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20 1 Sphere Packings

Recall that the Voronoi cell of a unit ball in a packing of unit balls in Ed

is the set of points that are not farther away from the center of the given

ball than from any other ball’s center. As is well known, the Voronoi cells

of a unit ball packing in Ed form a tiling of Ed. One of the most attractive

results on the sphere packing problem was proved by C. A. Rogers [218] in

1958. It was rediscovered by Baranovskii [20] and extended to spherical and

hyperbolic spaces by Böröczky [89]. It can be phrased as follows. Take a regular

d-dimensional simplex of edge length 2 in Ed and then draw a d-dimensional

unit ball around each vertex of the simplex. Let σd denote the ratio of the

volume of the portion of the simplex covered by balls to the volume of the

simplex.

Theorem 1.4.6 The volume of any Voronoi cell in a packing of unit balls in
Ed is at least ωd

σd
, where ωd denotes the volume of a d-dimensional unit ball.

The following strengthening of Theorem 1.4.6 has been proved by the

author in [55]. (See also [54] for a somewhat simpler proof.)

Theorem 1.4.7 The surface volume of any Voronoi cell in a packing of unit
balls in Ed, d ≥ 2 is at least dωd

σd
.

Indeed, Theorem 1.4.7 implies Theorem 1.4.6 by observing that the volume

of a Voronoi cell in a packing of unit balls in Ed is at least as large as
1
d times

the surface volume of the Voronoi cell in question. The next theorem due to

the author [56] improves the estimate of Theorem 1.4.7 even further for all

d ≥ 8. For this we need a bit of notation. As usual, let lin(·), aff(·), conv(·),
vold(·), ωd, Svold−1(·), dist(·, ·), � · �, and o refer to the linear hull, the affine

hull, the convex hull in Ed, the d-dimensional Euclidean volume measure, the

d-dimensional volume of a d-dimensional unit ball, the (d − 1)-dimensional

spherical volume measure, the distance function in Ed, the standard Euclidean

norm, and to the origin in Ed.

Let conv{o,w1, . . . ,wd} be a d-dimensional simplex having the property

that the linear hull lin{wj −wi|i < j ≤ d} is orthogonal to the vector wi in

Ed, d ≥ 8 for all 1 ≤ i ≤ d− 1; that is, let

conv{o,w1, . . . ,wd}

be a d-dimensional orthoscheme in Ed. Moreover, let

�wi� =

�
2i

i+ 1
for all 1 ≤ i ≤ d.

It is clear that in the right triangle � wd−2wd−1wd with right angle at the

vertex wd−1 we have the inequality �wd − wd−1� =

�
2

d(d+1) <
�

2
(d−1)d =

�wd−1 − wd−2� and therefore ∠wd−1wd−2wd < π
4 . Now, in the plane

aff{wd−2,wd−1, wd} of the triangle � wd−2wd−1wd let
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Conjecture 1.4.3 The surface area of any Voronoi cell in a packing with
unit balls in E3 is at least as large as 16.6508 . . ., the surface area of a regular
dodecahedron of inradius 1.

It is easy to see that Conjecture 1.4.3 implies Theorem 1.4.2. The first
efforts for a proof of the Strong Dodecahedral Conjecture were made by the
author and Daróczy-Kiss [63]. In order to phrase their result properly we need
to introduce a bit of terminology. A face cone of a Voronoi cell in a packing
with unit balls in E3 is the convex hull of the chosen face and the center of the
unit ball sitting in the given Voronoi cell. The surface area density of a unit
ball in a face cone is simply the spherical area of the region of the unit sphere
(centered at the apex of the face cone) that belongs to the face cone divided
by the Euclidean area of the face. It should be clear from these definitions
that if we have an upper bound for the surface area density in face cones of
Voronoi cells, then the reciprocal of this upper bound times 4π (the surface
area of a unit ball) is a lower bound for the surface area of Voronoi cells. Now
we are ready to state the main theorem of [63].

Theorem 1.4.4 The surface area density of a unit ball in any face cone of a
Voronoi cell in an arbitrary packing of unit balls of E3 is at most

−9π + 30 arccos
�√

3
2 sin

�
π
5

��

5 tan
�
π
5

� = 0.77836 . . . ,

and so the surface area of any Voronoi cell in a packing with unit balls in E3

is at least
20π tan

�
π
5

�

−9π + 30 arccos
�√

3
2 sin

�
π
5

�� = 16.1445 . . . .

