Better rank estimates for the 3D rigidity matroid

Jialong Cheng, Meera Sitharam

October 11, 2011

Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G=(V,E) is Maxwell-independent in d dimensions if for any subgraph H=(X,F) of G, $|F| \leq d|X|-\binom{d+1}{2}$.

Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

● 2D: 2|X| - 3

Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

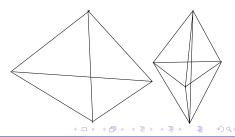
A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

- 2D: 2|X| 3
- 3D: 3|X| 6

Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

- 2D: 2|X| − 3
- 3D: 3|X| 6

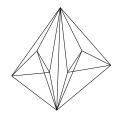


Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

- 2D: 2|X| 3
- 3D: 3|X| − 6

 $E'\subseteq E$ is $\underline{\mathsf{maximal}}$ $\underline{\mathsf{Maxwell\text{-}independent}}$ if E' is $\underline{\mathsf{Maxwell\text{-}independent}}$ and for any $e\in E\setminus E',\ E'\cup \{e\}$ is not $\underline{\mathsf{Maxwell\text{-}independent}}$.

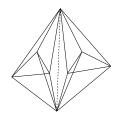


Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

- 2D: 2|X| 3
- 3D: 3|X| − 6

 $E'\subseteq E$ is maximal Maxwell-independent if E' is Maxwell-independent and for any $e\in E\setminus E',\ E'\cup \{e\}$ is not Maxwell-independent.

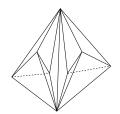


Question 1: Does *every* maximal, Maxwell-independent subgraph of a graph G in 3 dimensions have size at least rank₃(G)?

A graph G = (V, E) is Maxwell-independent in d dimensions if for any subgraph H = (X, F) of G, $|F| \le d|X| - \binom{d+1}{2}$.

- 2D: 2|X| 3
- 3D: 3|X| − 6

 $E'\subseteq E$ is maximal Maxwell-independent if E' is Maxwell-independent and for any $e\in E\setminus E',\ E'\cup \{e\}$ is not Maxwell-independent.



Other names for Maxwell-independent graphs in the literature

- *d*-sparse, (k, l)-sparse (in this case, $(d, \binom{d+1}{2})$ -sparse) have been used in the literature
- dense and sparse graphs have been used to mean a variety of different things in graph theory;
- we use Maxwell-independence because Maxwell first showed in 1864 that every graph G that is rigid in d dimensions must contain a Maxwell-independent subgraph that has least $d|V| {d+1 \choose 2}$ edges.

Another question

Another related question is the following:

Question 2: Is there a better combinatorial upper bound (than the number of edges) on $rank_3(G)$ for Maxwell-independent graphs G?

Another question

Another related question is the following:

Question 2: Is there a better combinatorial upper bound (than the number of edges) on $rank_3(G)$ for Maxwell-independent graphs G?

Our results give affirmative answers to both Question 1 and 2 in 3D.

Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

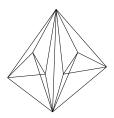
Maxwell-rigidity

A graph G = (V, E) is Maxwell-rigid in d dimensions if there exists a $E' \subseteq E$ such that E' is Maxwell-independent and has size $d|V| = \binom{d+1}{2}$.

¹Bill Jackson suggests "d-critical", but "critical" is used for many other graph properties.

Maxwell-rigidity

A graph G = (V, E) is Maxwell-rigid in d dimensions if there exists a $E' \subseteq E$ such that E' is Maxwell-independent and has size $d|V| = \binom{d+1}{2}$.

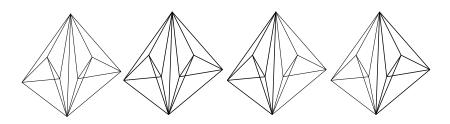


¹Bill Jackson suggests "d-critical", but "critical" is used for many other graph properties.

Maxwell-rigid component

Given graph G = (V, E),

- a <u>vertex-maximal</u>, <u>Maxwell-rigid component</u> is a Maxwell-rigid induced subgraph which is not properly contained in any other Maxwell-rigid subgraph of G.
- a <u>proper vertex-maximal</u>, <u>Maxwell-rigid component</u> is a Maxwell-rigid induced subgraph which is not properly contained in any Maxwell-rigid induced proper subgraph of *G*.



Independence vs Maxwell-independence

Recall: a subgraph of G is <u>independent</u> in d dimensions if its edges give an independent set of rows of a generic d-dimensional rigidity matrix of G.

- Maxwell's direction: Independence implies Maxwell-independence, true for all dimensions.
- Laman's direction: Maxwell-independence implies independence, true for 2D.

Laman's theorem ('70)

Theorem (Laman)

In 2D, independence \Leftrightarrow Maxwell-independence.

Laman's theorem ('70)

Theorem (Laman)

In 2D, independence ⇔ *Maxwell-independence.*

I In 2D, every maximal Maxwell-independent set of G has the same size(= rank₂(G)).

