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Failing the tests for rigidity

Tests for rigidity:

1 First-order rigidity (with matrices and rank);

2 necessary counts of edges and vertices (from first-order matrix,

at regular points);

3 necessary counts under symmetry (under symmetry regular

points);

4 shifts of dimension via coning;

5 global rigidity and stress matrices;
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Failing the tests for rigidity

Tests for rigidity:

1 First-order rigidity (with matrices and rank);

2 necessary counts of edges and vertices (from first-order matrix,

at regular points);

3 necessary counts under symmetry (under symmetry regular

points);

4 shifts of dimension via coning;

5 global rigidity and stress matrices;

Some finite motions follow from failures of these tests.

Some finite motions follow from further refinements.

Some finite motions follow from creation of continuous path.
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Failing the tests for rigidity

Tests for rigidity:

1 First-order rigidity (with matrices and rank);

2 necessary counts of edges and vertices (from first-order matrix,

at regular points);

3 necessary counts under symmetry (under symmetry regular

points);

4 shifts of dimension via coning;

5 global rigidity and stress matrices;

Some finite motions follow from failures of these tests.

Some finite motions follow from further refinements.

Some finite motions follow from creation of continuous path.

Bottema’s Mechanism

InfiniteGrid
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Frameworks

Euclidean Metric E
d ‖(x1, . . . , xd )‖ = x2

1 + . . . + x2
d

A framework (in E
d ) is a pair (G, p), where G is a graph and

p : V (G) → E
d is a map with p(u) 6= p(v) for all {u, v} ∈ E(G).
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Figure: Some frameworks in E
2

finite motion of a framework (G, p), is an assignment continuous

function p(t), 0 ≤ t < 1 to the vertices such that:

|pi(t) − pj(t)| = |pi(0) − pj(0)|, for all (i , j) ∈ E ;

non-trivial if |ph(t) − pk (t)| 6= |ph(0) − pk (0)| for some (h, k) /∈ E

and all 0 < t < 1.
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Infinitesimal motion

An infinitesimal motion of a framework (G, p) in E
d with

V (G) = {1, . . . , n} is a function u : V (G) → R
d such that

(pi − pj) · (ui − uj) = 0 for all {i , j} ∈ E(G), (1)

where ui denotes the vector u(i) for each i .
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Infinitesimal motion

An infinitesimal motion of a framework (G, p) in E
d with

V (G) = {1, . . . , n} is a function u : V (G) → R
d such that

(pi − pj) · (ui − uj) = 0 for all {i , j} ∈ E(G), (1)

where ui denotes the vector u(i) for each i .

The rigidity matrix of (G, p) is the |E(G)| × dn matrix R(G, p)









i j

...

{i , j} 0 . . . 0 (pi − pj) 0 . . . 0 (pj − pi) 0 . . . 0
...









kernel is space of infinitesimal motions.
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Infinitesimal flexibility

An infinitesimal motion u of (G, p) is an infinitesimal rigid motion (or

trivial infinitesimal motion) if it is an infinitesimal motion on a complete

graph on vertices spanning the space - or is a restriction of such a

motion to a subset of vertices.
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Infinitesimal flexibility

An infinitesimal motion u of (G, p) is an infinitesimal rigid motion (or

trivial infinitesimal motion) if it is an infinitesimal motion on a complete

graph on vertices spanning the space - or is a restriction of such a

motion to a subset of vertices.

(G, p) is called infinitesimally rigid in E
d if every infinitesimal motion of

(G, p) is an infinitesimal rigid motion.

Otherwise, (G, p) is called infinitesimally flexible.

An self-stress of a framework G(p) is a row dependence ω of the

rigidity matrix.

It is also viewed as a set of tensions (ωi,j > 0) and compressions

(ωi,j < 0) in the bars which reach equilibrium at all vertices.
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Examples of infinitesimal motions

p1 p2

u1
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(a)

p1 p2p3

u3
u1 = 0 u2 = 0

(b)

p6

p1

p2

p3

p4

p5

u6

u1

u2

u3u4

u5

(c)

Figure: An infinitesimal rigid motion (a) and infinitesimal flexes (b, c) of

frameworks in R
2.