Moreover, the above upper bound 0.77836 . . . for the surface area density is
best possible in the following sense. The surface area density in the face cone
of any n-sided face with n = 4, 5 of a Voronoi cell in an arbitrary packing of
unit balls of E3 is at most

3(2− n)π + 6n arccos
�√

3
2 sin(πn )

�

n tan(πn )

and equality is achieved when the face is a regular n-gon inscribed in a circle
of radius 1√

3 cos
�

π
n

� and positioned such that it is tangent to the corresponding

unit ball of the packing at its center.

The following recent improvement was obtained in [5].

Theorem 1.4.5 The surface area of any Voronoi cell in a packing with unit
balls in E3 is at least 16.1977 . . ..

Claude Ambrose Rogers FRS
(1 November 1920 – 5 
December 2005) 
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For d=3 the lower bound obtained is 16.1433… . 
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Abstract. The sphere packing problem asks for the densest packing of unit balls in Ed .
This problem has its roots in geometry, number theory and information theory and it is part
of Hilbert’s 18th problem. One of the most attractive results on the sphere packing problem
was proved by Rogers in 1958. It can be phrased as follows. Take a regular d-dimensional
simplex of edge length 2 in Ed and then draw a d-dimensional unit ball around each vertex
of the simplex. Let σd denote the ratio of the volume of the portion of the simplex covered
by balls to the volume of the simplex. Then the volume of any Voronoi cell in a packing
of unit balls in Ed is at least ωd/σd , where ωd denotes the volume of a d-dimensional
unit ball. This has the immediate corollary that the density of any unit ball packing in Ed

is at most σd . In 1978 Kabatjanskii and Levenštein improved this bound for large d. In
fact, Rogers’ bound is the presently known best bound for 4 ≤ d ≤ 42, and above that
the Kabatjanskii–Levenštein bound takes over. In this paper we improve Rogers’ upper
bound for the density of unit ball packings in Euclidean d-space for all d ≥ 8 and improve
the Kabatjanskii–Levenštein upper bound in small dimensions. Namely, we show that the
volume of any Voronoi cell in a packing of unit balls in Ed , d ≥ 8, is at least ωd/σ̂d and so
the density of any unit ball packing in Ed , d ≥ 8, is at most σ̂d , where σ̂d is a geometrically
well-defined quantity satisfying the inequality σ̂d < σd for all d ≥ 8. We prove this by
showing that the surface area of any Voronoi cell in a packing of unit balls in Ed , d ≥ 8, is
at least (d · ωd)/σ̂d .
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Abstract. In this paper we prove the following theorem. The surface area density of a unit ball in
any face cone of a Voronoi cell in an arbitrary packing of unit balls of Euclidean 3-space is at most

"9!þ 30 arccos
ffiffi
3

p

2 sin !
5

" #$ %

5 tan !
5

" # ¼ 0:77836 . . . ;

and so the surface area of any Voronoi cell in a packing with unit balls in Euclidean 3-space is at least

20! % tan !
5

" #

"9!þ 30 arccos
ffiffi
3

p

2 sin !
5

" #$ % ¼ 16:1445 . . . :

This result and the ideas of its proof support the Strong Dodecahedral Conjecture according to which the
surface area of any Voronoi cell in a packing with unit balls in Euclidean 3-space is at least as large as
16:6508 . . . , the surface area of a regular dodecahedron of inradius 1.

Mathematics Subject Classification: 52C17, 52A40
Key words: Sphere packings, Voronoi cells, surface area

1. Introduction

A family of non-overlapping 3-dimensional balls of radii 1 in Euclidean 3-
space, E3 is called a unit ball packing in E3: The density of the packing is the
proportion of space covered by these unit balls. The sphere packing problem asks
for the densest packing of unit balls in E3. The conjecture that the density of any
unit ball packing in E3 is at most !ffiffiffiffi

18
p ¼ 0:74078 . . . is often attributed to Kepler.

Using an ingenious argument which works in any dimension, Rogers [13] obtained
the upper bound 0:77963 . . . for the density of unit ball packings in E3: This bound
has been improved by Lindsey [10], and Muder ([11], [12]) to 0:773055 . . . . Hsiang
([8], [9]) proposed an elaborate line of attack (along the ideas of L. Fejes T"ooth
suggested 40 years earlier), but his claim that he settled Kepler’s conjecture seems

! The authors were partially supported by the Hung. Nat. Sci. Found (OTKA), grant no. T043556.
y Supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.
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Abstract

We prove that the mininum surface area of a Voronoi cell in a unit
ball packing in E3 is at least 16.1977. This result provides further support for
the Strong Dodecahedral Conjecture according to which the minimum surface
area of a Voronoi cell in a 3-dimensional unit ball packing is at least as large
as the surface area of a regular dodecahedron of inradius 1, which is about
16.6508 . . . .

