Better rank estimates for the 3D rigidity matroid

Jialong Cheng, Meera Sitharam

October 11, 2011

Jialong Cheng, Meera Sitharam () Better rank estimates for the 3D rigidity matr October 11, 2011 1/57



A rigidity question posed by Tibor Jordan in BIRS rigidity

workshop 08

Question 1: Does every maximal, Maxwell-independent subgraph of a
graph G in 3 dimensions have size at least rank3(G)? J
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A rigidity question posed by Tibor Jordan in BIRS rigidity

workshop 08

Question 1: Does every maximal, Maxwell-independent subgraph of a
graph G in 3 dimensions have size at least rank3(G)? J

A graph G = (V, E) is Maxwell-independent in d dimensions if for any
_ d+1
subgraph H = (X, F) of G, |F| < d|X|— (%37).
e 2D: 2|X| -3
e 3D: 3|X| -6

E’ C E is maximal
Maxwell-independent if E’ is
Maxwell-independent and for any
e€ E\E', E'U{e} is not
Maxwell-independent.
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Other names for Maxwell-independent graphs in the

literature

o d-sparse, (k, /)-sparse (in this case, (d, (“3'))-sparse) have been used
in the literature

@ dense and sparse graphs have been used to mean a variety of different
things in graph theory;

@ we use Maxwell-independence because Maxwell first showed in 1864
that every graph G that is rigid in d dimensions must contain a

Maxwell-independent subgraph that has least d|V/| — (d;rl) edges.
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er question

Another related question is the following:
Question 2: Is there a better combinatorial upper bound (than the number
of edges) on ranks(G) for Maxwell-independent graphs G?
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er question

Another related question is the following:
Question 2: Is there a better combinatorial upper bound (than the number
of edges) on ranks(G) for Maxwell-independent graphs G?

Our results give affirmative answers to both Question 1 and 2 in 3D.
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

Q Key proofs
@ Open problems
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Maxwell-rigidity

A graph G = (V, E) is Maxwell-rigid in d dimensions if there exists a
E’' C E such that E’ is Maxwell-independent and has size
dlVv| = (d+1) 1

V= ("37)

!Bill Jackson suggests “d-critical”, but “critical” is used for many other
graph properties.
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Maxwell-rigid component

Given graph G = (V,E),

@ a vertex-maximal, Maxwell-rigid component is a Maxwell-rigid
induced subgraph which is not properly contained in any other
Maxwell-rigid subgraph of G.

@ a proper vertex-maximal, Maxwell-rigid component is a Maxwell-rigid
induced subgraph which is not properly contained in any
Maxwell-rigid induced proper subgraph of G.

pdpdpp
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Independence vs Maxwell-independence

Recall: a subgraph of G is independent in d dimensions if its edges give an
independent set of rows of a generic d-dimensional rigidity matrix of G.

© Maxwell’s direction: Independence implies Maxwell-independence,
true for all dimensions.

© Laman’s direction: Maxwell-independence implies independence, true
for 2D.
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Theorem (Laman)

In 2D, independence < Maxwell-independence.
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Laman'’s theorem ("

Theorem (Laman)

In 2D, independence < Maxwell-independence.

I In 2D, every maximal Maxwell-independent set of G has the same
size(= ranky(G)).
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Laman's theorem ('70)

Theorem (Laman)

In 2D, independence < Maxwell-independence.

I In 2D, every maximal Maxwell-independent set of G has the same
size(= ranky(G)).

[I'In 2D, a non-edge pair f = (u, v) is implied only if u and v both lie
inside a rigid subgraph (V',E’") C (V,E). l.e., every rigidity circuit
lies inside a rigid subgraph.
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Laman'’s direction in 3D

In 3D, the two properties in the previous slide are both false.

I In 3D, not all maximal Maxwell-independent sets have the same size.

/N >

/74

18 17
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Laman'’s direction in 3D

[ In 3D, a non-edge pair f can be implied without lying inside a rigid
subgraph, ([Cheng, Sitharam, Streinu, 2009]),i.e., there are rigidity
circuits that do not even contain any non-trivial rigid subgraph.
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent
subgraph of G has size at least rank of the 3D rigidity matroid
of G. Our proof is constructive towards an algorithm to find a
minimum-sized maximal Maxwell-independent subgraph that contains
a maximal independent set of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

@ Key proofs
@ Open problems
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Theorem (Main)

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
Z a maximal independent set of G. Then |M| > |Z|.
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Main theorem

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
Z a maximal independent set of G. Then |M| > |Z|.