Laman's theorem ('70)

Theorem (Laman)

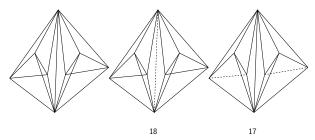
In 2D, independence ⇔ Maxwell-independence.

- I In 2D, every maximal Maxwell-independent set of G has the same $size(= rank_2(G))$.
- II In 2D, a non-edge pair f = (u, v) is implied only if u and v both lie inside a rigid subgraph $(V', E') \subseteq (V, E)$. I.e., every rigidity circuit lies inside a rigid subgraph.

Laman's direction in 3D

In 3D, the two properties in the previous slide are both false.

I In 3D, not all maximal Maxwell-independent sets have the same size.



Laman's direction in 3D

II In 3D, a non-edge pair f can be implied without lying inside a rigid subgraph, ([Cheng, Sitharam, Streinu, 2009]),i.e., there are rigidity circuits that do not even contain any non-trivial rigid subgraph.

Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G. Our proof is constructive towards an algorithm to find a minimum-sized maximal Maxwell-independent subgraph that contains a maximal independent set of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

Main theorem

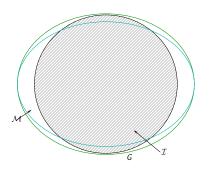
Theorem (Main)

Let $\mathcal M$ be a maximal Maxwell-independent set of a graph G=(V,E) and $\mathcal I$ a maximal independent set of G. Then $|\mathcal M|\geq |\mathcal I|$.

Main theorem

Theorem (Main)

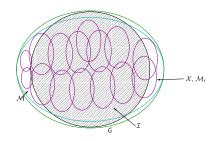
Let $\mathcal M$ be a maximal Maxwell-independent set of a graph G=(V,E) and $\mathcal I$ a maximal independent set of G. Then $|\mathcal M|\geq |\mathcal I|$.



Theorem (Main)

Let $\mathcal M$ be a maximal Maxwell-independent set of a graph G=(V,E) and $\mathcal I$ be a maximal independent set of G. Then $|\mathcal M|\geq |\mathcal I|$.

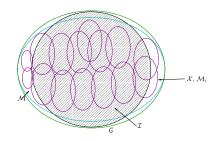
• We will decompose \mathcal{M} into a <u>cover</u> \mathcal{X} by vertex-maximal, Maxwell-rigid subgraphs.



Theorem (Main)

Let $\mathcal M$ be a maximal Maxwell-independent set of a graph G=(V,E) and $\mathcal I$ be a maximal independent set of G. Then $|\mathcal M|\geq |\mathcal I|$.

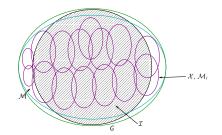
• We show a rank inclusion-exclusion formula on \mathcal{X} that gives an upper bound on rank₃(\mathcal{M}).



Theorem (Main)

Let \mathcal{M} be a maximal Maxwell-independent set of a graph G=(V,E) and \mathcal{I} be a maximal independent set of G. Then $|\mathcal{M}| \geq |\mathcal{I}|$.

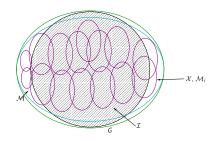
- We show a rank inclusion-exclusion formula on \mathcal{X} that gives an upper bound on rank₃(\mathcal{M}).
- For this, we will construct an independence assignment: a proper subgraph of M with size matching the formula and containing a maximal independent subgraph of M.



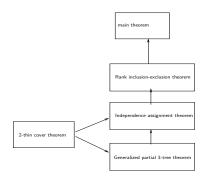
Theorem (Main)

Let $\mathcal M$ be a maximal Maxwell-independent set of a graph G=(V,E) and $\mathcal I$ be a maximal independent set of G. Then $|\mathcal M|\geq |\mathcal I|$.

 To construct the independence assignment, we will show that the <u>component graph</u> formed by the cover X of M is a generalized partial 3-tree.



Roadmap of our proof for main theorem

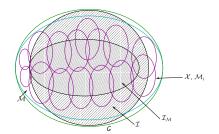


Proof of the main theorem

• A <u>cover</u> of a graph G = (V, E) is a collection \mathcal{X} of pairwise incomparable subsets of V, each of size at least two, such that $\bigcup_{X \in \mathcal{X}} E(X) = E$.

Proof of the main theorem

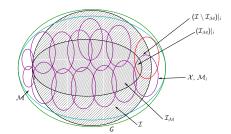
- A <u>cover</u> of a graph G = (V, E) is a collection \mathcal{X} of pairwise incomparable subsets of V, each of size at least two, such that $\bigcup_{X \in \mathcal{X}} E(X) = E$.
- Let $\mathcal{X} = \{\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n\}$ be any <u>cover</u> by vertex-maximal, Maxwell-rigid components of \mathcal{M} . Let $\mathcal{I}_{\mathcal{M}}$ be a maximal independent set of \mathcal{M} and extend $\mathcal{I}_{\mathcal{M}}$ to a maximal independent set \mathcal{I} of \mathcal{G} .