Configuration p is regular for G if the rigidity matrix of G(p) has

maximal rank for G. Otherwise p is singular for G.
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Flexibility from Counts

Theorem (Asimov & Roth)

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) and the matrix has

rank < d |V | −
(

d+1
2

)

then the framework has a finite motion



Introduction Counts and Regular Points Flexibility from Symmetry Bipartite Frameworks Plane Grids, 3D analog What Else

Flexibility from Counts

Theorem (Asimov & Roth)

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) and the matrix has

rank < d |V | −
(

d+1
2

)

then the framework has a finite motion

Corollary

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) and there is a non-trivial infinitesimal

motion, then the framework G(p) has a finite motion
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Flexibility from Counts

Theorem (Asimov & Roth)

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) and the matrix has

rank < d |V | −
(

d+1
2

)

then the framework has a finite motion

Corollary

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) and there is a non-trivial infinitesimal

motion, then the framework G(p) has a finite motion

Corollary (Connelly)

If a framework G(p) on at least d vertices is at a regular point

(maximum rank rigidity matrix) has a finite motion, and G(q) does not

have a finite motion, then G(q) has a self-stress.
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Frameworks with symmetry

Guest, Kangwai, Fowler, Connelly, Schulze, W.

Let (G, p) be a (finite) framework with symmetry group S.

An infinitesimal motion u of (G, p) is S-symmetric if s
(

ui

)

= us(i) for

all i ∈ V (G) and all s ∈ S.
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Frameworks with symmetry

Guest, Kangwai, Fowler, Connelly, Schulze, W.

Let (G, p) be a (finite) framework with symmetry group S.

An infinitesimal motion u of (G, p) is S-symmetric if s
(

ui

)

= us(i) for

all i ∈ V (G) and all s ∈ S.

2D examples with mirror symmetry Cs:

(a) (b) (c)

(a) Cs-symmetric non-trivial infinitesimal motion;

(b) Cs-symmetric trivial infinitesimal motion;

(c) non-trivial infinitesimal motion which is not Cs-symmetric.
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The orbit rigidity matrix for symmetric frameworks

Let (G, p) be a framework in R
d with symmetry group S (assume: no

vertex or edge fixed by s ∈ S, s 6= id)

v0 = v
|S| (number of vertex orbits under the action of S).

e0 = e
|S| (number of edge orbits under the action of S).
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The orbit rigidity matrix for symmetric frameworks

Let (G, p) be a framework in R
d with symmetry group S (assume: no

vertex or edge fixed by s ∈ S, s 6= id)

v0 = v
|S| (number of vertex orbits under the action of S).

e0 = e
|S| (number of edge orbits under the action of S).

The orbit rigidity matrix O(G, p,S) is the e0 × dv0 matrix defined as







a b

0 . . . 0
(

pa − s(pb)
)

0 . . . 0
(

pb − s−1(pa)
)

0 . . . 0
...

...
...

...
...

0 . . . 0
(

2pa − s(pa) − s−1(pa)
)

0 . . . 0 0 0 . . . 0






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The orbit rigidity matrix for symmetric frameworks

Let (G, p) be a framework in R
d with symmetry group S (assume: no

vertex or edge fixed by s ∈ S, s 6= id)

v0 = v
|S| (number of vertex orbits under the action of S).

e0 = e
|S| (number of edge orbits under the action of S).

The orbit rigidity matrix O(G, p,S) is the e0 × dv0 matrix defined as







a b

0 . . . 0
(

pa − s(pb)
)

0 . . . 0
(

pb − s−1(pa)
)

0 . . . 0
...

...
...

...
...

