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1-dof Linkages
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One degree of freedom (1-dof) linkage (mechanism) in 2D

Linkage (G , δ): G = (V ,E ), δ : E → R
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Cayley Configuration Space

How to describe the space of configurations (2D realizations) for a
1-dof linkage (G , δ)?
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Cayley Configuration Space

How to describe the space of configurations (2D realizations) for a
1-dof linkage (G , δ)?

Cayley Configuration Space of (G , δ) on non-edge f = (u, v): the
set of possible distances between u and v
Φf (G , δ):= {δ∗(f ) : linkage (G ∪ f , δ, δ∗) has realization}
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Summary

Cayley Configuration Space

How to describe the space of configurations (2D realizations) for a
1-dof linkage (G , δ)?

Cayley Configuration Space of (G , δ) on non-edge f = (u, v): the
set of possible distances between u and v
Φf (G , δ):= {δ∗(f ) : linkage (G ∪ f , δ, δ∗) has realization}
Φf (G , δ) is a set of intervals on the real line

Each point δ∗(f ) in Φf (G , δ) is a Cayley configuration
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Complexity of Cayley Configuration Spaces

How to measure the complexity of Cayley configuration space?
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Complexity of Cayley Configuration Spaces

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint
values

Definition

Quadratically Solvable (QS) values: solutions to triangularized
quadratic system with coefficient in Q (in extension field over Q by
nested square-roots)
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Complexity of Cayley Configuration Spaces

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint
values

Definition

Quadratically Solvable (QS) values: solutions to triangularized
quadratic system with coefficient in Q (in extension field over Q by
nested square-roots)

(b) Cayley size: number of intervals
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Complexity of Cayley Configuration Spaces

How to measure the complexity of Cayley configuration space?

(a) Cayley complexity: algebraic complexity of interval endpoint
values

Definition

Quadratically Solvable (QS) values: solutions to triangularized
quadratic system with coefficient in Q (in extension field over Q by
nested square-roots)

(b) Cayley size: number of intervals

(c) Cayley computational complexity: time complexity of
obtaining all intervals (as function of Cayley size)
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A Natural Class of Graphs

Cayley configurations δ∗(f ) can be
efficiently converted to Cartesian
configurations provided:

Completeness: G ∪ f minimally rigid
(implies (G ∪ f , δ, δ∗(f )) has finitely
many realizations for each δ∗(f ))

Low realization complexity: linear
realization complexity if local
orientations are specified
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Note: any f = (i , i + 2)

guarantees both properties
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Quadratically Solvable Graphs

Definition

G ∪ f Quadratically Solvable (QS) from
f : ∃ a ruler and compass realization of
(G ∪ f , δ, δ∗(f )) starting from f

Hence: Cayley configuration δ∗(f )
efficient conversion−−−−−−−−−−−→ Cartesian configuration
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Note: for any f = (i , i + 2),

G ∪ f is QS starting from f
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A Class of Quadratically Solvable Graphs

Definition

G is △-decomposable if it is a single edge, or can be divided into 3
△-decomposable subgraphs s.t. every two of them share a single vertex.

1-dof △-decomposable graph: drop an edge f from a △-decomposable

graph

Note: △-decomposable implies minimally rigid

Graph construction from f : each step
appends a new vertex shared by 2
△-decomposable subgraphs

This is also a (unique) QS realization
sequence of corresponding linkage
starting from f

Hence △-decomposable =⇒ QS
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△-decomposable subgraph
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A Class of Quadratically Solvable Graphs

Theorem (Owen & Power, 2005)

QS =⇒ △-decomposable for planar graphs

Strong conjecture:
△-decomposable implies QS for general graphs

In this talk, we only consider △-decomposable graphs

Will refer to them as QS graphs
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QS Cayley complexity

Definition

G has QS Cayley complexity with respect to non-edge f : all interval
endpoints – of Φf (G , δ) – are QS

Extreme graphs: O(n) of them, one per

step of QS realization sequence,

obtained by adding an extreme edge
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Theorem

A 1-dof QS graph G has QS Cayley complexity on f ⇐⇒ all of its
extreme graphs starting from f are QS.

This is probably folklore. For completeness, formally proven in (Gao &

Sitharam, 2008).
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Outline

1 Characterizing QS Cayley complexity
It is a Property of G Independent of Choice of Non-edge f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

2 Cayley Size & Cayley Computational Complexity
Guaranteeing Computational Complexity O(n) & Cayley size O(1)
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Choice of f

Possible f : (i , i + 2) for any i
By possible f we mean any non-edge f s.t. G ∪ f is QS.
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Does Cayley complexity depend on choice of f ?
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Choice of f

Possible f : (i , i + 2) for any i
By possible f we mean any non-edge f s.t. G ∪ f is QS.
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Does Cayley complexity depend on choice of f ?

- NO.
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Independent of Choice of f

Theorem (Sitharam, Wang, Gao)

1-dof QS graph G either has QS Cayley
complexity on all possible f or on none
of them.