Main theorem and proof idea

Theorem (Main)

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
Z be a maximal independent set of G. Then |M| > |Z].

@ We will decompose M into a
cover X by vertex-maximal,
Maxwell-rigid subgraphs.
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Main theorem and proof idea

Theorem (Main)

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
Z be a maximal independent set of G. Then |M| > |Z].

@ We show a rank
inclusion-exclusion formula on
X that gives an upper bound on
ranks(M).
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Main theorem and proof idea

Theorem (Main)

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
T be a maximal independent set of G. Then |M| > |Z|.

@ We show a rank T
inclusion-exclusion formula on
X that gives an upper bound on
ranks(M). <

@ For this, we will construct an
independence assignment: a <
proper subgraph of M with size TN
matching the formula and
containing a maximal
independent subgraph of M.
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Main theorem and proof idea

Theorem (Main)

Let M be a maximal Maxwell-independent set of a graph G = (V, E) and
Z be a maximal independent set of G. Then |M| > |Z].

@ To construct the independence
assignment, we will show that
the component graph formed by
the cover X of M is a
generalized partial 3-tree.
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Roadmap of our proof for main theorem

main theorem

Rank inclusion-exclusion theorem

A

Independence assignment theorem

2-thin cover theorem

T

/\

Generalized partial 3-tree theorem
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Proof of the main theorem

@ A cover of a graph G = (V,E)
is a collection X of pairwise
incomparable subsets of V/, each
of size at least two, such that
UxexE(X) = E.
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Proof of the main theorem

@ A cover of a graph G = (V,E)
is a collection X" of pairwise
incomparable subsets of V/, each
of size at least two, such that
UxexE(X) = E.

o Let X = { M1, My, ..., M,}
be any cover by vertex-maximal,
Maxwell-rigid components of
M. Let Zpq be a maximal
independent set of M and
extend Z,q to a maximal
independent set 7 of G.

)
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Proof of the main theorem

@ Simple fact: maximality of M
implies that Z \ Zo( can be
covered by 7 \ T restricted to
each M;, which we denote
(Z\ Zm)li- Hence

IZ\Zml < Z (ZNZa)l (1)

October 11, 2011 15/
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Proof of main theorem(cont.)

@ Another simple fact: denote by
H(X) pairs of vertices (u, v)
such that {u,v} C (M; N M;)
for some 1 </ < j < n. Denote
by ne the number of
components M; of X that share
e. Thus

M=M= 3 (=)

ecH(X)
(2)
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Proof of main theorem(cont.)

@ Key observation: e

77 T\ Tl
Maxwell-rigidity of M; implies /////’ _ o
that % lé‘ e 20

|Mi| > ranks(M;)+[(Z\Zrm)]il-
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Proof of main theorem(cont.)

@ Key observation: s
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@ Applying Equation (2), i.e.,
M| =225 IMil = 2 eera)(ne — 1), we can get

M2 Y ranka(M) = > (=1 + 3 IE\Tull - ()

eeH(X)
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Proof of main theorem(cont.)

@ Key observation: _

Maxwell-rigidity of M; implies {/ -
|
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@ Applying Equation (2), i.e.,
M| =225 IMil = 2 eera)(ne — 1), we can get

M2 Y ranka(M) = > (=1 + 3 IE\Tull - ()

eeH(X)

We prove a rank inclusion-exclusion theorem to lower-bound the first
two items of the RHS.
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Rank inclusion-exclusion completes proof of main theorem

@ We prove a rank inclusion-exclusion theorem to lower-bound the first
two items of the RHS of Equation (3)
(M| =3, rankg(M;) — Zeeﬂ(x)(”e = 1)+ 2 @\l

Given a Maxwell-independent graph M and any set X of vertex-maximal,
Maxwell-rigid components My, M>, ..., M, that is a cover of M, then
the rank inclusion-exclusion of cover X is at least rank3(M), i.e,

