On the Volume of the Union and Intersection of Random Balls

Balázs Csikós

Eötvös Loránd University Budapest

Workshop on Sphere Arrengements
November 14-18, 2011
Fields Institute, Toronto

Kneser-Poulsen Conjecture (1954-55)

Suppose that for the points $\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$ and $\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}$ in \mathbb{E}^{n},

$$
d\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right) \geq d\left(\mathbf{q}_{i}, \mathbf{q}_{j}\right) \quad \forall 1 \leq i<j \leq N .
$$

Then we say that the system $\mathbf{p}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)$ is an expansion of the system $\mathbf{q}=\left(\mathbf{q}_{1}, \ldots, \mathbf{q}_{N}\right)$, or that the system \mathbf{q} is a contraction of the system \mathbf{p}.
Do these inequalities imply the inequality

$$
\operatorname{Vol}_{n}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r_{i}\right)\right) \geq \operatorname{Vol}_{n}\left(\bigcup_{i=1}^{N} B\left(\mathbf{q}_{i}, r_{i}\right)\right)
$$

for any $r_{1}>0, \ldots, r_{N}>0$?

Remarks

- The conjecture was originally formulated for equal radii, but is seems to be true with different radii.
- The known special cases suggest that the conjecture is true in the spaces \mathbb{H}^{n} and \mathbb{S}^{n} as well.
- There is an analogous conjecture for intersections

$$
\operatorname{Vol}_{n}\left(\bigcap_{i=1}^{N} B\left(\mathbf{p}_{i}, r_{i}\right)\right) \leq \operatorname{Vol}_{n}\left(\bigcap_{i=1}^{N} B\left(\mathbf{q}_{i}, r_{i}\right)\right),
$$

and also for bodies constructed from the balls with mixed \cup and \cap operations.

Most important results

Theorem (K. Bezdek, R. Connelly for $M^{n}=\mathbb{E}^{n}$, B. Cs. for $M^{n}=\mathbb{S}^{n}$ or \mathbb{H}^{n})
If there exist continuous curves $\gamma_{i}:[0,1] \rightarrow M^{n+2}$ such that

- $\gamma_{i}(0)=\mathbf{p}_{i} \in M^{n}$,
- $\gamma_{i}(1)=\mathbf{q}_{i} \in M^{n}$, and
- $d\left(\gamma_{i}(t), \gamma_{j}(t)\right)$ is a decreasing function of t for all $1 \leq i, j, \leq N$, then the K-P inequalities (\cup) and (\cap) hold in M^{n}.
Leapfrog Lemma
- If $\mathbf{p} \in\left(\mathbb{E}^{n}\right)^{N}$ is an expansion of $\mathbf{q} \in\left(\mathbb{E}^{n}\right)^{N}$, then there is a continuous expansion of q to p in $\mathbb{E}^{2 n}$.
- If $\mathbf{p} \in\left(\mathbb{S}^{n}\right)^{N}$ is an expansion of $\mathbf{q} \in\left(\mathbb{S}^{n}\right)^{N}$, then there is a continuous expansion of \mathbf{q} to \mathbf{p} in $\mathbb{S}^{2 n+1}$.
- No leapfrog lemma is known in the hyperbolic space.

Corollary

The K - P conjecture is true in the Euclidean plane for both \cup and \cap.

Fuzzy version of the K-P conjecture

Definition

A fuzzy subset of a set A is a map $m: A \rightarrow[0,1]$. For $x \in A, m(x)$ is the grade of membership of x in the subset, m is the membership function of the subset.

Definition

The volume of a fuzzy subset of \mathbb{E}^{n} with measurable membership function m is $\int_{\mathbb{E}^{n}} m(\mathbf{x}) d \mathbf{x}$.

Definition

A fuzzy ball in \mathbb{E}^{n} centered at \mathbf{p} is a fuzzy subset of \mathbb{E}^{n} whose membership function is of the form $m(\mathbf{x})=f(\|\mathbf{x}-\mathbf{p}\|)$, where $f: \mathbb{R}_{+} \rightarrow[0,1]$ is a decreasing function.