1. Introduction

A family B of unit balls in E3 forms a packing if no two members of B have a
common interior point. The Voronoi cell V (B) of B ∈ B is the set of points x ∈ E3

with the property that x is closer to B than to any other ball in B.
It is well-known that Voronoi cells are convex polyhedra. Since we are in-

terested in the minimum surface area that a Voronoi cell can have in such a ball
packing, we may assume that the packing is reasonably dense, so the Voronoi cell
in question is a polytope.

Mathematics subject classification number: 52C17, 52A40.
Key words and phrases: Strong Dodecahedral Conjecture, sphere packings, surface

area, Voronoi cell.
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where CL denotes the cube centered at the origin o with edges parallel to

the coordinate axes of E3
and having edge length L furthermore, sarea(·)

and card(·) denote the surface area and cardinality of the corresponding sets.

(We note that it is rather straightforward to show that s(T ) is independent

from the choice of the coordinate system of E3
.)

There is very natural way to generate a large family of normal tilings.

Namely, let PR be an arbitrary packing of unit balls in E3
with the property

that each closed ball of radius R in E3
contains the center of at least one

unit ball in PR. Recall that the Voronoi cell of a unit ball in PR is the

set of points that are not farther away from the center of the given ball

than from any other ball’s center. It is well known that the Voronoi cells

in question form a tiling of E3
(for more details see [12]). Furthermore, the

Voronoi tiling obtained in this way, is going to be a normal one because each

Voronoi cell is contained in the closed ball of radius R concentric to the unit

ball of the given Voronoi cell and therefore the diameter of each Voronoi cell

is at most 2R.

In the second half of this paper, by adjusting Kertész’s volume estimation

technique ([10]) to our problem on estimating surface area, we give a proof

of the following inequality. It is likely that our lower bound can be improved

further however, any such improvement would require additional new ideas.

Theorem 1.1 Let T be an arbitrary normal tiling of E3. Then the average
surface area of the cells in T is always at least 24√

3
, i.e.,

s(T ) ≥ 24√
3
= 13.8564... .

Recall that in the face-centered cubic lattice packing of unit balls in E3
,

when each ball is touched by 12 others, the Voronoi cells of the unit balls

are regular rhombic dodecahedra of inradius 1 and of surface area 12
√
2

(for more details on the geometry involved see [4]). Thus, it is very natural

to raise the following problem: prove or disprove that if T is an arbitrary
normal tiling of E3, then

s(T ) ≥ 12

√
2 = 16.9705... . (1)

Let us mention that an affirmative answer to (1) for the family of Voronoi

tilings of unit ball packings would imply the Kepler conjecture. As is well

known, the Kepler conjecture has been proved by Hales in a sequence of

difficult papers ([5], [6], [7], [8], and [9]) concluding that the density of any

unit ball packing in E3
is at most

π√
18
. Indeed, if s(T ) ≥ 12

√
2 were true

2
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Abstract

In this short paper we raise and investigate the following problem:
If the Euclidean 3-space is partitioned into convex cells each containing
a unit ball, how should the shapes of the cells be designed to minimize
the average surface area of the cells? In particular, we prove that the
average surface area in question is always at least 24√

3
= 13.8564....

1 Introduction

The central problem that we raise in this short paper can be phrased in-
formally as follows: if the Euclidean 3-space is partitioned into convex cells
each containing a unit ball, how should the shapes of the cells be designed
to minimize the average surface area of the cells? In order to state our
problem in more precise terms we proceed as follows. Let T be a tiling of
the 3-dimensional Euclidean space E3 into convex polyhedra Pi, i = 1, 2, . . .
each containing a unit ball say, Pi containing the closed 3-dimensional ball
Bi centered at the point oi having radius 1 for i = 1, 2, . . . . Also, we assume
that there is a finite upper bound for the diameters of the convex cells in T ,
i.e., sup{diam(Pi)|i = 1, 2, . . . } < ∞, where diam(·) denotes the diameter
of the corresponding set. In short, we say that T is a normal tiling of E3

with the underlying packing P of the unit balls Bi, i = 1, 2, . . . . Then we
define the (lower) average surface area s(T ) of the cells in T as follows:

s(T ) := lim inf
L→∞

�
{i|Bi⊂CL} sarea(Pi ∩CL)

card{i|Bi ⊂ CL}
,

∗Keywords: normal tiling, average surface area, unit sphere packing, foam problem.
2010 Mathematics Subject Classification: 52C17, 52C22, 05B40, 05B45, and 52B60.
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where CL denotes the cube centered at the origin o with edges parallel to

the coordinate axes of E3
and having edge length L furthermore, sarea(·)

and card(·) denote the surface area and cardinality of the corresponding sets.