Proof of the main theorem

• Simple fact: maximality of \mathcal{M} implies that $\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}}$ can be covered by $\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}}$ restricted to each \mathcal{M}_i , which we denote $(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_i$. Hence

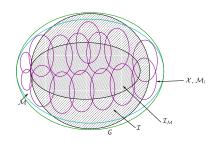
$$|\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}}| \leq \sum_{i} |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_{i}|$$
 (1)



Proof of main theorem(cont.)

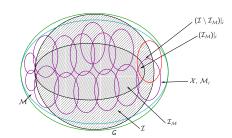
• Another simple fact: denote by $\mathcal{H}(\mathcal{X})$ pairs of vertices (u,v) such that $\{u,v\}\subseteq (\mathcal{M}_i\cap\mathcal{M}_j)$ for some $1\leq i< j\leq n$. Denote by n_e the number of components \mathcal{M}_i of \mathcal{X} that share e. Thus

$$|\mathcal{M}| = \sum_{i} |\mathcal{M}_{i}| - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1)$$
(2)



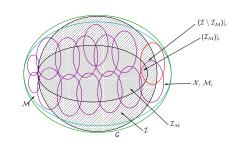
Proof of main theorem(cont.)

• Key observation: Maxwell-rigidity of \mathcal{M}_i implies that $|\mathcal{M}_i| \geq \operatorname{rank}_3(\mathcal{M}_i) + |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_i|.$



Proof of main theorem(cont.)

• Key observation: Maxwell-rigidity of \mathcal{M}_i implies that $|\mathcal{M}_i| > \operatorname{rank}_3(\mathcal{M}_i) + |(\mathcal{I} \setminus \mathcal{I}_M)|_i|$.

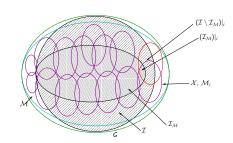


• Applying Equation (2), i.e., $|\mathcal{M}| = \sum_i |\mathcal{M}_i| - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_e - 1)$, we can get

$$|\mathcal{M}| \ge \sum_{i} \operatorname{rank}_{3}(\mathcal{M}_{i}) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1) + \sum_{i} |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_{i}|$$
 (3)

Proof of main theorem(cont.)

• Key observation: Maxwell-rigidity of \mathcal{M}_i implies that $|\mathcal{M}_i| > \operatorname{rank}_3(\mathcal{M}_i) + |(\mathcal{I} \setminus \mathcal{I}_M)|_i|$.



• Applying Equation (2), i.e., $|\mathcal{M}| = \sum_i |\mathcal{M}_i| - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_e - 1)$, we can get

$$|\mathcal{M}| \ge \sum_{i} \operatorname{rank}_{3}(\mathcal{M}_{i}) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1) + \sum_{i} |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_{i}|$$
 (3)

We prove a rank inclusion-exclusion theorem to lower-bound the first two items of the RHS.

Rank inclusion-exclusion completes proof of main theorem

• We prove a rank inclusion-exclusion theorem to lower-bound the first two items of the RHS of Equation (3) $|\mathcal{M}| \geq \sum_{i} \operatorname{rank}_{3}(\mathcal{M}_{i}) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1) + \sum_{i} |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_{i}|.$

Theorem

Given a Maxwell-independent graph \mathcal{M} and any set \mathcal{X} of vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ that is a cover of \mathcal{M} , then the rank inclusion-exclusion of cover \mathcal{X} is at least $\operatorname{rank}_3(\mathcal{M})$, i.e, $\sum_i \operatorname{rank}_3(\mathcal{M}_i) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_e - 1) \geq \operatorname{rank}_3(\mathcal{M})$

Rank inclusion-exclusion completes proof of main theorem

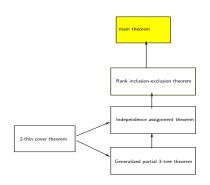
• We prove a rank inclusion-exclusion theorem to lower-bound the first two items of the RHS of Equation (3) $|\mathcal{M}| \geq \sum_{i} \operatorname{rank}_{3}(\mathcal{M}_{i}) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1) + \sum_{i} |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_{i}|.$

Theorem

Given a Maxwell-independent graph \mathcal{M} and any set \mathcal{X} of vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ that is a cover of \mathcal{M} , then the rank inclusion-exclusion of cover \mathcal{X} is at least $\operatorname{rank}_3(\mathcal{M})$, i.e, $\sum_i \operatorname{rank}_3(\mathcal{M}_i) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_e - 1) \geq \operatorname{rank}_3(\mathcal{M})$

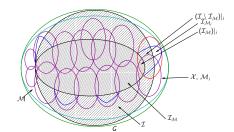
• From Equation (1) $\sum_i |(\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}})|_i | \geq |\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}}|$, the above theorem, and Equation (3) above, we get $|\mathcal{M}| \geq |\mathcal{I}_{\mathcal{M}}| + |\mathcal{I} \setminus \mathcal{I}_{\mathcal{M}}| = |\mathcal{I}|$, thus proving the main theorem.