What is the union and intersection of fuzzy sets?

Axioms for fuzzy intersection

An intersection operation on fuzzy subsets m_{1}, m_{2} of a set is specified by binary operation

$$
I:[0,1] \times[0,1] \rightarrow[0,1]
$$

on the unit interval. Given I the corresponding operation is

$$
\left(m_{1} \bigcap_{I} m_{2}\right)(x)=I\left(m_{1}(x), m_{2}(x)\right)
$$

I defines a fuzzy intersection if the following axioms are fulfilled:
Axiom i1. Boundary condition: $I(a, 1)=a$; Axiom i2. Monotonicity: $b \leq d$ implies $I(a, b) \leq I(a, d)$;
Axiom i3. Commutativity: $I(a, b)=I(b, a)$;
Axiom i4. Associativity: $I(a, I(b, d))=I(I(a, b), d)$;
Axiom i5. Continuity: I is a continuous function;
Axiom i6. Subidempotency: $I(a, a) \leq a$.

Axioms for fuzzy union

Similarly, a union operation on fuzzy subsets of a set is specified by binary operation

$$
U:[0,1] \times[0,1] \rightarrow[0,1]
$$

on the unit interval. satisfying the axioms for fuzzy union:
Axiom u1. Boundary condition: $U(a, 0)=a$; Axiom u2. Monotonicity: $a \leq b$ implies $U(a, c) \leq U(b, c)$;
Axiom u3. Commutativity: $U(a, b)=U(b, a)$;
Axiom u4. Associativity: $U(a, U(b, c))=U(U(a, b), c)$;
Axiom u5. Continuity: U is a continuous function;
Axiom u6. Superidempotency: $U(a, a) \geq a$;
Axiom u7. Strict monotonicity: $a_{1}<a_{2}$ and $b_{1}<b_{2}$ implies $U\left(a_{1}, b_{1}\right)<U\left(a_{2}, b_{2}\right)$.

Observation

- I defines a fuzzy intersection $\Longleftrightarrow U(a, b)=1-I(1-a, 1-b)$ satisfies axioms u1-u6.
- Axiom u7 is fulfilled for $U \Longleftrightarrow I$ is strictly monotonous.

Examples of fuzzy intersections

- Zadeh's intersection: $I(a, b)=\min \{a, b\}, U(a, b)=\max \{a, b\}$.
- Probabilistic intersection: $I(a, b)=a b, U(a, b)=a+b-a b$.
- Bold intersection: $I(a, b)=\max \{0, a+b-1\}$ (not strictly monotonous!)
- Drastic intersection: $I(a, b)=\left\{\begin{array}{cl}\min \{a, b\} & \text { if } \max \{a, b\}=1 \\ 0 & \text { otherwise }\end{array}\right.$ (not continuous, not strictly monotonous!)
- Hamacher's intersection: $I(a, b)=\frac{a b}{\gamma+(1-\gamma)(a+b-a b)}$, where $\gamma \in[0, \infty)$.
- Yager's intersection:
$I(a, b)=1-\min \left\{1,\left((1-a)^{w}+(1-b)^{w}\right)^{1 / w}\right\}$, where $w \in(0, \infty)$.
- Dombi's intersection:
$I(a, b)=\left\{1+\left[(1 / a-1)^{w}+(1 / b-1)^{w}\right]^{1 / w}\right\}^{-1}$, where $w \in(0, \infty)$.
$U(a, b)=\left\{1+\left[(1 / a-1)^{-w}+(1 / b-1)^{-w}\right]^{-1 / w}\right\}^{-1}$
- For a fuzzy intersection I set

$$
I_{N}\left(a_{1}, \ldots, a_{N}\right)=I\left(a_{1}, I\left(a_{2}, \ldots, I\left(a_{N-1}, a_{N}\right) \ldots\right)\right) .
$$

- Define U_{N} for a fuzzy union U similarly.
- One can also define other aggregated fuzzy operations $H:[0,1]^{N} \rightarrow[0,1]$ built up from a combination of fuzzy intersections and unions of N fuzzy sets.