Proof is non-trivial.

Thus: our measure of QS Cayley
complexity is robust. Characterizing G
of QS Cayley complexity with a specific
f is sufficient.
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G has QS Cayley complexity
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Algorithmic Characterization (4-cycle Theorem)

Theorem (Sitharam, Wang)

1-dof QS graph G has QS Cayley
complexity ⇐⇒ ∃ non-edge f (∀f ) each
construction step from f is based on a pair
of vertices taken from two adjacent QS
subgraphs, from a 4-cycle of QS subgraphs

Gives O(n) time algorithm to
recognize QS Cayley complexity graphs
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Finite Forbidden-Minor Characterization

Can there exist finite forbidden-minor characterization for
general 1-dof QS graphs?
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Finite Forbidden-Minor Characterization

Can there exist finite forbidden-minor characterization for
general 1-dof QS graphs?

- NO.
Will show counterexamples later.
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

1-Path & △-Free

Need to look at natural subclasses: 1-Path & △-Free

Definition

1-Path: ∃ only one “last vertex”
v , that is, v is shared by exactly
2 QS subgraphs, each of them
share only one vertex with the
rest of the graph.
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Definition

△-Free: no subgraph of G is a
triangle
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Equivalence to Planarity

Theorem (Sitharam, Wang)

A 1-path, △-free, 1-dof QS graph G has QS Cayley complexity
⇐⇒ G is planar
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(a) (b)

Ex. (b) has QS Cayley

complexity, (a) doesn’t
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

Equivalence to Planarity

Theorem (Sitharam, Wang)

A 1-path, △-free, 1-dof QS graph G has QS Cayley complexity
⇐⇒ G is planar
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(a) (b)

Ex. (b) has QS Cayley

complexity, (a) doesn’t

1-path & △-free are necessary. Otherwise no finite
forbidden-minor characterization exists
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

1-Path & △-Free are Necessary
Counter example 1: not △-free

v3(u2)

v2

G2

G1

v6

v1(u1)

v5(w3)

u3

u4

w1

w2
v4

Has QS Cayley complexity since the sole extreme graph is QS.

Can extend the graph to make G1 have an arbitrary clique as
minor
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

1-Path & △-Free are Necessary
Counter example 2: not 1-path

v1 v2f

u1
u2

u4
u3

w12

w13

w14
w23

w24

w34

u5

w25
w15

w35

w45

Has QS Cayley complexity (can be checked using the 4-cycle
theorem).

Can be made to have an arbitrary clique as minor.
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Independent of Choice of f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization
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Outline

1 Characterizing QS Cayley complexity
It is a Property of G Independent of Choice of Non-edge f
Algorithmic Characterization (4-cycle Theorem)
Finite Forbidden-Minor Characterization

2 Cayley Size & Cayley Computational Complexity
Guaranteeing Computational Complexity O(n) & Cayley size O(1)
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Cayley size & Cayley computational complexity

Recall the three aspects of complexity of Cayley Configuration
Spaces

(a) Cayley complexity

(b) Cayley size: number of intervals

(c) Cayley computational complexity: complexity of obtaining all
intervals

Have characterization of (a)

Let’s consider (b) and (c)
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Cayley size & Cayley computational complexity

Suppose G has QS Cayley complexity
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f

Are we guaranteed to have small Cayley size & low Cayley
computational complexity?
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Summary

Cayley size & Cayley computational complexity

Suppose G has QS Cayley complexity
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f

Are we guaranteed to have small Cayley size & low Cayley
computational complexity?

Only if we specify necessary orientations of the realizations
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Necessary Orientations

A natural, minimal set of local orientations for both forward & backward

QS realization sequences

forward orientations from f
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backward orientations for all extreme linkages
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Summary

Blow-up of Cayley Size & Computational Complexity

without Orientations

Is either type of orientations sufficient without the other?
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Summary

Blow-up of Cayley Size & Computational Complexity

without Orientations

Is either type of orientations sufficient without the other?
- NO.

Can adapt existing examples of Borcea & Streinu to show
exponential blow-up
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Already so for our standard example.
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Efficient Cayley Configuration Space

Theorem (Sitharam, Wang)

For 1-dof QS graph G with QS Cayley complexity, given both
forward and backward orientations, the Cayley size is O(1) and the
Cayley computational complexity is O(|V |)

Proof non-trivial & based on the 4-cycle theorem
Yields straightforward algorithm using quadrilateral interval
mapping via 4-cycles.
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Summary

Cayley configuration space & measure of complexity

Choice of base non-edge does not affect QS Cayley complexity.

