ(y)| ≤ L|x − y |, x , y ∈ T .

Definition

A ⊂ Rp is a d-rectifiable set if A is the image of a bounded set in Rd

under a Lipschitz mapping.
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“Poppy-Seed Bagel” Theorem (Borodachov, H, Saff 2008)

Suppose s ≥ d and A ⊂ Rp is a d-rectifiable set. When s = d we
further assume A is a subset of a d-dimensional C1 manifold. Then

lim
N→∞

Ed (A,N)

N2 log N
=
Hd (Bd )

Hd (A)
,

lim
N→∞

Es(A,N)

N1+s/d =
Cs,d

[Hd (A)]s/d , s > d . (1)

Furthermore, if Hd (A) > 0, then optimal s-energy configurations for
s ≥ d are asymptotically (as N →∞) uniformly distributed with
respect to d-dimensional Hausdorff measure.
(This is not true in general for s < d .)
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Asymptotics for Es(A,N) for d-rectifiable A

N2 N2 log N N1+s/d s

0 d
log points best-packing (s =∞)

critical index = d = dimH(A)

µs,A
∗−→ Hd,A := Hd (· ∩ A)/Hd (A)

strongly d-rectifiable case: H and Calef, 2009;
self-similar fractal case: Calef, 2009
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Add Weight

Notation
• SLP weight: w : A× A→ [0,∞) is Symmetric and Lower

semi-continuous on A× A and Positive on the
diag(A× A) := {(a,a) : a ∈ A}.

• CPD weight: SLP weight Continuous at every point in
diag(A× A).

• For s > 0 and ωN = {x1, . . . , xN} ⊂ A,

Es,w (ωN):=
∑
i 6=j

w(xi , xj )

m(xi , xj )s .
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Weighted Riesz Energy

Theorem (BHS, 2008)

If s > d and w is a CPD-weight on A, then

lim
N→∞

Ew
s (A,N)

N1+s/d =
Cs,d[

Hs,w
d (A)

]s/d ,

where Hs,w
d is weighted Hausdorff measure on Borel sets B,

Hs,w
d (B) =

∫
B

1
w(x , x)d/s dHd (x).

Moreover, if Hd (A) > 0, then any sequence of (w , s)-energy
minimizing points has limit distribution

Hs,w
d (·)

∣∣
A .
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Weighted Riesz Energy

Corollary
To distribute points on A according to a positive and continuous
density ρ(x) on a d-rectifiable set A, choose

w(x , y) := (ρ(x)ρ(y))−s/2d

and compute minimal weighted s-energy points for any s > d .
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Example1: A = S2; N = 400; s = 3; nonuniform weight
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1Computations and graphics by R. Womersley (UNSW)
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Separation and Mesh Norm

Now let A be a compact metric space with metric m.

‘Quality’ metrics for ωN = {x1, . . . , xN} ⊂ A

• separation distance of ωN :

δ(ωN) := min
1≤i 6=j≤N

m(xi , xj ),

• mesh norm (or fill radius) of ωN with respect to A:

ρ(ωN ,A) := max
y∈A

min
1≤i≤N

m(y , xi ).

• mesh ratio of ωN in A

γ(ωN ,A) := ρ(ωN ,A)/δ(ωN).

{ωN}∞N=2 is quasi-uniform on A if γ(ωN ,A) < C for N ≥ 2.
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α-Regular metric spaces

• A Borel regular measure µ on A is (Ahlfors) α-regular, if

C−1rα ≤ µ(B(x , r)) ≤ C rα (x ∈ A, 0 < r ≤ diam(A)).

• A metric space A is α-regular if ∃ α-regular measure µ on A.

• If A is α-regular then ∃ c such that for any sequence {ωN} of
N-point configurations in A

δ(ωN) ≤ c N−1/α and c−1 N−1/α ≤ ρ(ωN ,A), (N ≥ 2).

• If A is α-regular and {ωN}∞N=2 is quasi-uniform on A, then

δ(ωN) � N−1/α and ρ(ωN ,A) � N−1/α.
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Mesh-norm and quasi-uniformity

Theorem (H, Saff, Whitehouse (2011))

Suppose
• Ã is compact α-regular metric space with α-reg measure µ,
• A ⊆ Ã is compact set of positive µ-measure,
• w is bounded SLP weight on A,
• s > α.

For N ≥ 2, let ω∗N be an N-point (s,w)-energy minimizing
configuration on A. Then {ω∗N}∞N=2 is quasi-uniform on A.

