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Implied non-edges

m A non-edge of G = (V,E) is a pair (u,v) ¢ E.
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subgraph G’ of G such that G’ U (u, v) is dependent. l.e.,
generic frameworks G'(p) and G’ U (u, v)(p) both have the
same rank.




Nucleation-free 3D rigidity

I—Implied non-edges and nucleation

Implied non-edges

m A non-edge of G = (V,E) is a pair (u,v) ¢ E.
m A non-edge is said to be implied if there exists an independent
subgraph G’ of G such that G’ U (u, v) is dependent. l.e.,

generic frameworks G'(p) and G’ U (u, v)(p) both have the
same rank.

m Independence = independence in the 3D rigidity matroid.
m Rank = rank of the 3D rigidity matroid.
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Nucleation-free 3D rigidity

I—Implied non-edges and nucleation

Nucleation property:

Nucleation property. A graph G has the nucleation property if it
contains a non-trivial rigid induced subgraph, i.e., a rigid nucleus.
Trivial means a complete graph on 4 or fewer vertices.
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I—Implied non-edges and nucleation

Nucleation property:

Nucleation property. A graph G has the nucleation property if it
contains a non-trivial rigid induced subgraph, i.e., a rigid nucleus.
Trivial means a complete graph on 4 or fewer vertices.
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Nucleation-free 3D rigidity

I—Implied non-edges and nucleation

Two natural questions in 3D

m Question 1 Nucleation-free Graphs with implied
non-edges: Do all graphs with implied non-edges have the
nucleation property?




Nucleation-free 3D rigidity

I—Implied non-edges and nucleation

Two natural questions in 3D

m Question 1 Nucleation-free Graphs with implied
non-edges: Do all graphs with implied non-edges have the
nucleation property?

m Question 2 : Nucleation-free, rigidity circuits Does every
rigidity circuit automatically have the nucleation property?
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I—Our main result

Answering the two questions in the negative

m In order to answer Question 1, we construct an infinite family
of flexible 3D graphs which have no proper rigid nuclei besides
trivial ones (triangles), yet have implied edges.



Nucleation-free 3D rigidity

I—Our main result

Answering the two questions in the negative

m In order to answer Question 1, we construct an infinite family
of flexible 3D graphs which have no proper rigid nuclei besides
trivial ones (triangles), yet have implied edges.

m We also settle Question 2 in the negative by giving a family of
arbitrarily large examples that follow directly from the
examples constructed for Question 1.
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The construction: a ring of k roofs

m A roof is a graph obtained from Kz, the complete graph of
five vertices, by deleting two non-adjacent edges.
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Nucleation-free 3D rigidity
l—A ring of k roofs

Ring graph

A ring graph %) of k > 7 roofs is constructed as follows. Two
roofs are connected along a non-edge.We refer to these two
non-edges within each roof as hinges. Such a chain of seven or
more roofs is closed back into a ring.




Nucleation-free 3D rigidity
l—A ring of k roofs

Ring graph

A ring graph %) of k > 7 roofs is constructed as follows. Two
roofs are connected along a non-edge.We refer to these two
non-edges within each roof as hinges. Such a chain of seven or
more roofs is closed back into a ring.

This example graph appears often in the literature.



Nucleation-free 3D rigidity
l—A ring of k roofs

Main theorem

In a ring of roofs, the hinge non-edges are implied.
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A proof of the main theorem
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The ring %) of k roofs is independent.
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A proof of the main theorem

In a ring of roofs, the hinge non-edges are implied.

The ring %) of k roofs is independent.

We will construct a specific framework % (p) that is independent,
thus the generic frameworks must also be independent.

Lemma

If we add any (or all) hinge edge(s) into %y, the rank does not
change.



Nucleation-free 3D rigidity
l—A ring of k roofs

A proof of the main theorem

In a ring of roofs, the hinge non-edges are implied.

Lemma

The ring %) of k roofs is independent.

We will construct a specific framework % (p) that is independent,
thus the generic frameworks must also be independent.

Lemma

If we add any (or all) hinge edge(s) into %y, the rank does not
change.

This follows immediately from either one of two existing theorems.



Nucleation-free 3D rigidity
l—A ring of k roofs

Option 1

Theorem (Tay and White and Whiteley)

IfVi < k, the ith banana Bi(pi) is rigid, then the bar framework
P (p) is equivalent to a body-hinge framework and is guaranteed
to have at least k — 6 independent infinitesimal motions.

Observation

If Zx(p) is generic, then for all i, the rigidity matrix given by the
banana framework Bj(pj) is independent, which in this case implies
rigidity. Here p; is the restriction of p to the vertices in the i" roof
R;.



Nucleation-free 3D rigidity
l—A ring of k roofs

Option 2

A cover of a graph G = (V, E) is a collection X' of pairwise
incomparable subsets of V/, each of size at least two, such that
UxexE(X) = E. A cover X = {X1,Xa,...,X,} of G is 2-thin if
IXinXj| <2forall1<i<j<n.