Question

Suppose the system $\mathbf{p} \in\left(E^{n}\right)^{N}$ is an expansion of the system $\mathbf{q} \in\left(E^{n}\right)^{N}$. Is it true that for any measurable decreasing "fuzzy radii" $f_{i}: \mathbb{R}_{+} \rightarrow[0,1]$ and any fuzzy intersection I or fuzzy union U

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} I_{N}\left(f_{1}\left(\left\|\mathbf{x}-\mathbf{p}_{1}\right\|\right)\right. & \left., \ldots, f_{N}\left(\left\|\mathbf{x}-\mathbf{p}_{N}\right\|\right)\right) d \mathbf{x} \\
& \leq \int_{\mathbb{R}^{n}} I_{N}\left(f_{1}\left(\left\|\mathbf{x}-\mathbf{q}_{1}\right\|\right), \ldots, f_{N}\left(\left\|\mathbf{x}-\mathbf{q}_{N}\right\|\right)\right) d \mathbf{x}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} U_{N}\left(f_{1}\left(\left\|\mathbf{x}-\mathbf{p}_{1}\right\|\right), \ldots, f_{N}\left(\left\|\mathbf{x}-\mathbf{p}_{N}\right\|\right)\right) d \mathbf{x} \\
& \geq \int_{\mathbb{R}^{n}} U_{N}\left(f_{1}\left(\left\|\mathbf{x}-\mathbf{q}_{1}\right\|\right), \ldots, f_{N}\left(\left\|\mathbf{x}-\mathbf{q}_{N}\right\|\right)\right) d \mathbf{x} ?
\end{aligned}
$$

Theorem

Suppose that

- I is a smooth fuzzy intersection satisfying $I(0, a)=a$,
- $f_{i}: \mathbb{R}_{+} \rightarrow[0,1], 1 \leq i \leq N$ are smooth decreasing functions with $\lim _{t \rightarrow \infty} f_{i}(t)=0$.
Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} I_{N}\left(f_{1}\left(\left\|\mathbf{x}-\mathbf{p}_{1}\right\|\right), \ldots, f_{N}\left(\left\|\mathbf{x}-\mathbf{p}_{N}\right\|\right)\right) d \mathbf{x} \\
&= \int_{\mathbb{R}_{+}^{n}} \partial_{1} \ldots \partial_{N} I_{N}\left(f_{1}\left(r_{1}\right), \ldots, f_{N}\left(r_{N}\right)\right) \prod_{i=1}^{N}\left(-f_{i}^{\prime}\left(r_{i}\right)\right) \\
& \cdot \operatorname{Vol}\left(\bigcap_{i=1}^{N}\left(B\left(\mathbf{p}_{i}, r_{i}\right)\right) d \mathbf{r}\right.
\end{aligned}
$$

Observation
If $\partial_{1} \ldots \partial_{N} I_{N} \geq 0$, then the K-P inequality for the intersections of "crisp" balls implies the inequality for the fuzzy intersection of fuzzy balls.

In this case, $\partial_{1} \ldots \partial_{N} I_{N} \geq 0$ is a probability density on the unit cube and if $X=\left(X_{1}, \ldots, X_{N}\right)$ is a random vector chosen with this density, then I_{N} is the CDF of X

$$
\begin{equation*}
I_{N}\left(x_{1}, \ldots, x_{N}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{N} \leq x_{N}\right) \tag{*}
\end{equation*}
$$