2o rank3(Mi) = 3= cqyxy(ne — 1) = ranks(M)
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Rank inclusion-exclusion completes proof of main theorem

@ We prove a rank inclusion-exclusion theorem to lower-bound the first
two items of the RHS of Equation (3)
(M| =3, rankg(M;) — Zeeﬂ(x)(”e = 1)+ 2 @\l

Given a Maxwell-independent graph M and any set X of vertex-maximal,
Maxwell-rigid components My, M>, ..., M, that is a cover of M, then
the rank inclusion-exclusion of cover X is at least rank3(M), i.e,

2o rank3(Mi) = 3= cqyxy(ne — 1) = ranks(M)

@ From Equation (1) >, [(Z \ Zm)li| > |Z \ Zam], the above theorem,
and Equation (3) above, we get |M| > |Zy| + |Z \ Zam| = |Z], thus
proving the main theorem.
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Roadmap of our proof for main theorem

main theorem

Rank inclusion-exclusion theorem

n

Independence assignment theorem

T

Generalized partial 3-tree theorem

2-thin cover theorem

/\
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Rank inclusion-exclusion

@ Suppose we can construct an

N @\ T

7 ”
, , >
independence assignment @l
[Tt Zat, - - I, ] where ’ i? ‘ﬁ{% ¢
(1) (Zan)ls € Tas, ( S

\\“‘

(2) for each e € H(X), e € Ty,
for at least n. — 1 of the M;’s
containing e.

/;.,’ 27 ,
% ’///,
,

A

INEEE

@ Then we immediately get

S ranka (M) = Y aepay (e — 1) 2 X5 [(Zan)lil = [T, which is
the rank inclusion- exc|u5|on theorem.
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Roadmap of our proof for main theorem

main theorem

Rank inclusion-exclusion theorem

Independence assignment theorem

2-thin cover theorem T

Generalized partial 3-tree theorem
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pendence assignme

@ Constructing an independence assignment is the main technical result
of the paper.
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independence assignment

@ Constructing an independence assignment is the main technical result
of the paper.

@ To show the existence of the independence assignment, we show that
X forms a 2-thin cover, i.e., [M;NM;| <2forall1 <i<j<n We
have the following:

Let M and X be as defined before. Then X forms a 2-thin cover of M.
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Roadmap of our proof for main theorem
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2-thin cover theorem T
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JUST two more definitions before we can get the independence
assignment. J
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Compo graph

Definition

Let G = (V, E) be such that its complete set of vertex-maximal,
Maxwell-rigid components My, Mo, ..., M, forms a 2-thin cover. The
2-thin component cover graph, or component graph for short, €¢ of G
contains a component node for each component M; in €¢ and whenever
M, and M share an edge in G, their corresponding component nodes in
@ are connected via an edge node.

% Two components do not share an edge (can share nothing, a vertex or two vertices)
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:

@ Call all vertices of G that have degree at most m leaves.
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:

@ Call all vertices of G that have degree at most m leaves.

@ Remove all leaves from G to get Gj.
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:

@ Call all vertices of G that have degree at most m leaves.
@ Remove all leaves from G to get Gj.

@ Remove all leaves from G; to get Gji1.
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:

@ Call all vertices of G that have degree at most m leaves.
@ Remove all leaves from G to get Gj.

@ Remove all leaves from G; to get Gji1.
°

Continue this process until there is no leaf.
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Generalized partial m-tree

A graph G is a generalized partial m-tree if the following hold:

(]

Call all vertices of G that have degree at most m leaves.
Remove all leaves from G to get Gj.
Remove all leaves from G; to get Gj.1.

Continue this process until there is no leaf.

The remaining kernel graph ¢ is empty.
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Generalized partial m-tree

Definition

A graph G is a generalized partial m-tree if the following hold:

(]

Call all vertices of G that have degree at most m leaves.
Remove all leaves from G to get Gj.
Remove all leaves from G; to get Gj.1.

Continue this process until there is no leaf.