Roadmap of our proof for main theorem



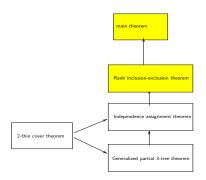
Rank inclusion-exclusion

- Suppose we can construct an independence assignment $[\mathcal{I}_{\mathcal{M}}, \mathcal{I}_{\mathcal{M}_1}, \dots \mathcal{I}_{\mathcal{M}_n}]$ where
 - (1) $(\mathcal{I}_{\mathcal{M}})|_{i} \subset \mathcal{I}_{\mathcal{M}}$
 - (2) for each $e \in \mathcal{H}(\mathcal{X})$, $e \in \mathcal{I}_{\mathcal{M}}$. for at least $n_e - 1$ of the \mathcal{M}_i 's containing e.



 Then we immediately get $\sum_{i} \operatorname{rank}_{3}(\mathcal{M}_{i}) - \sum_{e \in \mathcal{H}(\mathcal{X})} (n_{e} - 1) \geq \sum_{i} |(\mathcal{I}_{\mathcal{M}})|_{i}| \geq |\mathcal{I}_{\mathcal{M}}|, \text{ which is}$ the rank inclusion-exclusion theorem.

Roadmap of our proof for main theorem



independence assignment

• Constructing an independence assignment is the main technical result of the paper.

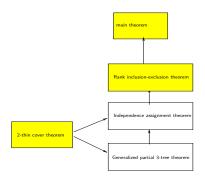
independence assignment

- Constructing an independence assignment is the main technical result of the paper.
- To show the existence of the independence assignment, we show that \mathcal{X} forms a 2-thin cover, i.e., $|\mathcal{M}_i \cap \mathcal{M}_j| \leq 2$ for all $1 \leq i < j \leq n$. We have the following:

Theorem

Let $\mathcal M$ and $\mathcal X$ be as defined before. Then $\mathcal X$ forms a 2-thin cover of $\mathcal M$.

Roadmap of our proof for main theorem

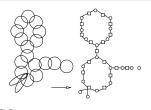


JUST two more definitions before we can get the independence assignment.

Component graph

Definition

Let G = (V, E) be such that its complete set of vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ forms a 2-thin cover. The 2-thin component cover graph, or component graph for short, \mathcal{C}_G of G contains a component node for each component \mathcal{M}_i in \mathcal{C}_G and whenever \mathcal{M}_i and \mathcal{M}_j share an edge in G, their corresponding component nodes in \mathcal{C}_G are connected via an edge node.



- Two components share an edge
 - Two components do not share an edge (can share nothing, a vertex or two vertices)

Definition

Definition

A graph G is a generalized partial m-tree if the following hold:

• Call all vertices of G that have degree at most m <u>leaves</u>.

Definition

- Call all vertices of G that have degree at most m <u>leaves</u>.
- Remove all leaves from G to get G_1 .

Definition

- Call all vertices of G that have degree at most m leaves.
- Remove all leaves from G to get G_1 .
- Remove all leaves from G_i to get G_{i+1} .

Definition

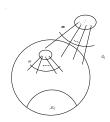
- Call all vertices of G that have degree at most m leaves.
- Remove all leaves from G to get G_1 .
- Remove all leaves from G_i to get G_{i+1} .
- Continue this process until there is no leaf.

Definition

- Call all vertices of G that have degree at most m leaves.
- Remove all leaves from G to get G_1 .
- Remove all leaves from G_i to get G_{i+1} .
- Continue this process until there is no leaf.
- The remaining kernel graph \mathcal{K}_{G} is empty.

Definition

- Call all vertices of G that have degree at most m leaves.
- Remove all leaves from G to get G_1 .
- Remove all leaves from G_i to get G_{i+1} .
- Continue this process until there is no leaf.
- The remaining kernel graph \(\mathcal{K}_G \) is empty.

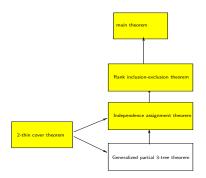


$\mathcal M$ has an independence assignment

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

Roadmap of our proof for main theorem



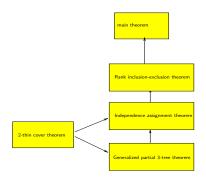
Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

Theorem

If (V, \mathcal{M}) is a Maxwell-independent graph, then its component graph is a generalized partial 3-tree.

Roadmap of our proof for main theorem



Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

Actually we show a stronger theorem

Theorem

If (V, \mathcal{M}) is a Maxwell-independent graph, then the average degree of any subgraph of its component graph is < 4.

Actually we show a stronger theorem

Theorem

If (V, \mathcal{M}) is a Maxwell-independent graph, then the average degree of any subgraph of its component graph is < 4.

ullet We can extend 2-thin cover to (d-1)-thin cover in d dimensions and define component graph accordingly.

Actually we show a stronger theorem

Theorem

If (V, \mathcal{M}) is a Maxwell-independent graph, then the average degree of any subgraph of its component graph is < 4.