(We note that it is rather straightforward to show that s(T ) is independent

from the choice of the coordinate system of E3
.)

There is very natural way to generate a large family of normal tilings.

Namely, let PR be an arbitrary packing of unit balls in E3
with the property

that each closed ball of radius R in E3
contains the center of at least one

unit ball in PR. Recall that the Voronoi cell of a unit ball in PR is the

set of points that are not farther away from the center of the given ball

than from any other ball’s center. It is well known that the Voronoi cells

in question form a tiling of E3
(for more details see [12]). Furthermore, the

Voronoi tiling obtained in this way, is going to be a normal one because each

Voronoi cell is contained in the closed ball of radius R concentric to the unit

ball of the given Voronoi cell and therefore the diameter of each Voronoi cell

is at most 2R.

In the second half of this paper, by adjusting Kertész’s volume estimation

technique ([10]) to our problem on estimating surface area, we give a proof

of the following inequality. It is likely that our lower bound can be improved

further however, any such improvement would require additional new ideas.

Theorem 1.1 Let T be an arbitrary normal tiling of E3. Then the average
surface area of the cells in T is always at least 24√

3
, i.e.,

s(T ) ≥ 24√
3
= 13.8564... .

Recall that in the face-centered cubic lattice packing of unit balls in E3
,

when each ball is touched by 12 others, the Voronoi cells of the unit balls

are regular rhombic dodecahedra of inradius 1 and of surface area 12
√
2

(for more details on the geometry involved see [4]). Thus, it is very natural

to raise the following problem: prove or disprove that if T is an arbitrary
normal tiling of E3, then

s(T ) ≥ 12

√
2 = 16.9705... . (1)

Let us mention that an affirmative answer to (1) for the family of Voronoi

tilings of unit ball packings would imply the Kepler conjecture. As is well

known, the Kepler conjecture has been proved by Hales in a sequence of

difficult papers ([5], [6], [7], [8], and [9]) concluding that the density of any

unit ball packing in E3
is at most

π√
18
. Indeed, if s(T ) ≥ 12

√
2 were true

2

Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

�
{i|Bi⊂CLN

} sarea(Pi ∩CLN )

card{i|Bi ⊂ CLN }
≥ 24√

3
, (19)

finishing the proof of Theorem 1.1.
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(for more details see [12]). Furthermore, the

Voronoi tiling obtained in this way, is going to be a normal one because each

Voronoi cell is contained in the closed ball of radius R concentric to the unit

ball of the given Voronoi cell and therefore the diameter of each Voronoi cell

is at most 2R.

In the second half of this paper, by adjusting Kertész’s volume estimation

technique ([10]) to our problem on estimating surface area, we give a proof

of the following inequality. It is likely that our lower bound can be improved

further however, any such improvement would require additional new ideas.

Theorem 1.1 Let T be an arbitrary normal tiling of E3. Then the average
surface area of the cells in T is always at least 24√

3
, i.e.,

s(T ) ≥ 24√
3
= 13.8564... .

Recall that in the face-centered cubic lattice packing of unit balls in E3
,

when each ball is touched by 12 others, the Voronoi cells of the unit balls

are regular rhombic dodecahedra of inradius 1 and of surface area 12
√
2

(for more details on the geometry involved see [4]). Thus, it is very natural

to raise the following problem: prove or disprove that if T is an arbitrary
normal tiling of E3, then

s(T ) ≥ 12

√
2 = 16.9705... . (1)

Let us mention that an affirmative answer to (1) for the family of Voronoi

tilings of unit ball packings would imply the Kepler conjecture. As is well

known, the Kepler conjecture has been proved by Hales in a sequence of

difficult papers ([5], [6], [7], [8], and [9]) concluding that the density of any

unit ball packing in E3
is at most

π√
18
. Indeed, if s(T ) ≥ 12

√
2 were true

2

for the Voronoi tilings T of unit ball packings P in E3, then based on the

obvious inequalities

�

{i|Bi⊂CL}

vol(Pi ∩CL) ≤ vol(CL) and
1

3
sarea(Pi ∩CL) ≤ vol(Pi ∩CL),

(where vol(·) denotes the volume of the corresponding set) we would get

that the (upper) density δ(P) := lim supL→∞
4π
3 card{i|Bi⊂CL}

vol(CL)
of the packing

P must satisfy the inequality

δ(P) ≤ lim sup
L→∞

4π
3 card{i|Bi ⊂ CL}�

{i|Bi⊂CL} vol(Pi ∩CL)

≤ lim sup
L→∞

4πcard{i|Bi ⊂ CL}�
{i|Bi⊂CL} sarea(Pi ∩CL)

=
4π

s(T )
≤ π√

18

Thus, one could regard the affirmative version of (1), stated for the Voronoi

tilings of unit ball packings, as a strong version of the Kepler conjecture.
As an additional observation we mention that an affirmative answer to

(1) would imply also the rhombic dodecahedral conjecture of the author

published in [2]. According to that conjecture the surface area of any 3-

dimensional parallelohedron of inradius at least 1 (i.e., the surface area of

any convex polyhedron containing a unit ball and having a family of trans-

lates tiling E3) is at least as large as the surface area of a regular rhombic

dodecahedron of inradius 1.