0 . . . 0
(

2pa − s(pa) − s−1(pa)
)

0 . . . 0 0 0 . . . 0







p1

p2

p3

p4center

(G, p) with half-turn (C2) symmetry

1

2

C2

and its C2 orbit graph
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Sufficient condition for flexibility of symmetric frameworks

The kernel of the orbit matrix O(G, p,S) is the space of

S-symmetric infinitesimal motions of (G, p).
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Sufficient condition for flexibility of symmetric frameworks

The kernel of the orbit matrix O(G, p,S) is the space of

S-symmetric infinitesimal motions of (G, p).

For S-generic (G, p): ∃ an S-symmetric non-trivial infinitesimal

motion ⇔ ∃ a non-trivial symmetry-preserving finite motion.
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Sufficient condition for flexibility of symmetric frameworks

The kernel of the orbit matrix O(G, p,S) is the space of

S-symmetric infinitesimal motions of (G, p).

For S-generic (G, p): ∃ an S-symmetric non-trivial infinitesimal

motion ⇔ ∃ a non-trivial symmetry-preserving finite motion.

Let trivS denote the dimension of the space of trivial S-symmetric

infinitesimal motions (can easily be determined for each group S
using representation theory).
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Sufficient condition for flexibility of symmetric frameworks

The kernel of the orbit matrix O(G, p,S) is the space of

S-symmetric infinitesimal motions of (G, p).

For S-generic (G, p): ∃ an S-symmetric non-trivial infinitesimal

motion ⇔ ∃ a non-trivial symmetry-preserving finite motion.

Let trivS denote the dimension of the space of trivial S-symmetric

infinitesimal motions (can easily be determined for each group S
using representation theory).

Theorem (Schulze (2009); Schulze, W. (2010))

If (G, p) is S-generic and

e0 < 3v0 − trivS

then (G, p) has a symmetry-preserving non-trivial finite motion.
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Symmetry counts in 3D for finite motions

Counts for finite motions at symmetry regular configurations

Is fS = (3v0 − trivS) − e0 > 0?

S trivS e e0 3v0 − trivS fS
C1 6 3v − 6 3v0 − 6 3v0 − 6 0

C2 2 3v − 6 3v0 − 3 3v0 − 2 1

Cs 3 3v − 6 3v0 − 3 3v0 − 3 0

D2 0 3v − 4 3v0 − 1 3v0 1

D3 6 3v − 6 3v0 − 1 3v0 1

C1: no non-trivial symmetry

Ci : inversion symmetry

C2: half-turn symmetry

Cs: mirror symmetry

D2: 3 mutually perpendicular half-turn axes

D3: 3-fold axis and 3 half-turn axes perpendicular to this
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Symmetry counts in 3D for finite motions

Counts for finite motions at symmetry regular configurations

Is fS = (3v0 − trivS) − e0 > 0?

S trivS e e0 3v0 − trivS fS
C1 6 3v − 6 3v0 − 6 3v0 − 6 0

C2 2 3v − 6 3v0 − 3 3v0 − 2 1

Cs 3 3v − 6 3v0 − 3 3v0 − 3 0

D2 0 3v − 4 3v0 − 1 3v0 1

D3 6 3v − 6 3v0 − 1 3v0 1

C1: no non-trivial symmetry

Ci : inversion symmetry

C2: half-turn symmetry

Cs: mirror symmetry

D2: 3 mutually perpendicular half-turn axes

D3: 3-fold axis and 3 half-turn axes perpendicular to this

C2, D2 and D3 occur in a number of proteins - more next week.
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Coning and Spheres

In general, coning does not transfer finite motions from E
d to S

d .

However,

coning transfers undercounts, and therefore mechanisms due to

undercounts;

coning transfers regular points to regular points;

coning vertically over the point of a point group, transfers

symmetry to symmetry, and preserves rank of the orbit matrix;

coning transfers finite symmetric motion at symmetry regular

point to finite symmetric motion;

in particular, coning transfers symmetry based finite motion

between plane and the sphere.

generalizes to transfer of symmetry based finite motion between

Cayley-Klein metrics.

transfer of finite motions of C2-based flexible Bricard octahedra.
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Infinitesimal Motions of Complete Bipartite Frameworks

Theorem (Bolker&Roth, W.)