• We can extend 2-thin cover to (d-1)-thin cover in d dimensions and define component graph accordingly.

Conjecture

For a Maxwell-independent graph in d dimensions, the average degree of the component nodes of any subgraph of the component graph (induced by a subset of component nodes) is strictly smaller than d+1.

Conjecture

For a Maxwell-independent graph in d dimensions the average degree of the component nodes of any subgraph of the component graph (induced by a subset of component nodes) is strictly smaller than d+1.

• We have just shown the bound in 3D. In 2D, this bound is tight.

Conjecture

For a Maxwell-independent graph in d dimensions the average degree of the component nodes of any subgraph of the component graph (induced by a subset of component nodes) is strictly smaller than d+1.

- We have just shown the bound in 3D. In 2D, this bound is tight.
- In 3D, however, we do not know of an example where all nodes have degree \geq 3. In fact, we do not even know of an example with average degree \geq 3.

Conjecture: higher dimensions

• Another natural conjecture is the following:

Conjecture

For any dimension d, the size of any maximal Maxwell-independent set gives an upper bound on the rank of the rigidity matroid of a graph G.

• Bill Jackson extended our result to $d \leq 5$. He used a proof by contradiction, but the main technical theorem (generalized partial 3-tree) is the same. Our proof is constructive towards an algorithm to find a minimum-sized maximal Maxwell-independent subgraph that contains a maximal independent set of G.

Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

Rank Inclusion-Exclusion of Maxwell-independent graphs

Theorem (rank inclusion-exclusion)

Given a Maxwell-independent graph \mathcal{M} and any set \mathcal{X} of vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n$ that is a cover of \mathcal{M} , then the rank inclusion-exclusion of cover \mathcal{X} is at least rank₃(\mathcal{M}), i.e, $\sum_i \operatorname{rank}_3(\mathcal{M}_i) - \sum_{(u,v) \in \mathcal{H}(\mathcal{X})} (n_{(u,v)} - 1) \geq \operatorname{rank}_3(\mathcal{M})$

Rank Inclusion-Exclusion of Maxwell-independent graphs

Theorem (rank inclusion-exclusion)

Given a Maxwell-independent graph \mathcal{M} and any set \mathcal{X} of vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ that is a cover of \mathcal{M} , then the rank inclusion-exclusion of cover \mathcal{X} is at least $\operatorname{rank}_3(\mathcal{M})$, i.e, $\sum_i \operatorname{rank}_3(\mathcal{M}_i) - \sum_{(u,v) \in \mathcal{H}(\mathcal{X})} (n_{(u,v)} - 1) \geq \operatorname{rank}_3(\mathcal{M})$

• Note: $(u, v) \in \mathcal{H}(\mathcal{X})$ turns out to always be an edge (we show 2-thin cover is "strong").

Better bounds for Maxwell-independent graphs

We can get better bounds for Maxwell-independent graphs.

Theorem

Given a Maxwell-independent graph (V, \mathcal{M}) and any set of <u>proper</u> vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n$ that form a cover \mathcal{X} , then the rank inclusion-exclusion of \mathcal{X} , i.e.,

$$\sum_{i} rank_3(\mathcal{M}_i) - \sum_{(u,v) \in \mathcal{H}(\mathcal{X})} (n_{(u,v)} - 1)$$
 is at least $rank_3(\mathcal{M})$.

Better bounds for Maxwell-independent graphs

We can get better bounds for Maxwell-independent graphs.

Theorem

Given a Maxwell-independent graph (V, M) and any set of proper vertex-maximal, Maxwell-rigid components $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n$ that form a cover \mathcal{X} , then the rank inclusion-exclusion of \mathcal{X} , i.e., $\sum_{i} rank_3(\mathcal{M}_i) - \sum_{(u,v) \in \mathcal{H}(\mathcal{X})} (n_{(u,v)} - 1)$ is at least $rank_3(\mathcal{M})$.

• This is better: recursive algorithm requires cover by proper vertex-maximal, Maxwell-rigid components.

Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

Bounds for non-Maxwell-independent graphs

Definition

Given graph G and a cover $\mathcal{X} = \{X_1, X_2, \dots, X_m\}$ of G. The <u>full rank</u> inclusion-exclusion of cover \mathcal{X} in 3D is defined as

$$\sum_{i}^{m} (3|V_{i}| - 6) - \sum_{(u,v) \in \mathcal{H}(\mathcal{X})} (n_{(u,v)} - 1), \text{ where } V_{i} \text{ is the vertex set of } X_{i} \text{ and } \mathcal{H}(\mathcal{X}) \text{ and } n_{(u,v)} \text{ are as defined before.}$$

Theorem

Given graph G=(V,E), if the complete collection $\mathcal X$ of vertex-maximal, Maxwell-rigid components forms a 2-thin cover, then the full rank inclusion-exclusion of the cover $\mathcal X$ is an upper bound on $\mathrm{rank}_3(G)$, i.e.,

$$\sum_{i}^{m} (3|V_{i}|-6) - \sum_{(u,v)\in\mathcal{H}(\mathcal{X})} (n_{(u,v)}-1) \geq rank_{3}(G).$$