Last but not least, it is very tempting to further relax the conditions in

our original problem by replacing convex cells with cells that are measurable

and have measurable boundaries and ask the following more general ques-

tion: if the Euclidean 3-space is partitioned into cells each containing a unit
ball, how should the shapes of the cells be designed to minimize the average
surface area of the cells? One can regard this question a foam problem, since

foams are simply tilings of space that try to minimize surface area. Although

foams are well studied (see the highly elegant book [11] of Morgan), it is far

not clear what would be the proper minimizer for the foam question just

raised.

2 Proof of Theorem 1.1

First, we prove the following “compact” version of Theorem 1.1. It is also a

surface area analogue of the volume estimating theorem in [10].

3
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Brakke, Ken [brakke@susqu.edu] 
Sent:   October-31-11 6:41 AM 
To:   
Frank Morgan [Frank.Morgan@williams.edu] 
Cc:   
Karoly Bezdek; John M Sullivan [Sullivan@Math.TU-Berlin.DE] 
Attachments:   
williams-balls.gif‎ (169 KB‎) 
Frank, 
 
I did a Williams cell foam with balls.  The popping pattern for the rhombic tetrakaidecahedra turned 
out to be alternating planes of uniform direction, but with just two directions instead of all three 
possibilities.  I've attached an image of two Williams cells with red where they drape over the balls.  
The hexagons get tilted symmetrically (as in the Kelvin version I sent you before), so there are two 
small contact circles near their centers.  The pentagons get tilted just one way, so they get larger 
single contact patches.  The area of a cell turns out to be 16.95753, compared to 16.958261 for 
Kelvin, so Williams seems to win by a hair. 
 
Ken 

Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

�
{i|Bi⊂CLN

} sarea(Pi ∩CLN )

card{i|Bi ⊂ CLN }
≥ 24√

3
, (19)

finishing the proof of Theorem 1.1.
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Let us mention that an affirmative answer to (1) for the family of Voronoi
tilings of unit ball packings would imply the Kepler conjecture. As is well
known, the Kepler conjecture has been proved by Hales in a sequence of
difficult papers ([8], [9], [10], [11], and [12]) concluding that the density of
any unit ball packing in E3 is at most π√

18
. Indeed, if s(T ) ≥ 12

√
2 were

true for the Voronoi tilings T of unit ball packings P in E3, then based on
the obvious inequalities

�

{i|Bi⊂CL}

vol(Pi ∩CL) ≤ vol(CL) and
1

3
sarea(Pi ∩CL) ≤ vol(Pi ∩CL),

(where vol(·) denotes the volume of the corresponding set) we would get

that the (upper) density δ(P) := lim supL→∞
4π
3 card{i|Bi⊂CL}

vol(CL)
of the packing

P must satisfy the inequality

δ(P) ≤ lim sup
L→∞

4π
3 card{i|Bi ⊂ CL}�

{i|Bi⊂CL} vol(Pi ∩CL)

≤ lim sup
L→∞

4πcard{i|Bi ⊂ CL}�
{i|Bi⊂CL} sarea(Pi ∩CL)

=
4π

s(T )
≤ π√

18

Thus, one could regard the affirmative version of (1), stated for the Voronoi
tilings of unit ball packings, as a strong version of the Kepler conjecture.

As an additional observation we mention that an affirmative answer to
(1) would imply also the rhombic dodecahedral conjecture of the author
published in [4]. According to that conjecture the surface area of any 3-
dimensional parallelohedron of inradius at least 1 (i.e., the surface area of
any convex polyhedron containing a unit ball and having a family of trans-
lates tiling E3) is at least as large as the surface area of a regular rhombic
dodecahedron of inradius 1.

Last but not least, it is very tempting to further relax the conditions in
our original problem by replacing convex cells with cells that are measurable
and have measurable boundaries and ask the following more general ques-
tion: if the Euclidean 3-space is partitioned into cells each containing a unit
ball, how should the shapes of the cells be designed to minimize the average
surface area of the cells? One can regard this question a foam problem, since
foams are simply tilings of space that try to minimize surface area. Although
foams are well studied (see the relevant sections of the highly elegant book
[15] of Morgan), it is far not clear what would be a good candidate for the
proper minimizer in the foam question just raised.