Algorithmic characterization (4-cycle Theorem)

For 1-path, △-free, 1-dof QS graphs: QS Cayley complexity
⇐⇒ planarity

Low Cayley size & computational complexity in the presence
of necessary orientations
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Summary

Proof of Planarity Theorem

Theorem

A 1-path, △-free, 1-dof QS graph G has QS Cayley complexity
⇐⇒ G is planar
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Summary

Proof of Planarity Theorem

Lemma (1)

Given a 1-path, △-free, 1-dof QS graph G with non-edge
f = (v1, v2). If

3 or more vertices are directly constructed on f OR

exactly 2 vertices are directly constructed on f &
deg(v1) ≥ 3,deg(v2) ≥ 3

We have

1 G has a K3,3 minor

2 G does not have QS Cayley complexity on f
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Summary

Proof of Planarity Theorem

Lemma (2)

Given a 1-path 1-dof QS graph G with non-edge f = (v1, v2) s.t.
u1, u2 are the only 2 vertices directly constructed on f , if v1 is a
“last vertex” & v2 is not (resp. both v1 and v2 are “last vertices”),
then

1 G ′ = G \ {v1} (resp. G ′ = G \ {v1, v2}) is 1-path 1-dof QS
graph on f ′ = (u1, u2).

2 G ′ = G \ {v1} (resp. G ′ = G \ {v1, v2}) has QS Cayley
complexity on f ′ ⇐⇒ G has QS Cayley complexity on f
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Summary

Proof of Planarity Theorem.

By the two lemmas, the only interesting case is where G has
exactly 2 vertices u1, u2 directly constructed on f = (v1, v2), and
either (a) deg(v1) = 2, deg(v2) > 2, or (b) deg(v1) = 2,
deg(v2) = 2. Define G ′ as in Lemma (2).

1 G is planar =⇒ G has QS Cayley complexity on f :
Prove by contradiction. Assume G is the minimum QS graph
s.t. G does not have QS Cayley complexity on f and is planar.
Clearly G ′ contradicts the assumption of minimality of G .

(b)(a)

u1

v2

u1 u2

v2v1

u2

v1
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Proof of Planarity Theorem (cont.)

2 G has QS Cayley complexity on f =⇒ G has no K3,3:
Prove by contradiction. Assume G is the minimum QS graph
s.t. G has QS Cayley complexity on f and G has a K3,3 minor.

In case (a), either (v1, u1) or (v1, u2) must be
contracted. Either case we obtain the graph on
right. ( v3 is the first vertex constructed after u1
and u2) v2

u1 u2

v3

K3,3 contains no triangles. Every way to eliminate the two
triangles will produce a subgraph of G ′.
In case (b), similar argument applies.

Meera Sitharam, Menghan Wang, Heping Gao Cayley Complexity of 1-dof Linkages in 2D



Characterizing QS Cayley complexity
Cayley Size & Computational Complexity

Summary

Proof of Planarity Theorem (cont.)

3 1-path, △-free, 1-dof QS graph G has K5 =⇒ G has K3,3:
To keep G △-free, some vertices of K5 must be contracted
from more than one vertices from G . To keep G 1-path we
will get a K3,3.

Therefore we have: G has QS Cayley complexity on f =⇒ G has
no K3,3 or K5. Thus completes the proof.

s1

s2

s3 s4

s5

sa sb

s2

s3 s4

s5

sa sb
sa sb sa sbsc sa

v sb

s2’

s3’

s4’

s1’
v1 s5’

v2

v3 v4

v5

(a) (b) (c)

(d) (e) (f) (g)

a b c d
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Proof of O(1) Cayley Size Theorem

Theorem

For 1-dof QS graph G with QS Cayley complexity, given both
forward and backward orientations, the Cayley size is O(1) and the
Cayley computational complexity is O(|V |)
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Proof of O(1) Cayley Size Theorem
Levels

Definition

Levels: construction partial order of a
1-dof QS graph from non-edge f
L0: endpoints of f .
L1: can directly construct on f .
Li (i ≥ 2): can directly construct given
L0 ∼ Li−1, cannot construct without
Li−1.

0

2 3

7

0’

4

5 6

8

1
t1

t2

t3 t4 t5
t6

t7

t8
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Proof of O(1) Cayley Size Theorem

Lemma

For a 1-path G with QS Cayley complexity,

1 Each level has one or two construction steps.

2 If Lk has two construction steps, they are based the same pair
of vertices.

3 From Lk+1 on, each construction step must be based on QS
subgraphs in Lk or higher levels.
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Proof of O(1) Cayley Size Theorem.

1 For the 1-path case, the chain of quadrilateral is obvious. The
algorithm maps the attainable interval of one diagonal of a
quadrilateral to the attainable interval of the other diagonal.
By Lemma (2) this mapping process can be repeated, so we
can finally get the interval of f .
Since both forward and backward orientations are fixed, each
mapping step is projection on a monotonic function.
Therefore the Cayley size is O(1) .
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Proof of O(1) Cayley Size Theorem (cont.)

2 For graphs with two “last vertices”, we can find a base 4-cycle
at the common “root” of both paths. Each path maps to a
single interval of a diagonal of the root 4-cycle. Considering
the constraints from both paths together, the result is the
intersection of two intervals.

3 For graphs with more than 2 paths, we can prove by induction
on number of paths.
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Thank you!
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