Given KA,B complete bipartite framework in dimension d, |A|, |B| ≥ d,

there is a non-trivial infinitesimal motion if, and only if either:

1 The vertices of each side affinely span the space, and all

vertices lie on a quadric surface in d-space;
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Infinitesimal Motions of Complete Bipartite Frameworks

Theorem (Bolker&Roth, W.)

Given KA,B complete bipartite framework in dimension d, |A|, |B| ≥ d,

there is a non-trivial infinitesimal motion if, and only if either:

1 The vertices of each side affinely span the space, and all

vertices lie on a quadric surface in d-space;

2 The vertices of one side A lie on a quadric within a hyperplane.
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Infinitesimal Motions of Complete Bipartite Frameworks

Theorem (Bolker&Roth, W.)

Given KA,B complete bipartite framework in dimension d, |A|, |B| ≥ d,

there is a non-trivial infinitesimal motion if, and only if either:

1 The vertices of each side affinely span the space, and all

vertices lie on a quadric surface in d-space;

2 The vertices of one side A lie on a quadric within a hyperplane.

When does this give finite motions?

K7,7 in 4-space must lie on a quadric (14 points always do).

|E | = 49 > 46 = 4(14) − 10 = 4|V | − 10

overbraced - has a finite motion, with no two bars rigidity attached.

K6,6 is a generic flexible circuit in 4-space.
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Focus on Flatness

Key examples: - Wunderlich (1977-79),

Examples of infinitesimal flexes and Conjectures - W.(1984),

Watson(2010)
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Focus on Flatness

Key examples: - Wunderlich (1977-79),

Examples of infinitesimal flexes and Conjectures - W.(1984),

Watson(2010)

Theorem (Schulze & W. (2011))

The configurations with points A on a quadric in hyperplane give finite

motions for ‘regular points’ of quadrics in hyperplane, points of B in at

most one region defined by the quadric.
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Focus on Flatness

Key examples: - Wunderlich (1977-79),

Examples of infinitesimal flexes and Conjectures - W.(1984),

Watson(2010)

Theorem (Schulze & W. (2011))

The configurations with points A on a quadric in hyperplane give finite

motions for ‘regular points’ of quadrics in hyperplane, points of B in at

most one region defined by the quadric.

This property of flatness is projectively invariant, and as such the

finite motion will transfer to the spherical metric, the hyperbolic metric,

the Minkowskian metric ... .

Have extensions for added bars to a complete bipartite framework.
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Second Step

For a finite motion within a class of frameworks defined by algebraic

conditions:

1 the points satisfy an algebraic condition for an infinitesimal

motion;

2 the velocities of a non-trivial infinitesimal motion are tangent to

the algebraic variety of this condition.
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Second Step

For a finite motion within a class of frameworks defined by algebraic

conditions:

1 the points satisfy an algebraic condition for an infinitesimal

motion;

2 the velocities of a non-trivial infinitesimal motion are tangent to

the algebraic variety of this condition.

After a first step along the velocities, the conditions for the

infinitesimal motion remain satisfied (at first-order).

Example: flat KA,B, the velocities move points to new plane conic.

Second Step Conjecture (W. 1983) - this is ‘essentially’ enough.
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Second Step

For a finite motion within a class of frameworks defined by algebraic

conditions:

1 the points satisfy an algebraic condition for an infinitesimal

motion;

2 the velocities of a non-trivial infinitesimal motion are tangent to

the algebraic variety of this condition.

After a first step along the velocities, the conditions for the

infinitesimal motion remain satisfied (at first-order).

Example: flat KA,B, the velocities move points to new plane conic.

Second Step Conjecture (W. 1983) - this is ‘essentially’ enough.