The remaining kernel graph ¢ is empty.
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M has an independence assignment

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.
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Roadmap of our proof for main theorem

main theorem
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Independence assignment theorem

2-thin cover theorem T

Generalized partial 3-tree theorem
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Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

If (V, M) is a Maxwell-independent graph, then its component graph is a
generalized partial 3-tree.
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Roadmap of our proof for main theorem
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

Q Key proofs
@ Open problems
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Conjecture: average degree in higher dimension

@ Actually we show a stronger theorem

If (V, M) is a Maxwell-independent graph, then the average degree of any
subgraph of its component graph is < 4.
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Conjecture: average degree in higher dimension

@ Actually we show a stronger theorem

If (V, M) is a Maxwell-independent graph, then the average degree of any
subgraph of its component graph is < 4.

@ We can extend 2-thin cover to (d — 1)-thin cover in d dimensions and
define component graph accordingly.
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Conjecture: average degree in higher dimension

@ Actually we show a stronger theorem

If (V, M) is a Maxwell-independent graph, then the average degree of any
subgraph of its component graph is < 4.

@ We can extend 2-thin cover to (d — 1)-thin cover in d dimensions and
define component graph accordingly.

For a Maxwell-independent graph in d dimensions, the average degree of
the component nodes of any subgraph of the component graph (induced
by a subset of component nodes) is strictly smaller than d + 1.
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Conjecture: average degree in higher dimension

For a Maxwell-independent graph in d dimensions the average degree of
the component nodes of any subgraph of the component graph (induced
by a subset of component nodes) is strictly smaller than d + 1.

@ We have just shown the bound in 3D. In 2D, this bound is tight.
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Conjecture: average degree in higher dimension

For a Maxwell-independent graph in d dimensions the average degree of
the component nodes of any subgraph of the component graph (induced
by a subset of component nodes) is strictly smaller than d + 1.

@ We have just shown the bound in 3D. In 2D, this bound is tight.

@ In 3D, however, we do not know of an example where all nodes have
degree > 3. In fact, we do not even know of an example with average
degree > 3.
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Conjecture: higher dimensions

@ Another natural conjecture is the following:

For any dimension d, the size of any maximal Maxwell-independent set
gives an upper bound on the rank of the rigidity matroid of a graph G.

@ Bill Jackson extended our result to d < 5. He used a proof by
contradiction, but the main technical theorem (generalized partial
3-tree) is the same. Our proof is constructive towards an algorithm to
find a minimum-sized maximal Maxwell-independent subgraph that
contains a maximal independent set of G.

October 11, 2011 34 /57
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving
new bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

Q Key proofs
@ Open problems
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Rank Inclusion-Exclusion of Maxwell-independent graphs

Theorem (rank inclusion-exclusion)

Given a Maxwell-independent graph M and any set X of vertex-maximal,
Maxwell-rigid components My, M>, ..., M, that is a cover of M, then
the rank inclusion-exclusion of cover X is at least rank3(M), i.e,

> ranks(Mi) = 32 vyen(x) (Nuv) — 1) = ranks(M)
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Rank Inclusion-Exclusion of Maxwell-independent graphs

Theorem (rank inclusion-exclusion)

Given a Maxwell-independent graph M and any set X of vertex-maximal,
Maxwell-rigid components My, M>, ..., M, that is a cover of M, then
the rank inclusion-exclusion of cover X is at least rank3(M), i.e,

> ranks(Mi) = 32 vyen(x) (Nuv) — 1) = ranks(M)

@ Note: (u,v) € H(X) turns out to always be an edge (we show 2-thin
cover is “strong”).
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Better bounds for Maxwell-independent graphs

We can get better bounds for Maxwell-independent graphs.

Given a Maxwell-independent graph (V, M) and any set of proper
vertex-maximal, Maxwell-rigid components M1, M>, ..., M, that form a
cover X, then the rank inclusion-exclusion of X, i.e.,

> ranks(M;) = 32, vyen(x) (N(uv) — 1) is at least ranks(M).
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Better bounds for Maxwell-independent graphs

We can get better bounds for Maxwell-independent graphs.

Given a Maxwell-independent graph (V, M) and any set of proper
vertex-maximal, Maxwell-rigid components M1, M>, ..., M, that form a
cover X, then the rank inclusion-exclusion of X, i.e.,

> ranks(M;) = 32, vyen(x) (N(uv) — 1) is at least ranks(M).