Theorem

Suppose that

- I is a smooth fuzzy intersection satisfying $I(0, a)=a$,
- there is a probability density on $[0,1]^{N}$ for which (*) holds.
- $f_{i}: \mathbb{R}_{+} \rightarrow[0,1], 1 \leq i \leq N$ are decreasing functions such that the fuzzy balls $\mathcal{B}_{i}(\mathbf{x})=f_{i}\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right)$ have finite volume.
Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} I_{N}\left(\mathcal{B}_{1}(\mathbf{x}), \ldots, \mathcal{B}_{N}(\mathbf{x})\right) d \mathbf{x}=E\left(\operatorname{Vol}\left(\bigcap_{i=1}^{N} B\left(\mathbf{p}_{i}, g_{i}^{\max }\left(X_{i}\right)\right)\right),\right. \\
& \int_{\mathbb{R}^{n}} U_{N}\left(\mathcal{B}_{1}(\mathbf{x}), \ldots, \mathcal{B}_{N}(\mathbf{x})\right) d \mathbf{x}=E\left(\operatorname{Vol}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, g_{i}^{\min }\left(1-X_{i}\right)\right)\right),\right.
\end{aligned}
$$

where $g_{i}^{\max }(b):=\sup \{a: f(a) \geq b\}$ and $g_{i}^{\min }(b):=\inf \{a: f(a) \leq b\}$.

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} I_{N}\left(\mathcal{B}_{1}(\mathbf{x}), \ldots, \mathcal{B}_{N}(\mathbf{x})\right) d \mathbf{x}=E\left(\operatorname{Vol}\left(\bigcap_{i=1}^{N} B\left(\mathbf{p}_{i}, g_{i}^{\max }\left(X_{i}\right)\right)\right)\right. \\
& \int_{\mathbb{R}^{n}} U_{N}\left(\mathcal{B} 1(\mathbf{x}), \ldots, \mathcal{B}_{N}(\mathbf{x})\right) d \mathbf{x}=E\left(\operatorname{Vol}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, g_{i}^{\min }\left(1-X_{i}\right)\right)\right),\right.
\end{aligned}
$$

where $g_{i}^{\max }(b):=\sup \{a: f(a) \geq b\}$ and $g_{i}^{\min }(b):=\inf \{a: f(a) \leq b\}$.

Corollary

If I_{N} is the CDF of a random vector distribution $\left(X_{1}, \ldots, X_{N}\right) \in[0,1]^{N}$, then the K-P inequalities (\cap) and (\cup) for intersections and unions of "crisp" balls imply analogous inequalities for fuzzy balls with the same centers.

Examples

- For the uniform distribution on $[0,1]^{N}$, $P\left(X_{1} \leq x_{1}, \ldots, X_{N} \leq x_{n}\right)=x_{1} \cdots x_{N}$ is the probabilistic intersection.
If X is a uniformly distributed random variable in $[0,1]$, then $\left(X_{1}, \ldots, X_{n}\right)=(X, \ldots, X)$ is a random vector uniformly distributed on the main diagonal of $[0,1]^{N}$.
$P\left(X_{1} \leq x_{1}, \ldots, X_{N} \leq x_{n}\right)=\min \left\{x_{1}, \ldots, x_{N}\right\}$ is Zadeh's min intersection.
- If $\left(X_{1}, \ldots, X_{N}\right)$ is uniformly distributed on the simplex spanned by the vertices of $[0,1]^{N}$ neighbouring $(1, \ldots, 1)$, then $P\left(X_{1} \leq x_{1}, \ldots, X_{N} \leq x_{n}\right)=\min \left\{0, x_{1}+x_{2}+\cdots+x_{N}-(N-1)\right\}$ is the bold intersection.
- For Hamacher's intersection: $I(a, b)=\frac{a b}{\gamma+(1-\gamma)(a+b-a b)}$, where $\gamma \in[0, \infty)$, the candidate $\partial_{1} \partial_{2} I$ has negative values for $\gamma>2$.

Why should we consider fuzzy/probabilistic versions?

- They are corollaries of the "crisp" conjecture, so they might be easier to prove.
- If we can prove the probabilistic version for a sufficiently large family of distributions, we can get a proof for the Kneser-Poulsen conjecture.
- If the conjecture is not true, it might be easier to show existence of a counterexample by the probabilistic method then by presenting the coordinates of the centers.