Theorem (Schulze & W. 2011)

f the configuration of a framework lies in an algebraic variety, and the

velocities of a non-trivial motion are tangent to the algebraic variety at

a regular point of the variety, then there is a finite motion within the

variety.
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Plane Parallelogram - Triangle Discs

Bolker & Crapo (1979) for grid of rectangles

Some extensions with York undergraduate students 2003-2011

Given any plane framework, use directions of edges to place points

on a circle. Where edges are opposite sides of a parallelogram, place

on same point. Where there is a triangle, place edges between the

corresponding vertices on the circle. This is the Zone Graph.
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Plane Parallelogram - Triangle Discs

Bolker & Crapo (1979) for grid of rectangles

Some extensions with York undergraduate students 2003-2011

Given any plane framework, use directions of edges to place points

on a circle. Where edges are opposite sides of a parallelogram, place

on same point. Where there is a triangle, place edges between the

corresponding vertices on the circle. This is the Zone Graph.
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Plane Parallelogram - Triangle Discs

Bolker & Crapo (1979) for grid of rectangles

Some extensions with York undergraduate students 2003-2011

Given any plane framework, use directions of edges to place points

on a circle. Where edges are opposite sides of a parallelogram, place

on same point. Where there is a triangle, place edges between the

corresponding vertices on the circle. This is the Zone Graph.
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Plane Parallelogram - Triangle Discs
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Plane Parallelogram - Triangle Discs

!

"

#

#
$

# $

%

#

&

!

"

# $

%

&

!

"

# $

%

&

Theorem

If the framework has an infinitesimal motion, then the framework on

the circle is disconnected as a graph and has a finite motion.

Conversely, If the original framework is a disc decomposed into

parallelograms and triangles, then if the zone graph has a finite

motion then the parallelogram disc has a finite motion.

3x3Grid
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Plane Parallelogram - Triangle Discs

Need not be a grid - could be any disc of triangles and parallelograms



Introduction Counts and Regular Points Flexibility from Symmetry Bipartite Frameworks Plane Grids, 3D analog What Else

Plane Parallelogram - Triangle Discs

Need not be a grid - could be any disc of triangles and parallelograms

Can extend to symmetric zone graphs and symmetric frameworks,

Can extend to periodic zone graphs and periodic frameworks,

Can extend to projected zonahedra (e.g. 5-cube)













Introduction Counts and Regular Points Flexibility from Symmetry Bipartite Frameworks Plane Grids, 3D analog What Else

What Else? Slide joints and points at Infinity

Consider a collinear triangle with joints at infinity:

!"##$%&'()*($'%+#&
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What Else? Slide joints and points at Infinity

Consider a collinear triangle with joints at infinity:

!"##$%&'()*($'%+#&

!"#$%!&'#()
!"#$%!&'#()

!"#$%!&'#()

three slide joints - joints at infinity in the algebra, then a finite motion.
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What is ‘enough’ infinity?

In general, an experience is that some points - ‘enough points’ at

infinity, make a framework flexible.

Slider Mechanism
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What is ‘enough’ infinity?

In general, an experience is that some points - ‘enough points’ at

infinity, make a framework flexible.

Slider Mechanism
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What is ‘enough’ infinity?

In general, an experience is that some points - ‘enough points’ at

infinity, make a framework flexible.

Slider Mechanism

Slider framework - a flexible K3,3 with two joints (and a bar) at infinity.
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Other directions

1 body-bar frameworks;

2 molecular frameworks;

3 periodic frameworks;

4 infinite frameworks not restricted to periodic motions;

5 other symmetric with vertices or edges fixed by the symmetries;

6 more on transformations within and among metrics:

7 symmetry preserving polarity about sphere centered on point

group center;

8 other algebraic varieties inducing finite motions at regular points;

9 continuing search for flexible polytopes in higher dimensions;

10 more on higher dimensions;

11 composition of finite motions;
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Thanks

to many collaborators, students

and others who generated key examples and methods
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Thanks

to many collaborators, students

and others who generated key examples and methods

Questions?
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Thanks

to many collaborators, students

and others who generated key examples and methods

Questions?

whiteley@mathstat.yorku.ca