@ This is better: recursive algorithm requires cover by proper
vertex-maximal, Maxwell-rigid components.
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a
special class of Maxwell-dependent graphs.

Q Key proofs
@ Open problems
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Bounds for non-Maxwell-independent graphs

Definition

Given graph G and a cover X = {X1,Xa,...,Xn} of G. The full rank

inclusion-exclusion of cover X in 3D is defined as
m

2 BIVil=6)— > (n@y) —1), where Vj is the vertex set of X; and

i (u,v)EH(X)
H(X) and n(,,) are as defined before.

Theorem

| \

Given graph G = (V, E), if the complete collection X of vertex-maximal,
Maxwell-rigid components forms a 2-thin cover, then the full rank
inclusion-exclusion of the cover X is an upper bound on ranks(G), i.e.,

m

D @EIVI=6)— > (nwy) — 1) > ranks(G).

i (u,v)EH(X)

v
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Bounds for non-Maxwell-independent graphs

Theorem

Given graph G = (V, E), if the complete collection X of proper
vertex-maximal, Maxwell-rigid components forms a 2-thin cover, then the

full rank inclusion-exclusion of the cover X is an upper bound on
ranks3(G), ie.,

m

S@EIVII=6)— > (ny) — 1) > ranks(G).

i (u,v)eH(X)
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Some remarks

@ Rank inclusion-exclusion formulae have been used by many. The most
explored are based on 2-thin covers.
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Some remarks

@ Rank inclusion-exclusion formulae have been used by many. The most
explored are based on 2-thin covers.

@ In 1983, Dress et al conjectured that the minimum of the rank
inclusion-exclusion taken over all 2-thin covers is an upper bound on

the rank.
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Some remarks

@ Rank inclusion-exclusion formulae have been used by many. The most
explored are based on 2-thin covers.

@ In 1983, Dress et al conjectured that the minimum of the rank
inclusion-exclusion taken over all 2-thin covers is an upper bound on
the rank.

@ A simple counterexample was given by Jackson and Jordan in 2003.
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Some remarks

@ Rank inclusion-exclusion formulae have been used by many. The most
explored are based on 2-thin covers.

@ In 1983, Dress et al conjectured that the minimum of the rank
inclusion-exclusion taken over all 2-thin covers is an upper bound on
the rank.

@ A simple counterexample was given by Jackson and Jordan in 2003.

@ In fact, in 2006 they showed that the minimum taken over all
independent 2-thin covers is an upper bound on the rank. They
conjectured that their bound is tight when restricted to non-rigid
graphs and covers of size at least 2.
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Some remarks

@ Rank inclusion-exclusion formulae have been used by many. The most
explored are based on 2-thin covers.

@ In 1983, Dress et al conjectured that the minimum of the rank
inclusion-exclusion taken over all 2-thin covers is an upper bound on
the rank.

@ A simple counterexample was given by Jackson and Jordan in 2003.

@ In fact, in 2006 they showed that the minimum taken over all
independent 2-thin covers is an upper bound on the rank. They
conjectured that their bound is tight when restricted to non-rigid
graphs and covers of size at least 2.

@ They also defined an iterated, or recursive, version of independent
covers and showed that the minimum of the full rank
inclusion-exclusion taken over all iterated 2-thin covers is an upper
bound on rank.
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More remarks

@ We show that rank inclusion-exclusion over a specific,
non-independent cover gives a rank upper bound for
Maxwell-independent graphs.
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More remarks

@ We show that rank inclusion-exclusion over a specific,
non-independent cover gives a rank upper bound for
Maxwell-independent graphs.

@ Hence, any example where our bound is better will be a
counterexample to Jackson and Jordan's conjecture.
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More remarks

@ We show that rank inclusion-exclusion over a specific,
non-independent cover gives a rank upper bound for
Maxwell-independent graphs.

@ Hence, any example where our bound is better will be a
counterexample to Jackson and Jordan's conjecture.

@ As pointed out, our bound is more useful in an algorithmic sense.
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

O Key proofs
@ Open problems
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M has an independence assignment

Theorem

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.

Proof.
o If M itself is Maxwell-rigid, done.

| A\

O

v
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M has an independence assignment

Theorem

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.