3
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ball, how should the shapes of the cells be designed to minimize the average
surface area of the cells? One can regard this question a foam problem, since

foams are simply tilings of space that try to minimize surface area. Although

foams are well studied (see the highly elegant book [11] of Morgan), it is far

not clear what would be the proper minimizer for the foam question just

raised.

2 Proof of Theorem 1.1

First, we prove the following “compact” version of Theorem 1.1. It is also a

surface area analogue of the volume estimating theorem in [10].

3

Theorem 2.1 If the cube C is partitioned into the convex cells Q1,Q2, . . . ,
Qn each containing a unit ball in E3, then the sum of the surface areas of
the n convex cells is at least 24√

3
n, i.e.,

n�

i=1

sarea(Qi) ≥
24√
3
n .

Proof: Let E(Qi) denote the family of the edges of the convex polyhedron

Qi and let ecurv(Qi) :=
�

e∈E(Qi)
L(e) tan αe

2 be the so-called edge curvature
of Qi, where L(e) denotes the length of the edge e ∈ E(Qi) and αe is the

angle between the outer normal vectors of the two faces of Qi meeting along

the edge e, 1 ≤ i ≤ n. It is well known that the Brunn-Minkowski inequality

implies the following inequality (for more details we refer the interested

reader to p. 287 in [4]):

sarea
2
(Qi) ≥ 3vol(Qi)ecurv(Qi) . (2)

Also, it will be more proper for us to use the inner dihedral angles βe :=

π − αe and the relevant formula

ecurv(Qi) =
�

e∈E(Qi)

L(e) cot
βe
2

. (3)

As, by assumption, Qi contains a unit ball therefore

vol(Qi) ≥
1

3
sarea(Qi) . (4)

Hence, (2), (3), and (4) imply in a straightforward way that

sarea(Qi) ≥
�

e∈E(Qi)

L(e) cot
βe
2

(5)

holds for all 1 ≤ i ≤ n.
Now, let s ⊂ C be a closed line segment along which exactly k mem-

bers of the family {Q1,Q2, . . . , Qn} meet having inner dihedral angles

β1,β2, . . . ,βk. There are the following three possibilities:

(a) s is on an edge of the cube C;

(b) s is in the relative interior either of a face of C or of a face of a convex

cell in the family {Q1,Q2, . . . , Qn};
(c) s is in the interior of C and not in the relative interior of any face of

any convex cell in the family {Q1,Q2, . . . , Qn}.

4

Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

�
{i|Bi⊂CLN

} sarea(Pi ∩CLN )

card{i|Bi ⊂ CLN }
≥ 24√

3
, (19)

finishing the proof of Theorem 1.1.
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Theorem 2.1 If the cube C is partitioned into the convex cells Q1,Q2, . . . ,
Qn each containing a unit ball in E3, then the sum of the surface areas of
the n convex cells is at least 24√
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of Qi, where L(e) denotes the length of the edge e ∈ E(Qi) and αe is the

angle between the outer normal vectors of the two faces of Qi meeting along

the edge e, 1 ≤ i ≤ n. It is well known that the Brunn-Minkowski inequality

implies the following inequality (for more details we refer the interested

reader to p. 287 in [4]):
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2
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�

e∈E(Qi)
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βe
2
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As, by assumption, Qi contains a unit ball therefore

vol(Qi) ≥
1

3
sarea(Qi) . (4)

Hence, (2), (3), and (4) imply in a straightforward way that

sarea(Qi) ≥
�

e∈E(Qi)

L(e) cot
βe
2

(5)

holds for all 1 ≤ i ≤ n.
Now, let s ⊂ C be a closed line segment along which exactly k mem-

bers of the family {Q1,Q2, . . . , Qn} meet having inner dihedral angles

β1,β2, . . . ,βk. There are the following three possibilities:

(a) s is on an edge of the cube C;

(b) s is in the relative interior either of a face of C or of a face of a convex

cell in the family {Q1,Q2, . . . , Qn};
(c) s is in the interior of C and not in the relative interior of any face of

any convex cell in the family {Q1,Q2, . . . , Qn}.
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4
In each of the above cases we can make the following easy observations:

(a) β1 + β2 + · · ·+ βk =
π
2 with k ≥ 1;

(b) β1 + β2 + · · ·+ βk = π with k ≥ 2;

(c) β1 + β2 + · · ·+ βk = 2π with k ≥ 3.