Case study

Theorem
If $f_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a decreasing L_{1}-function, and $\mathbf{p}_{i} \in \mathbb{R}^{n}, i=1 \ldots N$, then

$$
\prod_{i=1}^{N}\left(-f_{i}^{\prime}\left(r_{i}\right)\right) \operatorname{Vol}\left(\bigcap_{i=1}^{N}\left(B\left(\mathbf{p}_{i}, r_{i}\right)\right)=\int_{\mathbb{R}^{n}} \prod_{i=1}^{N} f_{i}\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) d \mathbf{x}\right.
$$

Probabilistic interpretation

- The (generalized) function $g_{i}=-\frac{1}{f(0)} f_{i}^{\prime} \geq 0$ is a probability distribution supported on \mathbb{R}_{+}i.e. $\int_{0}^{\infty}-\frac{1}{f(0)} f_{i}^{\prime}(t) d t=1$.
- Any probability distribution g_{i} supported on \mathbb{R}_{+}can be obtained this way from $f_{i}(t)=\int_{t}^{\infty} g_{i}(t) d t$.
- If the radius r_{i} is a random variable with this distribution, then

$$
E\left(\operatorname{Vol}\left(\bigcap_{i=1}^{N}\left(B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right)=\int_{\mathbb{R}^{n}} \prod_{i=1}^{N} f_{i}(0) f_{i}\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) d \mathbf{x}\right.
$$

Case study

Corollary

By the inclusion exclusion formula we get

$$
E\left(\operatorname{Vol}\left(\bigcup_{i=1}^{N}\left(B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right)=\sum_{\emptyset \neq I \subset \underline{N}}(-1)^{|I|+1} \int_{\mathbb{R}^{n}} \prod_{i \in I} f_{i}(0) f_{i}\left(\left\|\mathbf{x}-\mathbf{p}_{i}\right\|\right) d \mathbf{x}\right.
$$

Definition

A random variable $R \in[0, \infty)$ has Rayleigh distribution with parameter σ if its density function is $f(x ; \sigma)=\frac{x}{\sigma^{2}} e^{-x^{2} / 2 \sigma^{2}}$.

Case study

Theorem

Assume that the radius r_{i} of the i th ball is a random variable with Rayleigh distribution with parameter $\sigma_{i}=\frac{1}{\sqrt{2 m_{i}}}$. Then

$$
E\left(r_{i}\right)=\sqrt{\frac{\pi}{2}} \sigma_{i}=\frac{1}{2} \sqrt{\frac{\pi}{m_{i}}},
$$

$-$

$$
E\left(\operatorname{Vol}\left(B\left(\mathbf{p}_{i}, r_{i}\right)\right)=\left(\pi / m_{i}\right)^{n / 2}\right.
$$

$$
E\left(\operatorname{Vol}\left(\bigcap B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right)=\left(\frac{\pi}{M}\right)^{n / 2} e^{-\frac{\sum_{i<j} m_{i} m_{j}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|^{2}}{M}},
$$

where $M=\sum_{i=1}^{N} m_{i}$.

Corollary

When the centers are contracted, the expectation of the volume of the intersection does not decrease.

Case study

Theorem (R. Alexander)

For $M=\sum_{i=1}^{N} m_{i}$, then If the smallest ball containing the point set \mathbf{p}_{i} is centered at $\mathbf{0}$ and has radius R, then

$$
\frac{\sum_{i<j} m_{i} m_{j}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|^{2}}{M} \leq M R^{2}
$$

and equality holds if and only if the mass center of the weighted point set (\mathbf{p}_{i}, m_{i}) is \mathbf{o}.
Corollary (Kirszbraun's theorem)
When the point set is contracted, R does not increase.
Corollary

$$
E\left(\operatorname{Vol}\left(\bigcap B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right) \geq\left(\frac{\pi}{M}\right)^{n / 2} e^{-M R^{2}},
$$

and equality holds if and only if the mass center of the weighted point set $\left(\mathbf{p}_{i}, m_{i}\right)$ is \mathbf{o}.

Case study

Monotonicity of the expectation

$$
E\left(\operatorname{Vol}\left(\bigcup B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right)=\sum_{\emptyset \neq I \subseteq N}(-1)^{|I|+1}\left(\frac{\pi}{M_{I}}\right)^{n / 2} e^{-\frac{\sum_{i<j \in I} m_{i} m_{j}\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|^{2}}{M_{I}}}
$$

of the volume of the union is not obvious.

