The Rigidity Transition in Random Graphs
 Louis Theran
 (joint work with Shiva Kasiviswanathan and Cris Moore)

Frameworks

- Planar structure
- ... made of fixed-length bars
- ... connected by universal joints with full rotational degrees of freedom
- Allowed continuous motions preserve length and connectivity of the bars
- No "stretching" no "breaking"
- Rigid if only Euclidean motions allowed

Frameworks

- Planar structure
- ... made of fixed-length bars
- ... connected by universal joints with full rotational degrees of freedom
- Allowed continuous motions preserve length and connectivity of the bars
- No "stretching" no "breaking"

- Rigid if only Euclidean motions allowed

Frameworks

- Planar structure
- ... made of fixed-length bars
- ... connected by universal joints with full rotational degrees of freedom
- Allowed continuous motions preserve length and connectivity of the bars
- No "stretching" no "breaking"
- Rigid if only Euclidean motions allowed

Rigid

Flexible

Combinatorial rigidity

- A graph $G=(V, E)$ with n vertices and m edges is a Laman graph if $m=2 n-3$ and all subgraphs satisfy m' $\leq 2 n \prime-3$
- G is Laman-spanning if it has a Laman graph as a spanning subgraph
- Maxwell-Laman Theorem ('64,'70): Generically, rigid blocks of frameworks
 correspond to Lamanspanning subgraphs, rigid components correspond to maximal Laman-spanning subgraphs

Combinatorial rigidity

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with n vertices and m edges is a Laman graph if $m=2 n-3$ and all subgraphs satisfy m' $\leq 2 n \prime-3$
- G is Laman-spanning if it has a Laman graph as a spanning subgraph
- Maxwell-Laman Theorem ('64,'70): Generically, rigid blocks of frameworks
 correspond to Lamanspanning subgraphs, rigid components correspond to maximal Laman-spanning subgraphs

Combinatorial rigidity

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with n vertices and m edges is a Laman graph if $m=2 n-3$ and all subgraphs satisfy m' $\leq 2 n \prime-3$
- G is Laman-spanning if it has a Laman graph as a spanning subgraph
- Maxwell-Laman Theorem ('64,'70): Generically, rigid blocks of frameworks correspond to Lamanspanning subgraphs, rigid components correspond to maximal Laman-spanning subgraphs

Combinatorial rigidity

- A graph $G=(V, E)$ with n vertices and m edges is a Laman graph if $m=2 n-3$ and all subgraphs satisfy m' $\leq 2 n \prime-3$
- G is Laman-spanning if it has a Laman graph as a spanning subgraph
- Maxwell-Laman Theorem ('64,'70): Generically, rigid blocks of frameworks correspond to Lamanspanning subgraphs, rigid components correspond to maximal Laman-spanning subgraphs

Combinatorial rigidity

- A graph $G=(V, E)$ with n vertices and m edges is a Laman graph if $m=2 n-3$ and all subgraphs satisfy m' $\leq 2 n \prime-3$
- G is Laman-spanning if it has a Laman graph as a spanning subgraph
- Maxwell-Laman Theorem ('64,'70): Generically, rigid blocks of frameworks
 correspond to Lamanspanning subgraphs, rigid components correspond to maximal Laman-spanning subgraphs

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)
- Rigid components form
- Maximal rigid blocks

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)
- Rigid components form
- Maximal rigid blocks

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)

- Rigid components form
- Maximal rigid blocks

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)

- Rigid components form
- Maximal rigid blocks

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)

- Rigid components form
- Maximal rigid blocks

A random process

- Start with n "generic" points in the plane and then...
- Uniformly at random:
- select a pair of points and fix the distance between them (removing a potential motion)
- Rigid components form

- Maximal rigid blocks

Random graphs

- A random graph is really a distribution over graphs with n vertices
- Simplest model is "ErdösRényi" $G(n, p)$
- Each edge in with prob.p independently
- Here we want "w.h.p." statements like
- $\operatorname{Prob}[$ big comp.] $=\mathrm{I}-\mathrm{o}(\mathrm{I})$

Questions

- Q: After how many random edges will we see a "big" component (w.h.p.)?
- \#edges \approx avg. degree c in $G(n, c / n)$
- Q: How many big rigid components will there be?
- Q: How many vertices will the component span?