As y = cotx is convex and decreasing over the interval 0 < x ≤ π
2

therefore the following inequalities must hold:

(a) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

4k ≥ k;

(b) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

2k ≥ k;

(c) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

k ≥ 1√
3
k.

In short, the following inequality holds in all three cases:

cot
β1
2

+ cot
β2
2

+ · · ·+ cot
βk
2

≥ 1√
3
k . (6)

Thus, by adding together the inequalities (5) for all 1 ≤ i ≤ n and using

(6) we get that

n�

i=1

sarea(Qi) ≥
1√
3

n�

i=1

�

e∈E(Qi)

L(e) . (7)

Finally, recall the elegant theorem of Besicovitch and Eggleston [1] claim-

ing that the total edge length of any convex polyhedron containing a unit

ball in E3
is always at least as large as the total edge length of a cube

circumscribed a unit ball. This implies that

�

e∈E(Qi)

L(e) ≥ 24 (8)

holds for all 1 ≤ i ≤ n. Hence, (7) and (8) finish the proof of Theorem 2.1.

✷

Second, we take a closer look of the given normal tiling T defined in

details in the first Section of this paper and using Theorem 2.1 we give a

proof of Theorem 1.1.

By assumption D := sup{diam(Pi)|i = 1, 2, . . . } < ∞. Thus, clearly

each closed ball of radius D in E3
contains at least one of the convex polyhe-

dra Pi, i = 1, 2, . . . (forming the tiling T of E3
). Now, let CLN , N = 1, 2, . . .

be an arbitrary sequence of cubes centered at the origin o with edges parallel

to the coordinate axes of E3
and having edge length LN , N = 1, 2, . . . with

limN→∞ Ln = ∞. It follows that

0 < lim inf
N→∞

4π
3 card{i|Bi ⊂ CLN }

vol(CLN )
≤ lim sup

N→∞

4π
3 card{i|Bi ⊂ CLN }

vol(CLN )
< 1. (9)

5
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Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

�
{i|Bi⊂CLN

} sarea(Pi ∩CLN )

card{i|Bi ⊂ CLN }
≥ 24√

3
, (19)

finishing the proof of Theorem 1.1.
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π
2 with k ≥ 1;

(b) β1 + β2 + · · ·+ βk = π with k ≥ 2;

(c) β1 + β2 + · · ·+ βk = 2π with k ≥ 3.

As y = cotx is convex and decreasing over the interval 0 < x ≤ π
2

therefore the following inequalities must hold:

(a) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

4k ≥ k;

(b) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

2k ≥ k;

(c) cot β1
2 + cot

β2
2 + · · ·+ cot

βk
2 ≥ k cot π

k ≥ 1√
3
k.

In short, the following inequality holds in all three cases:

cot
β1
2

+ cot
β2
2

+ · · ·+ cot
βk
2

≥ 1√
3
k . (6)

Thus, by adding together the inequalities (5) for all 1 ≤ i ≤ n and using

(6) we get that

n�

i=1

sarea(Qi) ≥
1√
3

n�

i=1

�

e∈E(Qi)

L(e) . (7)

Finally, recall the elegant theorem of Besicovitch and Eggleston [1] claim-

ing that the total edge length of any convex polyhedron containing a unit

ball in E3
is always at least as large as the total edge length of a cube

circumscribed a unit ball. This implies that

�

e∈E(Qi)

L(e) ≥ 24 (8)

holds for all 1 ≤ i ≤ n. Hence, (7) and (8) finish the proof of Theorem 2.1.

✷

Second, we take a closer look of the given normal tiling T defined in

details in the first Section of this paper and using Theorem 2.1 we give a

proof of Theorem 1.1.

By assumption D := sup{diam(Pi)|i = 1, 2, . . . } < ∞. Thus, clearly

each closed ball of radius D in E3
contains at least one of the convex polyhe-

dra Pi, i = 1, 2, . . . (forming the tiling T of E3
). Now, let CLN , N = 1, 2, . . .

be an arbitrary sequence of cubes centered at the origin o with edges parallel

to the coordinate axes of E3
and having edge length LN , N = 1, 2, . . . with

limN→∞ Ln = ∞. It follows that

0 < lim inf
N→∞

4π
3 card{i|Bi ⊂ CLN }

vol(CLN )
≤ lim sup

N→∞

4π
3 card{i|Bi ⊂ CLN }

vol(CLN )
< 1. (9)

5
Note that clearly

card{i|Pi ∩ bdCLN �= ∅}
card{i|Bi ⊂ CLN }

≤
�
vol(CLN+2D)− vol(CLN−2D)