Question

Is the RHS a monotone function of the distances $d_{i j}=\left\|\mathbf{p}_{i}-\mathbf{p}_{j}\right\|$?
Assume all the $d_{i, j}$'s depend smoothly on a parameter t. Then

$$
\frac{d}{d t} \mathrm{RHS}=\sum_{i<j}\left(\sum_{\{i, j\} \subseteq I \subset N}(-1)^{|I|} \frac{\pi^{n / 2} m_{i} m_{j}}{M_{I}^{n / 2+1}} e^{-\frac{\sum_{k<l \in I} m_{k} m_{l} d_{k l}^{2}}{M_{I}}}\right)\left(d_{i j}^{2}\right)^{\prime}
$$

The RHS is monotone function of the distances if the coefficient of $\left(d_{i j}^{2}\right)^{\prime}$ is non-negative.

So the question is

$$
\sum_{\{i, j\} \subseteq I \subset N}(-1)^{|I|} \frac{\pi^{n / 2} m_{i} m_{j}}{M_{I}^{n / 2+1}} e^{-\frac{\sum_{k<l \in I} m_{k} m_{l} d_{k l}^{2}}{M_{I}}} \geq 0 ?
$$

Observation
If the distances $d_{k l}\left(t_{0}\right)$ can be realized as distances between points $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N} \in \mathbb{E}^{n+2}$, then for the random balls $B_{i}^{n+2}=B_{i}^{n+2}\left(\mathbf{u}_{i}, r_{i}\right)$ we have

$$
\begin{aligned}
& E\left(\operatorname{Vol}_{n+2}\left(B_{i}^{n+2} \cap B_{j}^{n+2} \backslash \bigcup_{k \notin\{i, j\}} B_{k}^{n+2}\right)\right. \\
& \\
& =\sum_{\{i, j\} \subseteq I \subset N}(-1)^{|I|}\left(\frac{\pi}{M_{I}}\right)^{n / 2+1} e^{-\frac{\sum_{k<l \in I} m_{k} m_{l}\left|r_{k}-r_{l}\right|^{2}}{M_{I}}} \geq 0 .
\end{aligned}
$$

Corollary

$E\left(\operatorname{Vol}\left(\bigcup_{i} B_{i}\right)\right)$ does not decrease if there is an expansive homotopy of the centers in \mathbb{E}^{n+2}.

For balls moving in \mathbb{E}^{n}, compare the formulae

$$
\begin{aligned}
& \frac{d}{d t} E\left(\operatorname{Vol}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right) \\
& \quad=\sum_{i<j}\left(\sum_{\{i, j\} \subseteq I \subset N}(-1)^{|I|} \frac{\pi^{n / 2} m_{i} m_{j}}{M_{I}^{n / 2+1}} e^{-\frac{\sum_{k<l \in I} m_{k} m_{l} d_{k l}^{2}}{M_{I}}}\right)\left(d_{i j}^{2}\right)^{\prime}
\end{aligned}
$$

and

$$
\left.\frac{d}{d t} \operatorname{Vol}\left(\bigcup_{i=1}^{N} B\left(\mathbf{p}_{i}, r_{i}\right)\right)\right)=\sum_{i<j} \operatorname{Vol}_{n-1}\left(W_{i j}\right) d_{i j}^{\prime}
$$

where $W_{i j}$ is the wall between the truncated Voronoi cells of the i th and j th balls.

Question

Does the equality

$$
E\left(\operatorname{Vol}_{n-1}\left(W_{i j}\right)\right)=\left(\sum_{\{i, j\} \subseteq I \subset N}(-1)^{|I|} \frac{\pi^{n / 2} m_{i} m_{j}}{M_{I}^{n / 2+1}} e^{\left.-\frac{\sum_{k<l \in I m_{k} m_{l} d_{k l}^{2}}^{M_{I}}}{}\right) 2 d_{i j} .{ }^{\prime} .}\right.
$$

hold?