Proof.
o If M itself is Maxwell-rigid, done.
o If M not Maxwell-rigid, use induction.

| A\

O

v
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M has an independence assignment

Theorem

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.

Proof.
o If M itself is Maxwell-rigid, done.
o If M not Maxwell-rigid, use induction.

o Suppose an indep assignment Z¥; K 1 < i < k for €% C G
containing My, Mo, ..., M.

| A\

O

v
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M has an independence assignment

Theorem

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.

Proof.
o If M itself is Maxwell-rigid, done.
o If M not Maxwell-rigid, use induction.

o Suppose an indep assignment Z¥; K 1 < i < k for €% C G
containing My, Mo, ..., M.
o Add M1 to form €X*. We can keep the edges of Z¥ in Z+*1.

| A\

O

v
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M has an independence assignment

Theorem

Given Maxwell-independent graph M and a cover X by vertex-maximal,
Maxwell-rigid components, if the component graph of M is a generalized
partial 9-tree, then (M, X') has an independence assignment.

Proof
o If M itself is Maxwell-rigid, done.
o If M not Maxwell-rigid, use induction.
o Suppose an indep assignment Z¥; K 1 < i < k for €% C G
containing My, Mo, ..., M.
o Add My, to form %”1 We can keep the edges of ZF in ZK*1.
o Take Ik+1 = Ik for 1 < i < k. Then we find a maximal independent
set I,’(‘j:ll within M1 that contains all its shared edges S. If Z¥*1 is

not indep, we remove edges from I,fjrrll S until it is indep.

| A\

A,
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Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

Theorem

If (V, M) is a Maxwell-independent graph, then any subgraph of its
component graph is a generalized partial 3-tree.

| \

Proof
Without loss of generality, we deal only with the complete component
graph @u.

A\,
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Component graph is generalized partial 3-tree

Note that a generalized partial 3-tree is also a generalized partial 9-tree.

Theorem

If (V, M) is a Maxwell-independent graph, then any subgraph of its
component graph is a generalized partial 3-tree.

| A\

Proof

Without loss of generality, we deal only with the complete component
graph @u.

Suppose the component graph of M is not a generalized partial 3-tree,
then in the kernel component graph %), each component node has
degree more than 3. Let K denote JZ),'s corresponding subgraph in M.
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Proof of generalized partial 3-tree

@ Denote by X = {My,..., M,} the set of vertex-maximal,
Maxwell-rigid components of K.

@ V;: vertices of M; that are shared by other component(s);
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Proof of generalized partial 3-tree

@ Denote by X = {My,..., M,} the set of vertex-maximal,
Maxwell-rigid components of K.

@ V;: vertices of M; that are shared by other component(s);

@ E;: edges of M; that are shared by other component(s);
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Proof of generalized partial 3-tree

@ Denote by X = {My,..., M,} the set of vertex-maximal,
Maxwell-rigid components of K.

@ V;: vertices of M; that are shared by other component(s);
@ E;: edges of M; that are shared by other component(s);
@ Vi: set of all shared vertices in K

o E;: set of all shared edges in K
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Proof of generalized partial 3-tree

@ Denote by X = {My,..., M,} the set of vertex-maximal,
Maxwell-rigid components of K.

V;: vertices of M; that are shared by other component(s);
Ei: edges of M; that are shared by other component(s);
Vs: set of all shared vertices in K

Es: set of all shared edges in K

e © © ¢ ¢

ne and n,: the number of components M; of K that share e and v
respectively.
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Proof of generalized partial 3-tree

)

e © © ¢ ¢

Denote by X = {M,..., M} the set of vertex-maximal,
Maxwell-rigid components of K.

V;: vertices of M; that are shared by other component(s);
Ei: edges of M; that are shared by other component(s);
Vs: set of all shared vertices in K

Es: set of all shared edges in K

ne and n,: the number of components M; of K that share e and v
respectively.