Bounds for non-Maxwell-independent graphs

Theorem

Given graph G = (V, E), if the complete collection \mathcal{X} of <u>proper</u> vertex-maximal, Maxwell-rigid components forms a 2-thin cover, then the full rank inclusion-exclusion of the cover \mathcal{X} is an upper bound on rank₃(G), i.e.,

$$\sum_{i}^{m} (3|V_{i}|-6) - \sum_{(u,v)\in\mathcal{H}(\mathcal{X})} (n_{(u,v)}-1) \geq rank_{3}(G).$$

 Rank inclusion-exclusion formulae have been used by many. The most explored are based on 2-thin covers.

- Rank inclusion-exclusion formulae have been used by many. The most explored are based on 2-thin covers.
- In 1983, Dress et al conjectured that the minimum of the rank inclusion-exclusion taken over all 2-thin covers is an upper bound on the rank.

- Rank inclusion-exclusion formulae have been used by many. The most explored are based on 2-thin covers.
- In 1983, Dress et al conjectured that the minimum of the rank inclusion-exclusion taken over all 2-thin covers is an upper bound on the rank.
- A simple counterexample was given by Jackson and Jordán in 2003.

- Rank inclusion-exclusion formulae have been used by many. The most explored are based on 2-thin covers.
- In 1983, Dress et al conjectured that the minimum of the rank inclusion-exclusion taken over all 2-thin covers is an upper bound on the rank.
- A simple counterexample was given by Jackson and Jordán in 2003.
- In fact, in 2006 they showed that the minimum taken over all independent 2-thin covers is an upper bound on the rank. They conjectured that their bound is tight when restricted to non-rigid graphs and covers of size at least 2.

- Rank inclusion-exclusion formulae have been used by many. The most explored are based on 2-thin covers.
- In 1983, Dress et al conjectured that the minimum of the rank inclusion-exclusion taken over all 2-thin covers is an upper bound on the rank.
- A simple counterexample was given by Jackson and Jordán in 2003.
- In fact, in 2006 they showed that the minimum taken over all independent 2-thin covers is an upper bound on the rank. They conjectured that their bound is tight when restricted to non-rigid graphs and covers of size at least 2.
- They also defined an <u>iterated</u>, or <u>recursive</u>, version of independent covers and showed that the minimum of the full rank inclusion-exclusion taken over all iterated 2-thin covers is an upper bound on rank.

More remarks

 We show that rank inclusion-exclusion over a <u>specific</u>, <u>non-independent</u> cover gives a rank upper bound for Maxwell-independent graphs.

More remarks

- We show that rank inclusion-exclusion over a <u>specific</u>, <u>non-independent</u> cover gives a rank upper bound for Maxwell-independent graphs.
- Hence, any example where our bound is better will be a counterexample to Jackson and Jordán's conjecture.

More remarks

- We show that rank inclusion-exclusion over a <u>specific</u>, <u>non-independent</u> cover gives a rank upper bound for Maxwell-independent graphs.
- Hence, any example where our bound is better will be a counterexample to Jackson and Jordán's conjecture.
- As pointed out, our bound is more useful in an algorithmic sense.

Contents

- Questions and definitions.
- Answer to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

Proof.

ullet If ${\mathcal M}$ itself is Maxwell-rigid, done.

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

- ullet If ${\mathcal M}$ itself is Maxwell-rigid, done.
- ullet If ${\mathcal M}$ not Maxwell-rigid, use induction.

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

- ullet If ${\mathcal M}$ itself is Maxwell-rigid, done.
- ullet If ${\mathcal M}$ not Maxwell-rigid, use induction.
 - Suppose an indep assignment \mathcal{I}^k ; \mathcal{I}^k_i $1 \leq i \leq k$ for $\mathscr{C}^k_{\mathcal{M}} \subseteq \mathscr{C}_{\mathcal{M}}$ containing $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$.

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

- ullet If ${\mathcal M}$ itself is Maxwell-rigid, done.
- ullet If ${\mathcal M}$ not Maxwell-rigid, use induction.
 - Suppose an indep assignment \mathcal{I}^k ; \mathcal{I}_i^k $1 \leq i \leq k$ for $\mathscr{C}_{\mathcal{M}}^k \subseteq \mathscr{C}_{\mathcal{M}}$ containing $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$.
 - ullet Add \mathcal{M}_{k+1} to form $\mathscr{C}^{k+1}_{\mathcal{M}}$. We can keep the edges of \mathcal{I}^k in \mathcal{I}^{k+1} .

Theorem

Given Maxwell-independent graph $\mathcal M$ and a cover $\mathcal X$ by vertex-maximal, Maxwell-rigid components, if the component graph of $\mathcal M$ is a generalized partial 9-tree, then $(\mathcal M,\mathcal X)$ has an independence assignment.