�
vol(CLN )

vol(CLN )
4π
3 card{i|Bi ⊂ CLN }

(10)

moreover,

lim
N→∞

vol(CLN+2D)− vol(CLN−2D)

vol(CLN )
= 0. (11)

Thus, (9), (10), and (11) imply in a straightforward way that

lim
N→∞

card{i|Pi ∩ bdCLN �= ∅}
card{i|Bi ⊂ CLN }

= 0 . (12)

Moreover, (5) yields that

sarea(Pi) ≥ ecurv(Pi) =
�

e∈E(Pi)

L(e) cot
βe
2

(13)

holds for all i = 1, 2, . . . . As a next step, using

sarea(Pi) = sarea (bd(Pi ∩CL) \ bdCL) + δi (14)

and

ecurv(Pi) ≥
�

e∈E(bd(Pi∩CL)\bdCL)

L(e) cot
βe
2

(15)

(with bd(·) denoting the boundary of the corresponding set) we obtain the

following from (13):

sarea (bd(Pi ∩CL) \ bdCL) + δi ≥
�

e∈E(bd(Pi∩CL)\bdCL)

L(e) cot
βe
2

, (16)

where clearly 0 ≤ δi ≤ sarea(Pi). Hence, (16) combined with (6) yields

Corollary 2.2

f(L) :=
�

{i|intPi∩CL �=∅}

sarea
�
bd(Pi ∩CL) \ bdCL

�
+

�

{i|Pi∩bdCL �=∅}

δi

≥ g(L) :=
1√
3

�

{i|intPi∩CL �=∅}

� �

e∈E(bd(Pi∩CL)\bdCL)

L(e)

�
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Now, it is easy to see that

f(L) = ∆(L) +
�

{i|Bi⊂CL}

sarea(Pi ∩CL) , (17)

where 0 ≤ ∆(L) ≤ 2
�

{i|Pi∩bdCL �=∅} sarea(Pi).

Moreover, (8) implies that

g(L) ≥ −∆(L) +
�

{i|Bi⊂CL}

24√
3
, (18)

where 0 ≤ ∆(L) ≤
�

{i|Pi∩bdCL �=∅}
�

e∈E(Pi)
L(e).

Lemma 2.3
A := sup{sarea(Pi)|i = 1, 2, . . . } < ∞

and
E := sup{

�

e∈E(Pi)

L(e)|i = 1, 2, . . . } < ∞ .

Proof: As D = sup{diam(Pi)|i = 1, 2, . . . } < ∞ therefore according to

Jung’s theorem ([3]) each Pi is contained in a closed ball of radius

�
3
8D in

E3
. Thus, A ≤ 3

2πD
2 < ∞.

For a proof of the other claim recall that Pi contains the unit ball Bi

centered at oi. If the number of faces of Pi is fi, then Pi must have at least

fi neighbours (i.e., cells of T that have at least one point in common with

Pi) and as each neighbour is contained in the closed 3-dimensional ball of

radius 2D centered at oi therefore the number of neighbours of Pi is at most

(2D)
3 − 1 and so, fi ≤ 8D3 − 1. (Here, we have used the fact that each

neighbour contains a unit ball and therefore its volume is larger than
4π
3 .)

Finally, Euler’s formula implies that the number of edges of Pi is at most

3fi − 6 ≤ 24D3 − 9. Thus, E ≤ 24D4 − 9D < ∞ (because the length of any

edge of Pi is at most D). ✷

Thus, Corollary 2.2, (17), (18), and Lemma 2.3 imply the following in-

equality in a straightforward way.

Corollary 2.4

2Acard{i|Pi ∩ bdCL �= ∅}+
�

{i|Bi⊂CL} sarea(Pi ∩CL)

card{i|Bi ⊂ CL}

≥
−Ecard{i|Pi ∩ bdCL �= ∅}+

�
{i|Bi⊂CL}

24√
3

card{i|Bi ⊂ CL}
.
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Thus, Corollary 2.2, (17), (18), and Lemma 2.3 imply the following in-

equality in a straightforward way.

Corollary 2.4

2Acard{i|Pi ∩ bdCL �= ∅}+
�

{i|Bi⊂CL} sarea(Pi ∩CL)

card{i|Bi ⊂ CL}
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−Ecard{i|Pi ∩ bdCL �= ∅}+

�
{i|Bi⊂CL}

24√
3

card{i|Bi ⊂ CL}
.

7

Finally, Corollary 2.4 and (12) yield that

lim inf
N→∞

�
{i|Bi⊂CLN

} sarea(Pi ∩CLN )

card{i|Bi ⊂ CLN }
≥ 24√

3
, (19)

finishing the proof of Theorem 1.1.
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