The Rigidity Transition

- At what average degree will we see a "big" component?
- A linear-sized rigid component appears w.h.p. in $G(n, c / n)$ when c > 3.588...
- c <3.588 all tiny rigid comp.
- How many big components will there be?
- The giant component is unique.
- How many vertices will the components span?

- The giant component spans a (I-o(I))-fraction of the "(3+2)"-core

A sparse $G(n, p)$...

- w.h.p. has isolated vertices and leaves
- so no hope to be rigid
- For c = 3.588 w.h.p.
- no induced subgraph of minimum degree 4
- i.e., below the threshold for the "4-core"
- linear size (~30\%) 3-core
- larger (3+2)-core
- conjecturally 75%

Physics

- These problems have been studied, via simulation, in the statistical physics community
- Motivation is phase transition in network glasses
- Explosive growth of a rigid component in the 3-core at I.749n edges [Rivoire \& Barré]
- Other work by [Moukarzel; Thorpe, et al; Jacobs \& Thorpe]

Ehe Nicw Jork ETimes

Glass, Up Close

Glass is rigid, but the arrangement of molecules and atoms within it is random, like that of a liquid.

COMPOSITION

The building block of window glass is silica, or sand, which forms pyramids of five atoms.

Rigidity

- [Jackson, Servatius, Servatius'07] - Random 4-reg. graph is w.h.p. globally rigid
$\bullet G(n, p)$ w.h.p. rigid ~ avg. deg. $\log n$
- [T. '09] G(n,c/n) all rigid components are tiny (≤ 3 vertices) or giant

Random graphs

- The constant 3.588 ... is the threshold for 2-orientability in $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$ [Fernholz \& Ramanchandran; Cain, et al. SODA'07]
- 2-orientability means G can be oriented s.t. out-degree \leq 2 for all vertices
- 3.588 is also the threshold for the 3 -core to reach avg. degree 4 [FR;CSW]

- We're going to use this later

2-orientability

- To see the relevance of 2orientability, recall the Laman counts:
- $m^{\prime} \leq 2 n^{\prime}-3$
- Alternative way to say " G is 2 -orientable" is " $(2,0)$-sparse"
- $m^{\prime} \leq 2 n^{\prime}$
- Any large rigid component implies not 2-orientable with const. probability

- Basic intuition: with enough randomness and edges, these conditions behave similarly

Above the threshold

- [FR; CSW] don't say what happens above the threshold for 2-orientability
- We give a bound on how many vertices can get outdegree at least 2
- Theorem: If c > 3.588 then, w.h.p., the 3-core of $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$ has an orientation such that all but o(n) vertices have out-degree ≥ 2.

- Implies the same for the (3+2)-core

Standard facts

- Rigid blocks and components are vertex induced subgraphs
- If G has $m \geq 2 n$ ' -3 edges and is simple, then G has a rigid block on ≥ 4 vertices
- "non-trivial block"
- This block has minimum degree 3 , if not all of G
- Adding a vertex of degree two with both neighbors in a
 rigid block makes a larger rigid block
- Adding ≥ 3 edges between rigid blocks makes a larger rigid block

Standard facts

- Rigid blocks and components are vertex induced subgraphs
- If G has $m \geq 2 n^{\prime}-3$ edges and is simple, then G has a rigid block on ≥ 4 vertices
- "non-trivial block"
- This block has minimum degree 3, if not all of G
- Adding a vertex of degree two with both neighbors in a
 rigid block makes a larger rigid block
- Adding ≥ 3 edges between rigid blocks makes a larger rigid block