C, C{1,...,n}: the set of indices of components that are incident at
v.

wi: the number of shared edges incident at v in component M;

s, the number of shared edges that are incident at v.
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proof cont

In order to determine the Maxwell-independence of K, we need to
calculate 3|Vk| — |Ek/|, which is

26 3)° nv+zne+3\V\—\E\_Z(6 3|\Vi|+|Ei|) +3| Vs| - | E|

veVs ecE;s

Since M is Maxwell-independent, we know K is also
Maxwell-independent, thus

6n—6>3) |Vil—) |El—3|Vs|+|E

(4)
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The collection of all n, components of K meeting at v forms a subgraph
C. 3|Vc¢| — |Ec| can be computed as follows:

@ there are n, components, which contributes 6n,;
@ v is shared by n, components, and the contribution is —(3n, — 3);

@ each shared edge in a component M; contributes 1 to the count, and
in total the shared edges contribute (3-;cc, wy) — sy
o for each shared edge e = (u, v), vertex u contributes

=3[ jec, w) — 5]
Thus 3|Vc| — |Ec| is equal to:

3n, — 2[(2 wl) —s,]+3

JjEC
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Since C is Maxwell-independent, we know:

3, —2(> W) —s]+3 = 6
JjeCy
3, —2[(Y_wi)—s] > 3
JeCy

Summing over all shared vertices in Vs, we have:

33 =23 (X wh)— sl >3]V

vEVs veVs jely
Slnceva—Z\V| (> w’)—ZZ\E|and > sy =2|Es|, we
veVs veVs jeC, veVs

know
3) Vil — 4> |Eil —3|Vs| +4]Es| > 0
i i
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Plugging into (4), we have:

6n—6 > 3> |Vi|—> |E|—3|Vs| + |Es|
i i

> 3> Vil — 4> |E| - 3|Vs| +4lE
i i
3> IEil — &)
i
> 30 IE| - |E))
i

Since |Es| < %Z |Ei|, we have:
1

3
6n—6z§Z|E;I
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proof cont.
Since M is not a generalized partial 3-tree, we know in K, each
component has degree at least 4, i.e. |E;| >4 for 1 < i < n. Hence we
have: 3

6n—6> 524:6n.

]

Contradiction. my
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© Questions and definitions.

© Answer to Question 1: every maximal Maxwell-independent subgraph
of G has size at least rank of the 3D rigidity matroid of G.

© Conjectures

© Answer to Question 2: rank inclusion-exclusion formulae giving new
bounds on the rank of the 3D rigidity matroid for
Maxwell-independent graphs.

© Similar bounds on the rank of the 3D rigidity matroid for a special
class of Maxwell-dependent graphs.

Q Key proofs
@ Open problems.
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Stronger notions than Maxwell-independence

A natural open problem is to improve the bound in main theorem directly

by considering other notions of independence that are stronger than
Maxwell-independence.
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Maximum Maxwell-independent sets

Note that Maxwell-rigid graph requires the maximum
Maxwell-independent set to be of size > 3|V/| — 6. Although the maximum
Maxwell-independent set is trivially as big as the rank (and is not directly
relevant to finding good bounds on rank), covers by vertex-maximal,
Maxwell-rigid components have played a role in some of the Theorems
that give useful bounds on rank. Recall that Hendrickson

[Hendrickson, 92] gives an algorithm to test Maxwell-independence by
finding a maximal Maxwell-independent set that is automatically
maximum in 2D. While an extension of Hendrickson [Hendrickson, 92] to
3D given in [Lomonosov, 04] finds a maximal Maxwell-independent set, it
is not guaranteed to be maximum. Thus another question of interest is
whether maximum Maxwell-independent sets can be characterized in some
natural way.
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Guarantee 2-thin

Note that the complete collection of (proper) vertex-maximal,
Maxwell-rigid components is far from being a 2-thin cover. For example, in
the following figure we have 3 Ks's and the neighboring Ks's share an edge
with each other. There are two vertex-maximal, Maxwell-rigid
components, each of which consists of 2 Kg's with a shared edge.

aw
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Using strong Maxwell-rigidity to guarantee 2-thin

Definition
A graph G = (V, E) is strong Maxwell-rigid if for all maximal
Maxwell-independent edge sets E' C E, we have |E'| > 3|V'| — 6.

Conjecture

Given graph G, any cover X by a collection of vertex-maximal, strong
Maxwell-rigid components is a 2-thin cover.

A,
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Thank you!
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