Nucleation-free 3D rigidity
l—A ring of k roofs

Option 2

A cover of a graph G = (V, E) is a collection X' of pairwise
incomparable subsets of V/, each of size at least two, such that
UxexE(X) = E. A cover X = {X1,Xa,...,X,} of G is 2-thin if
I XinXj| <2forall1<i<j<n.

Let H(X') be the set of shared vertices. For each (u,v) € H(X),
let d(u, v) be the number of sets X; in X such that {u, v} C X;.

If X = {X1,Xa,...,Xm} is a 2-thin cover of graph G = (V,E)
and subgraph (V, H(X)) is independent, then in 3D, the rank of
the rigidity matrix of a generic framework G(p), denoted as
rank(G), satisfies the following

rank(G) < > rank(Gu[X]) = > (d(u,v) - 1), (1)

XieXx (u,v)EH(X)

where Gi = G U H(X).
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Proof of independence of ring

m We will show a specific framework % (p) is independent, thus
the generic frameworks must also be independent.



Nucleation-free 3D rigidity
l—A ring of k roofs

Proof of independence of ring

m We will show a specific framework % (p) is independent, thus
the generic frameworks must also be independent.

dg = d10 = d12 = ..

The repeated roofs have some symmetries that are utilized in
the proof.



Nucleation-free 3D rigidity
l—A ring of k roofs

Proof of independence of ring

m Use induction: two base cases, according to the parity of
number of roofs.

m Induction step is proved by contradiction and inspection of the
rigidity matrix of Zx2(p) and of Zx(p): after adding 2 new
roofs to the current ring, if the new ring does not have full row
rank, then the original one does not have full row rank either.

m The the k" roof is identical to the k 4+ 2" roof. This is true
for both even and odd k's and hence the induction step is the
same.




Nucleation-free 3D rigidity

I—'I'hird proof of the main theorem

A special generic framework

-

The hinge non-edges are implied, for all rings Zx(p) of k — 1,
pointed pseudo-triangular roofs and one convex roof.

Lemma
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I—'I'hird proof of the main theorem

A special generic framework

Lemma

The hinge non-edges are implied, for all rings Zx(p) of k — 1,
pointed pseudo-triangular roofs and one convex roof.

This uses previous results by Connelly, Streinu and Whiteley about
expansion/contraction properties of convex polygons, the
infinitesimal properties of single-vertex origamis and pointed
pseudo-triangulations.



Nucleation-free 3D rigidity

I—'I'hird proof of the main theorem

A special generic framework

»

The hinge non-edges are implied, for all rings Zx(p) of k — 1,
pointed pseudo-triangular roofs and one convex roof.

Lemma

This uses previous results by Connelly, Streinu and Whiteley about
expansion/contraction properties of convex polygons, the
infinitesimal properties of single-vertex origamis and pointed
pseudo-triangulations.

Lemma

There are generic frameworks % (p) as in the previous Lemma.



Nucleation-free 3D rigidity

I—Answer Question 1 and 2

Nucleation-free dependent graph

Question 1 Do all graphs with implied non-edges have the
nucleation property?




Nucleation-free 3D rigidity

I—Answer Question 1 and 2

Nucleation-free non-rigid dense graph

Question 2 If a graph G = (V/, E) with at least 3|V| — 6 edges is
non-rigid, i.e, dependent, then does it automatically have the
nucleation property?
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Useful representation of configuration spaces of flexible linkages
(machines, molecules) — important problems, many applications, little
progress

Obstacles to progress so far

o (a). Good formalization of “useful representation of
configuration space”

o (b). Which linkages have such a representation

Novel feature of our results - relate combinatorial properties of underlying
graph (forbidden minors and other graph properties) with:

o geometric properties (convexity) of configuration space and topological
properties (connectedness, number of connected components) of
configuration space

o algebraic complexity of configuration space

Applications to molecular biology and chemistry



Representation of Configuration Space
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Definition and notation

Cayley configuration space

2D connected/convex configuration space
3D connected configuration space
Arbitrary dimensions

Application: Helix packing configurations
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= Cayley configuration space

= 2D connected/convex configuration space
= 3D connected configuration space

= Arbitrary dimensions

= Application: Helix packing configurations




Notation

Graph: G=(V,E)

non-edge : fin E (the complement of E)
non-edge set : F, subset of E

linkage: (G, dg)

realization of (G, dz) in &-dimensions: a
realization or coordinate values of all vertices
in 6-dimension preserving distance
constraints



‘ Definition: Cayley configuration space

= Definition: given linkage (G, dg)
non-edge set F, the Cayley configuration space on F
is
tl)i (G, dg):={d: | (G UF, dg U di) has a solution in 5-dimension }
Shor&: “configAuration space of (G,dg) on F”

non-edges: dashed line

The projection on the non-edges is
described by triangle inequalites




Schoenberg’s Theorem (1935):

Given an n x n matrix A = (djj)nxn, there exists a Euclidean
realization in R?, i.e., a set of points p1,p2,...,pn € R® s.t. Vi, J,
||pi — pj||> = 6;; if and only if matrix A is negative semidefinite of
rank 4.