Standard facts

- Rigid blocks and components are vertex induced subgraphs
- If G has $m \geq 2 n^{\prime}-3$ edges and is simple, then G has a rigid block on ≥ 4 vertices
- "non-trivial block"
- This block has minimum degree 3 , if not all of G
- Adding a vertex of degree two with both neighbors in a rigid block makes a larger rigid block
- Adding ≥ 3 edges between rigid blocks makes a larger rigid block

Graph theoretic lemma

- The (3+2)-core is inductively defined starting from the 3 core and adding degree 2 vertices
- If G is simple and coincides with its (3+2)-core, has a rigid component G' on n' vertices and $G \backslash G$ ' is incident on at least 2(n-n’) edges, then either:
- G is Laman spanning

- G has a rigid component that is not G '
- "Can't avoid rigidity or multiple components"

Graph theoretic lemma

- The (3+2)-core is inductively defined starting from the 3 core and adding degree 2 vertices
- If G is simple and coincides with its (3+2)-core, has a rigid component G ' on n' vertices and $G \backslash G$ ' is incident on at least 2(n-n') edges, then either:
- G is Laman spanning
- G has a rigid component
 that is not G'
- "Can't avoid rigidity or multiple components"

4-reg. case revisited

- If a graph is 4-regular, the Lemma always applies
- Let G be a random 4-regular graph, we'll recover [JSS]
- Trick I: exploit density
- rigid components have m / n ≥ 1.5, counting arguments imply all tiny or linear sized [T]
- Trick 2: use expansion
- rigid blocks with 3 edges between them make a
 larger block
- two big components survive with prob. o(I)

Size proof: warm up

- Fix c >3.588, and assume the 3 -core of $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$ has an outdegree ≥ 2 orientation
- This time look at the 3-core:
- avg. deg. ≥ 4 implies giant rigid component and it's unique
- Counting edges by their tails Lemma applies
- Uniqueness of the giant component says that w.h.p., the (3+2)-core is Laman-
spanning

Size proof: warm up

- Fix c >3.588, and assume the 3-core of $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$ has an outdegree ≥ 2 orientation
- This time look at the 3-core:
- avg. deg. ≥ 4 implies giant rigid component and it's unique
- Counting edges by their tails Lemma applies
- Uniqueness of the giant component says that w.h.p., the (3+2)-core is Lamanspanning

Putting it together

- Let $\mathrm{c}>3.588$ and $\mathrm{G}=\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$
- We don't know that the 3core has an out deg. exactly 2 orientation
- Lemma doesn't apply
- By 2-orientability theorem, w.h.p. need only o(n) more edges
- Add o(n) more uniform edges
- Lemma applies to the original (3+2)-core; w.h.p. it's Lamanspanning
- Show that the new $(3+2)$ core grows by o(n) vertices w.h.p.

Putting it together

- Let $\mathrm{c}>3.588$ and $\mathrm{G}=\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$
- We don't know that the 3core has an out deg. exactly 2 orientation
- Lemma doesn't apply
- By 2-orientability theorem, w.h.p. need only o(n) more edges
- Add o(n) more uniform edges
- Lemma applies to the original (3+2)-core; w.h.p. it's Lamanspanning

- Show that the new $(3+2)$ core grows by o(n) vertices w.h.p.

Configurations

- What's left to do is prove the 2-orientation theorem
- This is easier to analyze in an equivalent model called configurations

- Really a random multigraph
- Simple with prob.> 0
- Recall: Erdös-Renyi was "flip a coin for every edge"
- Configuration model:
- generate degrees
- match up the "copies" of vertices
- Poisson degrees eqv. to Erdös-Renyi

Configurations

- What's left to do is prove the 2-orientation theorem
- This is easier to analyze in an equivalent model called configurations
- Really a random multigraph
- Simple with prob.> 0
- Recall: Erdös-Renyi was "flip a coin for every edge"
- Configuration model:
- generate degrees

- match up the "copies" of vertices
- Poisson degrees eqv. to Erdös-Renyi

Generating configurations

- Can match up the vertex copies with any algorithm that gives a uniform matching
- Fernholz and Ramachandran define two "moves"
- FRI: Remove a degree d ≤ 2 vertex and two uniformly selected copies, recurse
- FR2: Remove a degree 3 vertex:
- and I u.a.r. copy
- recurse
- "split a uniformly selected edge"
- FR2 is just a Henneberg 2 move!