Remark: The set A need not inherit the lower α-regularity of Ã.
Previous results: Separation (Kuijlaars, Saff, Borodachov, H,
1998-2008...); Mesh norm (Damelin, Maymeskul (2005))
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Mesh-norm and quasi-uniformity

Theorem (H, Saff, Whitehouse (2011))

Suppose
• Ã is compact α-regular metric space with α-reg measure µ,
• A ⊆ Ã is compact set of positive µ-measure,
• w is bounded SLP weight on A,
• s > α.

For N ≥ 2, let ω∗N be an N-point (s,w)-energy minimizing
configuration on A. Then {ω∗N}∞N=2 is quasi-uniform on A.

Quasi-uniformity and radial basis approximation: Narcowich and
Ward 2002, ...
Recent paper by Fuselier and Wright used minimum energy points
we provided.
Contact us if you have an interesting problem requiring good nodes.
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Open Problem

What is the constant Cs,d for s ≥ d?

For some values of d (e.g., d = 1,2,8,24), it appears that Cs,d is a
zeta function ζΛ(s) for a d-dimensional lattice Λ ⊂ Rd where

ζΛ(s) :=
∑

0 6=v∈Λ

|v |−s.

In fact, d = 1: Since N-th roots of unity are optimal on unit circle
(also see MMRS),

Cs,1 = 2ζ(s) = ζZ(s) for s > 1.
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The Constant Cs,2

Conjecture: Cs,2 =
(√

3/2
)s/2

ζL(s), s > 2,

where ζL :=
∑

06=v∈L

|v|−s,

L = {k1v1 + k2v2 : k1, k2 ∈ Z}.
-1 1 2

-1

1

2

Equivalent to an (unproved) assumption common in 2D solid state
physics that the hexagonal lattice describes the ground state for
particles in the plane interacting through a Riesz potential r−s.
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Connections to Analytic Number Theory

Cs,d ≤ ζmin
d (s) := min

Λ
|Λ|s/dζΛ(s), s > d .

Determining ζmin
d (s) for different values of s and d is of interest in

analytic number theory.

• ζmin
2 (s) = ζL(s) (Rankins 1951, Cassels 1959, Montgomery

1986).
• In dimensions 8 and 24, Sarnak and Strömbergsson (2006)

show E8 and Leech lattice are local minima of f (Λ) = |Λ|s/dζΛ(s).
• Cohn, Kumar (2007) conjecture these lattices (d = 2,8,24)

minimize a periodized energy with potentials of the form
f (|x − y |2) for completely monotone f with sufficient decay. If
true, then

Cs,d = |Λd |s/dζΛd (s)

in these dimensions.
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Connection to Best-Packing

Theorem (BHS)

(Cs,d )1/s → (1/2)(βd/4d )1/d as s →∞,

where 4d is largest sphere packing density in Rd and βd = Vol(Bd ) .

∆1 = 1,
∆2 = π/

√
12 (Thue and Fejes Tóth),

∆3 = π/
√

18 (Hales).

The exact value of ∆d for d > 3 is unknown.
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Cohn & Elkies (2003) provide extremely precise upper bounds for ∆d
in dimensions 2, 8, and 24.

Ratio of upper bound to lower bound for these cases is

1.00 . . . 001.
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Best packing in dimensions d = 2, 8, and 24

Theorem (Cohn, Elkies (2003))

Suppose f : Rd → R is an admissible function satisfying :

(1) f (0) = f̂ (0) > 0,
(2) f (x) ≤ 0 for |x | ≥ r , and

(3) f̂ (t) ≥ 0 for all t .

Then ∆d ≤
πn/2

(n/2)!
(r/2)d .

d = 1: f (x) = (1− |x |)+ f̂ (t) =
( sinπt

πt

)2

-2 -1 1 2

1

-2 -1 1 2

1

shows ∆1 =

√
π

(1/2)!
(1/2) = 1.
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Open Problem: Find f for d = 2, 8, and 24.

Conditions: (1) f (0) = f̂ (0) > 0, (2) f (x) ≤ 0, |x | ≥ r , (3) f̂ (t) ≥ 0 all t .

• To show optimality of lattice Λ, f must vanish on Λ and f̂ must
vanish on dual Λ∗. It is sufficient to consider radial functions.

• Another d = 1 example:

f (x) = (1− x2)
∞∏

k=2

(
1− x2

k2

)2

=
1

1− x2

(
sinπx
πx

)2

.

-2 -1 1 2

1

f̂ (t) =

(
1− |t |+ sin 2π|t |

2π

)
χ[−1,1](t)

-2 -1 1 2

1
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THANKS!