- ullet If ${\mathcal M}$ itself is Maxwell-rigid, done.
- ullet If ${\mathcal M}$ not Maxwell-rigid, use induction.
 - Suppose an indep assignment \mathcal{I}^k ; \mathcal{I}_i^k $1 \leq i \leq k$ for $\mathscr{C}_{\mathcal{M}}^k \subseteq \mathscr{C}_{\mathcal{M}}$ containing $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_k$.
 - Add \mathcal{M}_{k+1} to form $\mathscr{C}^{k+1}_{\mathcal{M}}$. We can keep the edges of \mathcal{I}^k in \mathcal{I}^{k+1} .
 - Take $\mathcal{I}_i^{k+1} := \mathcal{I}_i^k$ for $1 \leq i \leq k$. Then we find a maximal independent set \mathcal{I}_{k+1}^{k+1} within \mathcal{M}_{k+1} that contains all its shared edges \mathcal{S} . If \mathcal{I}^{k+1} is not indep, we remove edges from $\mathcal{I}_{k+1}^{k+1} \mathcal{S}$ until it is indep.

Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

Theorem

If (V, M) is a Maxwell-independent graph, then any subgraph of its component graph is a generalized partial 3-tree.

Proof

Without loss of generality, we deal only with the complete component graph $\mathscr{C}_{\mathcal{M}}$.

Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

Theorem

If (V, \mathcal{M}) is a Maxwell-independent graph, then any subgraph of its component graph is a generalized partial 3-tree.

Proof

Without loss of generality, we deal only with the complete component graph $\mathscr{C}_{\mathcal{M}}$.

Suppose the component graph of \mathcal{M} is not a generalized partial 3-tree, then in the kernel component graph $\mathcal{K}_{\mathcal{M}}$, each component node has degree more than 3. Let K denote $\mathcal{K}_{\mathcal{M}}$'s corresponding subgraph in \mathcal{M} .

- Denote by $\mathcal{X} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$ the set of vertex-maximal, Maxwell-rigid components of K.
- V_i : vertices of M_i that are shared by other component(s);

- Denote by $\mathcal{X} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$ the set of vertex-maximal, Maxwell-rigid components of K.
- V_i : vertices of M_i that are shared by other component(s);
- E_i : edges of M_i that are shared by other component(s);

- Denote by $\mathcal{X} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$ the set of vertex-maximal, Maxwell-rigid components of K.
- V_i : vertices of M_i that are shared by other component(s);
- E_i : edges of M_i that are shared by other component(s);
- V_s : set of all shared vertices in K
- E_s : set of all shared edges in K

- Denote by $\mathcal{X} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$ the set of vertex-maximal, Maxwell-rigid components of K.
- V_i : vertices of M_i that are shared by other component(s);
- E_i : edges of M_i that are shared by other component(s);
- V_s : set of all shared vertices in K
- E_s : set of all shared edges in K
- n_e and n_v : the number of components \mathcal{M}_i of K that share e and v respectively.

- Denote by $\mathcal{X} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$ the set of vertex-maximal, Maxwell-rigid components of K.
- V_i : vertices of M_i that are shared by other component(s);
- E_i : edges of M_i that are shared by other component(s);
- V_s: set of all shared vertices in K
- E_s : set of all shared edges in K
- n_e and n_v : the number of components \mathcal{M}_i of K that share e and v respectively.
- $C_{\nu} \subseteq \{1, ..., n\}$: the set of indices of components that are incident at ν .
- ullet w_{v}^{j} : the number of shared edges incident at v in component \mathcal{M}_{j}
- s_v : the number of shared edges that are incident at v.

In order to determine the Maxwell-independence of K, we need to calculate $3|V_K|-|E_K|$, which is

$$\sum_{i} 6 - 3 \sum_{v \in V_s} n_v + \sum_{e \in E_s} n_e + 3|V_s| - |E_s| = \sum_{i} (6 - 3|V_i| + |E_i|) + 3|V_s| - |E_s|$$

Since \mathcal{M} is Maxwell-independent, we know K is also Maxwell-independent, thus

$$6n - 6 \ge 3\sum_{i} |V_{i}| - \sum_{i} |E_{i}| - 3|V_{s}| + |E_{s}| \tag{4}$$

The collection of all n_v components of K meeting at v forms a subgraph C. $3|V_C|-|E_C|$ can be computed as follows:

- there are n_v components, which contributes $6n_v$;
- v is shared by n_v components, and the contribution is $-(3n_v 3)$;
- each shared edge in a component \mathcal{M}_j contributes 1 to the count, and in total the shared edges contribute $(\sum_{i \in C_v} w_v^j) s_v$
- for each shared edge e = (u, v), vertex u contributes $-3[(\sum_{j \in C_v} w_v^j) s_v]$