Generating configurations

- Can match up the vertex copies with any algorithm that gives a uniform matching
- Fernholz and Ramachandran define two "moves"
- FRI: Remove a degree d ≤ 2 vertex and two uniformly selected copies, recurse
- FR2: Remove a degree 3 vertex:
- and I u.a.r. copy
- recurse

- "split a uniformly selected edge"
- FR2 is just a Henneberg 2 move!

2-orientation process

- Configuration model, Po(c) degrees, which implies results on $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$
- Modified [F\&R] algorithm
- When min. "degree" is ≤ 2,
 just discard that vertex and \leq 2 random copies
- When min. "degree" is 3, discard that vertex and one random copy (this preserves 2-orientability)
- When min. "degree" is 4,
 done.
- Run until o(n) vertices left

2-orientation process

- Configuration model, Po(c) degrees, which implies results on $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$
- Modified [F\&R] algorithm
- When min. "degree" is ≤ 2, just discard that vertex and \leq 2 random copies
- When min. "degree" is 3 , discard that vertex and one random copy (this preserves 2-orientability)
- When min. "degree" is 4,
 done.
- Run until o(n) vertices left

2-orientation process

- Configuration model, Po(c) degrees, which implies results on $G(n, c / n)$
- Modified [F\&R] algorithm
- When min. "degree" is ≤ 2, just discard that vertex and \leq 2 random copies
- When min. "degree" is 3 , discard that vertex and one
 random copy (this preserves 2-orientability)
- When min. "degree" is 4 , done.
- Run until o(n) vertices left

2-orientation process

- Configuration model, Po(c) degrees, which implies results on $G(n, c / n)$
- Modified [F\&R] algorithm
- When min. "degree" is ≤ 2, just discard that vertex and \leq 2 random copies
- When min."degree" is 3 ,
 discard that vertex and one random copy (this preserves 2-orientability)
- When min. "degree" is 4, done.
- Run until o(n) vertices left

2-orientation process

- Configuration model, Po(c) degrees, which implies results on $\mathrm{G}(\mathrm{n}, \mathrm{c} / \mathrm{n})$
- Modified [F\&R] algorithm
- When min. "degree" is ≤ 2, just discard that vertex and \leq 2 random copies
- When min. "degree" is 3 , discard that vertex and one random copy (this preserves 2-orientability)

- When min."degree" is 4 , done.
- Run until o(n) vertices left

Min. deg. 3 rounds

- When min."degree" is ≤ 2, just discard that vertex and \leq 2 random copies
- When min. "degree" is 3 , discard that vertex and one random copy (this preserves 2-orientability)
- Steps in between min. deg. 3 steps are a round
- A vertex get out deg. <2 iff
- It is hit twice in a round
- It had degree 2 and is hit at random
- Both events happen with prob $\leq n^{-.5}$

Min. deg. 3 rounds

- Steps in between min. deg. 3 steps are a round
- All rounds last $O(\log n)$ steps w.h.p.
- This implies o(n) vertices of out degree < 2
- Rounds are analyzed as a branching process
- We use the method of differential equations to control expected number of children

Questions

- Conjecture: The size of the (3+2)-core is w.h.p. approx. $0.75 n$
- Comes from a branching process heuristic, solution to $q=1-\exp \left(-q^{\circ} c\right)(1+q \cdot c)$
- Improve the analysis so only $\mathrm{O}(\mathrm{I})$ loose vertices
- Is a similar statement true for more general degree sequences than Poisson?
- Is the 3-core "globally rigid" w.h.p?
- Need to show 3-connected and redundantly rigid
- 3-connectivity is standard

