Rooted-tree Decomposition with Matroid Constraints and the Infinitesimal Rigidity of Frameworks with Boundaries

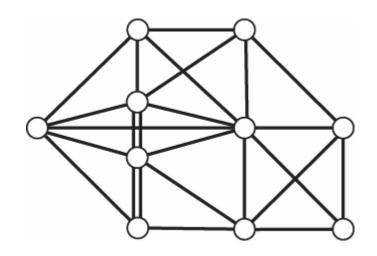
Shin-ichi Tanigawa RIMS, Kyoto University Joint work with N. Katoh

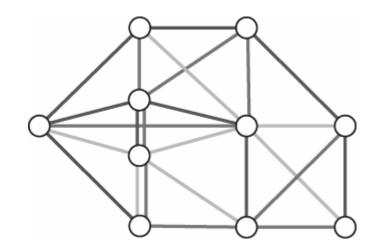
List of Talks

- n Nash-Williams' tree-decomposition theorem
- Connection to rigidity theory
- n An extension of Nash-Williams' theorem
 - Rooted-tree decomposition with matroid constraints
- n Applications to rigidity
 - Extensions of Laman's theorem and Tay's theorem
- n Algorithms

Nash-Williams' tree-decomposition theorem

- Theorem (Nash-Williams 1964). An undirected graph G = (V, E) can be decomposed into k edge-disjoint spanning trees \Leftrightarrow
 - \Box |E| = k|V| k
 - $\quad \Box \quad \emptyset \neq \forall X \subseteq V, |E(X)| \leq k|X| k$
 - where $E(X) := \{uv \in E \mid u, v \in X\}$

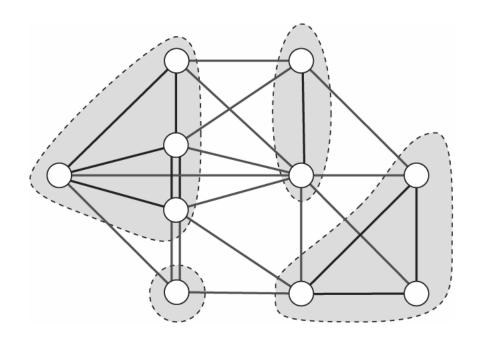




Tutte-Nash-Williams' tree-packing theorem

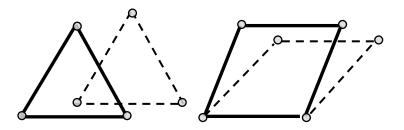
Theorem (Tutte 1961, Nash-Williams 1961). An undirected graph G contains k edge-disjoint spanning trees \Leftrightarrow $\delta_G(\mathcal{P}) \geq k|\mathcal{P}|-k$

for any partition \mathcal{P} of V into non-empty subsets.



Connection to Rigidity Theory

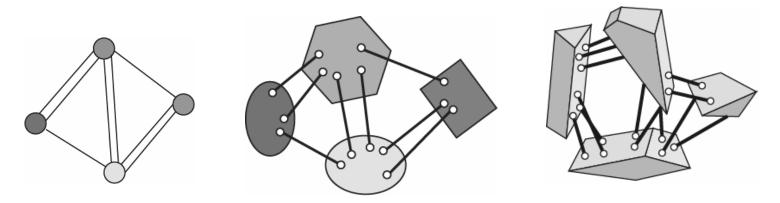
- bar-joint framework (G, p);
 - \Box G = (V, E): a graph
 - $p: V \to \mathbb{R}^d$ (joint-configuration)



- Theorem. For a graph G = (V, E), the followings are equivalent:
 - \square (G,p) is minimally rigid for a generic $p:V\to\mathbb{R}^2$
 - |E| = 2|V| 3, and $\forall X \subseteq E$ with $|X| \ge 2$, $|E(X)| \le 2|X| 3$ (Laman)
 - □ Duplicating any edge in *G*, the resulting graph can be partitioned into 2 edge-disjoint spanning trees. (Recski)
 - \Box *G* can be decomposed into three trees T_1, T_2, T_3 s.t. each vertex is spanned by exactly two of them and any non-trivial subtrees of T_i supports the same vertex subset (Crapo)

Connection to Rigidity Theory

- body-bar framework (G, b)
 - \Box G = (V, E): a graph
 - □ $b:e ∈ E \mapsto$ a line-segment in \mathbb{R}^d (bar-configuration)

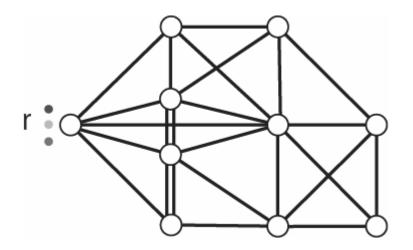


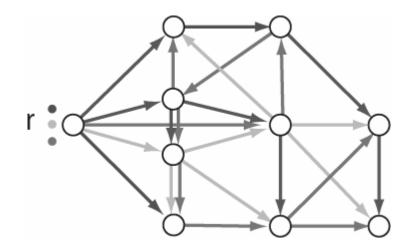
Tay's theorem (Tay 1984). A d-dimensional body-bar framework (G, b) is rigid for a "generic" bar-configuration b iff G contains $\binom{d+1}{2}$ edge-disjoint spanning trees.

- A short proof based on tree-decomposition theorem (Whiteley88)
- A good decomposition theorem implies a good rigidity theorem ??

Rooted-edge-connected Orientability

- G contains k edge-disjoint spanning trees
- \Leftrightarrow *G* is *k*-rooted-edge-connected orientable
 - □ G admits an orientation so that there are k edge-disjoint paths from a special node r to each vertex $v \in V \setminus \{r\}$.





Rooted-tree Decomposition

- r-rooted tree : a tree G' = (V', E') with $r \in V'$
- Rooted-tree decomposition w.r.t. a multiset $\{r_1, r_2, ..., r_t\}$ of vertices
 - □ decomposition into edge-disjoint subgraphs $T_1, ..., T_t$
 - \Box T_i is an r_i -rooted tree