>

>

>

Negative semidefinite matrices form a convex cone.

The rank-§ stratum of this cone may not be convex.

A linkage (G, dg) is a partially filled distance matrix: this is a
section consisting of all possible negative semidefinite
completions (of rank ¢).

(6-dimensional )Cayley configuration space, £(A(G, dg), of
the linkage (G, de) on non-edge set F is the projection of this
section (completions) onto F.

Question: For which graphs G U F is this projection “nice” for all

de?



Easier to deal with O-Projection on d?

= Definition: given distance constraint system (G, dg) and
non-edge set F, the squared-distance configuration
space of (G, dg) on Fis
(@) =(G, dE):={d§ | (GUF, dg U d;) has a solution in 3-dimension }




Configuration Space Description

Definition: constraint system (G, dg) has connected
configuration space description (CCS) in 6 dimension if
there exists a non-edge set F such that the Cayley space
on F is connected. We say (G, dg) hasa CCS on F.

No CCS in 2D Has CCS on fin 3D



‘ Outline

= 2D connected/convex configuration space




2D Connected Configuration Space:
Examples

Projection on the non-edges is convex, Projection on the non-edges
connected, and polytope is not connected

30



Simple & Complete Configuration Space
in 2D

Theorem : There exists

connected & convex configuration description in

2D if and only if all the non-rigid 2-sum
components are partial 2-trees.




2D Connected configuration space:

Theorem

= Lemma : Given a graph G=(V,E) and non-edge f, G can
be reduced to base case 1 and base case 2 only by edge
shrinking if and only if there exists one 2-Sum component of
G U f which contains f and is not a partial 2-Tree.

Base Case 1 Base Case 2




Proof

Proof needs graph reduction technique
different from minor: keep the non-edge.



2D Connected configuration space:
Theorem

Theorem : Given graph G and non-edge
f=AB, if G has 2D CCS on f (single interval) if
and only all 2-Sum components of G U AB
containing both A and B are partial 2-trees.

Theorem : Given a graph G=(V,E) and non-
edge set F, G has 2D CCS on F if and only if all
2-Sum components containing any subset of F
are partial 2-trees.



‘ Outline

= 3D connected configuration space




3D Connected Configuration Space



| Examples without 3D Connected
Configuration Space
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Examples with 3D Connected

Configuration Space

Case 1: G U f has universally inherent CCS in
3D

Case 2: G U f doesn’t have universally inherent
CCSin3D
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Theorem on Maximal 3-realizable Graphs

Theorem : if a graph G is maximal 3-
realizable, for any non-edge f, G doesn’'t have
3D connected configuration space on f.




3D Connected Configuration Space :

Conjectures
Conjecture 1: Given partial 3-tree G and virtual
edge AB, if A and B must be shrunk together
in order to get a K or K,,, minor, then G has
3D connected configuration space on f.

3
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‘ Conjecture 2: given graph G and non-edge AB, G
doesn’t have 3D connected configuration space on f if and
only if G can be reduced to one of the eight cases by edge

shrinking while preserving AB as non-edge

@ @ @ B




’ Outline

= Arbitrary dimensions




Universally Inherent CCS

We obtain strong results in arbitrary dimension for more
restrictive class of graphs

Definition: H has an universally inherent CCS in

o-dimension if for every partition of Has GU F
where G has a CCS on F.

20



Universally Inherent CCS : Examples

Ksand K,,, doesn’t have universally inherent CCS
in 3D.

Any proper subgraph of K or K,,, has universally
inherent CCS in 3D.




Universally Inherent CCS: Results

Definition: a graph G is &-realizable if, for any d )has a
solution in some dimension implies that %as a so utlon in
&-Dimension [Belk & Connelly].

Theorem 1: A graph G is d-realizable iff G has universally
inherent CCS in 0-dimension. In fact, G has a universally
inherent convex squared-distance configuration space in 6-
dimension.



Previous results on O-realizability

Previous Theorem: a graph G is 2-realizable
if and only if G has no K, minor; a graph G is
3-realizable if and only if it has no K; or K,,,
minor [Belk, Connelly].



Graph Characterization for Universally
Inherent CCS
Theorem : agraph G has universally inherent

CCS in 2D if and only if it has no K, minor; in 3D
if and only if it has no Ky or K,,, minor.



= Application: Helix packing configurations




Helix Packing: Problem

Simulate and sample the
configuration space of helices
Focused on two helices in the
current stage

Helix is modeled as a collection of
rigid balls; collision should be
avoided between two balls from
two different helices

“Critical” configurations should be
captured




Helix Packing: Bi-Incidence




| Bi-Incidence




‘ Helix Packing: Graphs for Which Configuration Space is
Sought for all possible edge subgraphs
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