Thus $3|V_C| - |E_C|$ is equal to:

$$3n_v - 2[(\sum_{i \in C_v} w_v^j) - s_v] + 3$$

Since *C* is Maxwell-independent, we know:

$$3n_{V} - 2[(\sum_{j \in C_{V}} w_{V}^{j}) - s_{V}] + 3 \ge 6$$

 $3n_{V} - 2[(\sum_{j \in C_{V}} w_{V}^{j}) - s_{V}] \ge 3$

Summing over all shared vertices in V_s , we have:

$$3 \sum_{v \in V_S} n_v - 2 \sum_{v \in V_S} [(\sum_{j \in C_v} w_v^j) - s_v] \ge 3|V_S|$$

Since
$$\sum_{v \in V_s} n_v = \sum_i |V_i|$$
, $\sum_{v \in V_s} (\sum_{j \in C_v} w_v^j) = 2 \sum_i |E_i|$ and $\sum_{v \in V_s} s_v = 2|E_s|$, we

know

$$3\sum_{i}|V_{i}|-4\sum_{i}|E_{i}|-3|V_{s}|+4|E_{s}|\geq 0$$

Plugging into (4), we have:

$$\begin{array}{lll} 6n-6 & \geq & 3\sum_{i}|V_{i}|-\sum_{i}|E_{i}|-3|V_{s}|+|E_{s}| \\ \\ & \geq & 3\sum_{i}|V_{i}|-4\sum_{i}|E_{i}|-3|V_{s}|+4|E_{s}| \\ \\ & & +3(\sum_{i}|E_{i}|-|E_{s}|) \\ \\ & \geq & 3(\sum_{i}|E_{i}|-|E_{s}|) \end{array}$$

Since $|E_s| \leq \frac{1}{2} \sum_i |E_i|$, we have:

$$6n-6\geq \frac{3}{2}\sum_{i}|E_{i}|$$

Since \mathcal{M} is not a generalized partial 3-tree, we know in K, each component has degree at least 4, i.e. $|E_i| \ge 4$ for $1 \le i \le n$. Hence we have:

$$6n - 6 \ge \frac{3}{2} \sum_{i} 4 = 6n.$$

Contradiction.

Contents

- Questions and definitions.
- **Answer** to Question 1: every maximal Maxwell-independent subgraph of G has size at least rank of the 3D rigidity matroid of G.
- Conjectures
- Answer to Question 2: rank inclusion-exclusion formulae giving new bounds on the rank of the 3D rigidity matroid for Maxwell-independent graphs.
- Similar bounds on the rank of the 3D rigidity matroid for a special class of Maxwell-dependent graphs.
- Key proofs
- Open problems.

Stronger notions than Maxwell-independence

A natural open problem is to improve the bound in main theorem directly by considering other notions of independence that are stronger than Maxwell-independence.

Maximum Maxwell-independent sets

Note that Maxwell-rigid graph requires the maximum Maxwell-independent set to be of size $\geq 3|V|-6$. Although the maximum Maxwell-independent set is trivially as big as the rank (and is not directly relevant to finding good bounds on rank), covers by vertex-maximal, Maxwell-rigid components have played a role in some of the Theorems that give useful bounds on rank. Recall that Hendrickson [Hendrickson, 92] gives an algorithm to test Maxwell-independence by finding a maximal Maxwell-independent set that is automatically maximum in 2D. While an extension of Hendrickson [Hendrickson, 92] to 3D given in [Lomonosov, 04] finds a maximal Maxwell-independent set, it is not guaranteed to be maximum. Thus another question of interest is whether maximum Maxwell-independent sets can be characterized in some natural way.

Guarantee 2-thin

Note that the complete collection of (proper) vertex-maximal, Maxwell-rigid components is far from being a 2-thin cover. For example, in the following figure we have 3 K_5 's and the neighboring K_5 's share an edge with each other. There are two vertex-maximal, Maxwell-rigid components, each of which consists of 2 K_5 's with a shared edge.

Using strong Maxwell-rigidity to guarantee 2-thin

Definition

A graph G = (V, E) is strong Maxwell-rigid if for all maximal Maxwell-independent edge sets $E' \subseteq E$, we have $|E'| \ge 3|V'| - 6$.

Conjecture

Given graph G, any cover \mathcal{X} by a collection of vertex-maximal, strong Maxwell-rigid components is a 2-thin cover.

Thank you!

- Report of Banff International Research Station workshop
 - Report of Banff International Research Station workshop on rigidity and application, 2008
- J. C. Maxwell, On the Calculation of the Equilibrium and Stiffness of Frames, Philosophical Magazine, volume XXVII, page 294, 1864.
 - Jialong Cheng, Meera Sitharam, Ileana Streinu Nucleation-free 3D rigidity, In proceedings of CCCG9, 2009.
- Bill Jackson

A necessary condition for generic rigidity of bar-and-joint frameworks in *d* dimensions, arXiv:1104.4415v2, 2011.

Bruce Hendrickson Conditions For Unique Graph Realizations SIAM J. Comput, volume 21, pages 65–84, year = 1992.

Andrew Lomonosov

Graph and combinatorial algorithms for geometric constraint solving, PhD Thesis, University of Florida, 2004.